Properties

 Label 980.4.i.e.361.1 Level $980$ Weight $4$ Character 980.361 Analytic conductor $57.822$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

Learn more

Newspace parameters

 Level: $$N$$ $$=$$ $$980 = 2^{2} \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 980.i (of order $$3$$, degree $$2$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$57.8218718056$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 20) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

 Embedding label 361.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 980.361 Dual form 980.4.i.e.961.1

$q$-expansion

 $$f(q)$$ $$=$$ $$q+(-2.00000 + 3.46410i) q^{3} +(-2.50000 - 4.33013i) q^{5} +(5.50000 + 9.52628i) q^{9} +O(q^{10})$$ $$q+(-2.00000 + 3.46410i) q^{3} +(-2.50000 - 4.33013i) q^{5} +(5.50000 + 9.52628i) q^{9} +(30.0000 - 51.9615i) q^{11} +86.0000 q^{13} +20.0000 q^{15} +(-9.00000 + 15.5885i) q^{17} +(-22.0000 - 38.1051i) q^{19} +(-24.0000 - 41.5692i) q^{23} +(-12.5000 + 21.6506i) q^{25} -152.000 q^{27} -186.000 q^{29} +(-88.0000 + 152.420i) q^{31} +(120.000 + 207.846i) q^{33} +(-127.000 - 219.970i) q^{37} +(-172.000 + 297.913i) q^{39} +186.000 q^{41} -100.000 q^{43} +(27.5000 - 47.6314i) q^{45} +(-84.0000 - 145.492i) q^{47} +(-36.0000 - 62.3538i) q^{51} +(249.000 - 431.281i) q^{53} -300.000 q^{55} +176.000 q^{57} +(126.000 - 218.238i) q^{59} +(29.0000 + 50.2295i) q^{61} +(-215.000 - 372.391i) q^{65} +(518.000 - 897.202i) q^{67} +192.000 q^{69} +168.000 q^{71} +(-253.000 + 438.209i) q^{73} +(-50.0000 - 86.6025i) q^{75} +(-136.000 - 235.559i) q^{79} +(155.500 - 269.334i) q^{81} +948.000 q^{83} +90.0000 q^{85} +(372.000 - 644.323i) q^{87} +(507.000 + 878.150i) q^{89} +(-352.000 - 609.682i) q^{93} +(-110.000 + 190.526i) q^{95} -766.000 q^{97} +660.000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 4 q^{3} - 5 q^{5} + 11 q^{9}+O(q^{10})$$ 2 * q - 4 * q^3 - 5 * q^5 + 11 * q^9 $$2 q - 4 q^{3} - 5 q^{5} + 11 q^{9} + 60 q^{11} + 172 q^{13} + 40 q^{15} - 18 q^{17} - 44 q^{19} - 48 q^{23} - 25 q^{25} - 304 q^{27} - 372 q^{29} - 176 q^{31} + 240 q^{33} - 254 q^{37} - 344 q^{39} + 372 q^{41} - 200 q^{43} + 55 q^{45} - 168 q^{47} - 72 q^{51} + 498 q^{53} - 600 q^{55} + 352 q^{57} + 252 q^{59} + 58 q^{61} - 430 q^{65} + 1036 q^{67} + 384 q^{69} + 336 q^{71} - 506 q^{73} - 100 q^{75} - 272 q^{79} + 311 q^{81} + 1896 q^{83} + 180 q^{85} + 744 q^{87} + 1014 q^{89} - 704 q^{93} - 220 q^{95} - 1532 q^{97} + 1320 q^{99}+O(q^{100})$$ 2 * q - 4 * q^3 - 5 * q^5 + 11 * q^9 + 60 * q^11 + 172 * q^13 + 40 * q^15 - 18 * q^17 - 44 * q^19 - 48 * q^23 - 25 * q^25 - 304 * q^27 - 372 * q^29 - 176 * q^31 + 240 * q^33 - 254 * q^37 - 344 * q^39 + 372 * q^41 - 200 * q^43 + 55 * q^45 - 168 * q^47 - 72 * q^51 + 498 * q^53 - 600 * q^55 + 352 * q^57 + 252 * q^59 + 58 * q^61 - 430 * q^65 + 1036 * q^67 + 384 * q^69 + 336 * q^71 - 506 * q^73 - 100 * q^75 - 272 * q^79 + 311 * q^81 + 1896 * q^83 + 180 * q^85 + 744 * q^87 + 1014 * q^89 - 704 * q^93 - 220 * q^95 - 1532 * q^97 + 1320 * q^99

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/980\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$197$$ $$491$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$1$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −2.00000 + 3.46410i −0.384900 + 0.666667i −0.991755 0.128146i $$-0.959097\pi$$
0.606855 + 0.794812i $$0.292431\pi$$
$$4$$ 0 0
$$5$$ −2.50000 4.33013i −0.223607 0.387298i
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 0 0
$$9$$ 5.50000 + 9.52628i 0.203704 + 0.352825i
$$10$$ 0 0
$$11$$ 30.0000 51.9615i 0.822304 1.42427i −0.0816590 0.996660i $$-0.526022\pi$$
0.903963 0.427611i $$-0.140645\pi$$
$$12$$ 0 0
$$13$$ 86.0000 1.83478 0.917389 0.397992i $$-0.130293\pi$$
0.917389 + 0.397992i $$0.130293\pi$$
$$14$$ 0 0
$$15$$ 20.0000 0.344265
$$16$$ 0 0
$$17$$ −9.00000 + 15.5885i −0.128401 + 0.222397i −0.923057 0.384662i $$-0.874318\pi$$
0.794656 + 0.607060i $$0.207651\pi$$
$$18$$ 0 0
$$19$$ −22.0000 38.1051i −0.265639 0.460101i 0.702092 0.712087i $$-0.252250\pi$$
−0.967731 + 0.251986i $$0.918916\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −24.0000 41.5692i −0.217580 0.376860i 0.736487 0.676451i $$-0.236483\pi$$
−0.954068 + 0.299591i $$0.903150\pi$$
$$24$$ 0 0
$$25$$ −12.5000 + 21.6506i −0.100000 + 0.173205i
$$26$$ 0 0
$$27$$ −152.000 −1.08342
$$28$$ 0 0
$$29$$ −186.000 −1.19101 −0.595506 0.803351i $$-0.703048\pi$$
−0.595506 + 0.803351i $$0.703048\pi$$
$$30$$ 0 0
$$31$$ −88.0000 + 152.420i −0.509847 + 0.883081i 0.490088 + 0.871673i $$0.336965\pi$$
−0.999935 + 0.0114083i $$0.996369\pi$$
$$32$$ 0 0
$$33$$ 120.000 + 207.846i 0.633010 + 1.09640i
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −127.000 219.970i −0.564288 0.977376i −0.997115 0.0758992i $$-0.975817\pi$$
0.432827 0.901477i $$-0.357516\pi$$
$$38$$ 0 0
$$39$$ −172.000 + 297.913i −0.706206 + 1.22319i
$$40$$ 0 0
$$41$$ 186.000 0.708496 0.354248 0.935152i $$-0.384737\pi$$
0.354248 + 0.935152i $$0.384737\pi$$
$$42$$ 0 0
$$43$$ −100.000 −0.354648 −0.177324 0.984153i $$-0.556744\pi$$
−0.177324 + 0.984153i $$0.556744\pi$$
$$44$$ 0 0
$$45$$ 27.5000 47.6314i 0.0910991 0.157788i
$$46$$ 0 0
$$47$$ −84.0000 145.492i −0.260695 0.451537i 0.705732 0.708479i $$-0.250618\pi$$
−0.966427 + 0.256942i $$0.917285\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ −36.0000 62.3538i −0.0988433 0.171202i
$$52$$ 0 0
$$53$$ 249.000 431.281i 0.645335 1.11775i −0.338888 0.940827i $$-0.610051\pi$$
0.984224 0.176927i $$-0.0566157\pi$$
$$54$$ 0 0
$$55$$ −300.000 −0.735491
$$56$$ 0 0
$$57$$ 176.000 0.408978
$$58$$ 0 0
$$59$$ 126.000 218.238i 0.278031 0.481563i −0.692865 0.721068i $$-0.743652\pi$$
0.970895 + 0.239505i $$0.0769850\pi$$
$$60$$ 0 0
$$61$$ 29.0000 + 50.2295i 0.0608700 + 0.105430i 0.894855 0.446358i $$-0.147279\pi$$
−0.833985 + 0.551788i $$0.813946\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ −215.000 372.391i −0.410269 0.710606i
$$66$$ 0 0
$$67$$ 518.000 897.202i 0.944534 1.63598i 0.187852 0.982197i $$-0.439847\pi$$
0.756682 0.653783i $$-0.226819\pi$$
$$68$$ 0 0
$$69$$ 192.000 0.334987
$$70$$ 0 0
$$71$$ 168.000 0.280816 0.140408 0.990094i $$-0.455159\pi$$
0.140408 + 0.990094i $$0.455159\pi$$
$$72$$ 0 0
$$73$$ −253.000 + 438.209i −0.405636 + 0.702582i −0.994395 0.105727i $$-0.966283\pi$$
0.588759 + 0.808308i $$0.299617\pi$$
$$74$$ 0 0
$$75$$ −50.0000 86.6025i −0.0769800 0.133333i
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −136.000 235.559i −0.193686 0.335474i 0.752783 0.658269i $$-0.228711\pi$$
−0.946469 + 0.322795i $$0.895378\pi$$
$$80$$ 0 0
$$81$$ 155.500 269.334i 0.213306 0.369457i
$$82$$ 0 0
$$83$$ 948.000 1.25369 0.626846 0.779143i $$-0.284345\pi$$
0.626846 + 0.779143i $$0.284345\pi$$
$$84$$ 0 0
$$85$$ 90.0000 0.114846
$$86$$ 0 0
$$87$$ 372.000 644.323i 0.458421 0.794008i
$$88$$ 0 0
$$89$$ 507.000 + 878.150i 0.603841 + 1.04588i 0.992233 + 0.124390i $$0.0396973\pi$$
−0.388392 + 0.921494i $$0.626969\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ −352.000 609.682i −0.392481 0.679796i
$$94$$ 0 0
$$95$$ −110.000 + 190.526i −0.118797 + 0.205763i
$$96$$ 0 0
$$97$$ −766.000 −0.801809 −0.400905 0.916120i $$-0.631304\pi$$
−0.400905 + 0.916120i $$0.631304\pi$$
$$98$$ 0 0
$$99$$ 660.000 0.670025
$$100$$ 0 0
$$101$$ 657.000 1137.96i 0.647267 1.12110i −0.336506 0.941681i $$-0.609245\pi$$
0.983773 0.179418i $$-0.0574214\pi$$
$$102$$ 0 0
$$103$$ 224.000 + 387.979i 0.214285 + 0.371153i 0.953051 0.302809i $$-0.0979245\pi$$
−0.738766 + 0.673962i $$0.764591\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −774.000 1340.61i −0.699303 1.21123i −0.968708 0.248201i $$-0.920161\pi$$
0.269406 0.963027i $$-0.413173\pi$$
$$108$$ 0 0
$$109$$ −139.000 + 240.755i −0.122145 + 0.211561i −0.920613 0.390476i $$-0.872311\pi$$
0.798468 + 0.602037i $$0.205644\pi$$
$$110$$ 0 0
$$111$$ 1016.00 0.868779
$$112$$ 0 0
$$113$$ −558.000 −0.464533 −0.232266 0.972652i $$-0.574614\pi$$
−0.232266 + 0.972652i $$0.574614\pi$$
$$114$$ 0 0
$$115$$ −120.000 + 207.846i −0.0973048 + 0.168537i
$$116$$ 0 0
$$117$$ 473.000 + 819.260i 0.373751 + 0.647356i
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −1134.50 1965.01i −0.852367 1.47634i
$$122$$ 0 0
$$123$$ −372.000 + 644.323i −0.272700 + 0.472330i
$$124$$ 0 0
$$125$$ 125.000 0.0894427
$$126$$ 0 0
$$127$$ 344.000 0.240355 0.120177 0.992752i $$-0.461654\pi$$
0.120177 + 0.992752i $$0.461654\pi$$
$$128$$ 0 0
$$129$$ 200.000 346.410i 0.136504 0.236432i
$$130$$ 0 0
$$131$$ −390.000 675.500i −0.260110 0.450524i 0.706161 0.708052i $$-0.250426\pi$$
−0.966271 + 0.257527i $$0.917092\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 380.000 + 658.179i 0.242261 + 0.419608i
$$136$$ 0 0
$$137$$ −333.000 + 576.773i −0.207665 + 0.359686i −0.950979 0.309257i $$-0.899920\pi$$
0.743314 + 0.668943i $$0.233253\pi$$
$$138$$ 0 0
$$139$$ 884.000 0.539424 0.269712 0.962941i $$-0.413072\pi$$
0.269712 + 0.962941i $$0.413072\pi$$
$$140$$ 0 0
$$141$$ 672.000 0.401366
$$142$$ 0 0
$$143$$ 2580.00 4468.69i 1.50874 2.61322i
$$144$$ 0 0
$$145$$ 465.000 + 805.404i 0.266318 + 0.461277i
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 57.0000 + 98.7269i 0.0313397 + 0.0542820i 0.881270 0.472613i $$-0.156689\pi$$
−0.849930 + 0.526895i $$0.823356\pi$$
$$150$$ 0 0
$$151$$ 20.0000 34.6410i 0.0107787 0.0186692i −0.860586 0.509306i $$-0.829902\pi$$
0.871364 + 0.490636i $$0.163236\pi$$
$$152$$ 0 0
$$153$$ −198.000 −0.104623
$$154$$ 0 0
$$155$$ 880.000 0.456021
$$156$$ 0 0
$$157$$ 77.0000 133.368i 0.0391418 0.0677957i −0.845791 0.533515i $$-0.820871\pi$$
0.884933 + 0.465719i $$0.154204\pi$$
$$158$$ 0 0
$$159$$ 996.000 + 1725.12i 0.496779 + 0.860447i
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −1090.00 1887.94i −0.523775 0.907206i −0.999617 0.0276746i $$-0.991190\pi$$
0.475842 0.879531i $$-0.342144\pi$$
$$164$$ 0 0
$$165$$ 600.000 1039.23i 0.283091 0.490327i
$$166$$ 0 0
$$167$$ 3696.00 1.71261 0.856303 0.516474i $$-0.172756\pi$$
0.856303 + 0.516474i $$0.172756\pi$$
$$168$$ 0 0
$$169$$ 5199.00 2.36641
$$170$$ 0 0
$$171$$ 242.000 419.156i 0.108223 0.187448i
$$172$$ 0 0
$$173$$ −651.000 1127.57i −0.286096 0.495533i 0.686778 0.726867i $$-0.259024\pi$$
−0.972874 + 0.231334i $$0.925691\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 504.000 + 872.954i 0.214028 + 0.370707i
$$178$$ 0 0
$$179$$ 2154.00 3730.84i 0.899427 1.55785i 0.0712000 0.997462i $$-0.477317\pi$$
0.828227 0.560392i $$-0.189350\pi$$
$$180$$ 0 0
$$181$$ 1550.00 0.636523 0.318261 0.948003i $$-0.396901\pi$$
0.318261 + 0.948003i $$0.396901\pi$$
$$182$$ 0 0
$$183$$ −232.000 −0.0937155
$$184$$ 0 0
$$185$$ −635.000 + 1099.85i −0.252357 + 0.437096i
$$186$$ 0 0
$$187$$ 540.000 + 935.307i 0.211170 + 0.365756i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −24.0000 41.5692i −0.00909204 0.0157479i 0.861444 0.507853i $$-0.169561\pi$$
−0.870536 + 0.492105i $$0.836227\pi$$
$$192$$ 0 0
$$193$$ −529.000 + 916.255i −0.197297 + 0.341728i −0.947651 0.319308i $$-0.896550\pi$$
0.750354 + 0.661036i $$0.229883\pi$$
$$194$$ 0 0
$$195$$ 1720.00 0.631650
$$196$$ 0 0
$$197$$ −3714.00 −1.34321 −0.671603 0.740911i $$-0.734394\pi$$
−0.671603 + 0.740911i $$0.734394\pi$$
$$198$$ 0 0
$$199$$ 884.000 1531.13i 0.314900 0.545423i −0.664516 0.747274i $$-0.731362\pi$$
0.979416 + 0.201851i $$0.0646957\pi$$
$$200$$ 0 0
$$201$$ 2072.00 + 3588.81i 0.727103 + 1.25938i
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ −465.000 805.404i −0.158424 0.274399i
$$206$$ 0 0
$$207$$ 264.000 457.261i 0.0886438 0.153536i
$$208$$ 0 0
$$209$$ −2640.00 −0.873745
$$210$$ 0 0
$$211$$ −4036.00 −1.31682 −0.658412 0.752658i $$-0.728771\pi$$
−0.658412 + 0.752658i $$0.728771\pi$$
$$212$$ 0 0
$$213$$ −336.000 + 581.969i −0.108086 + 0.187211i
$$214$$ 0 0
$$215$$ 250.000 + 433.013i 0.0793017 + 0.137355i
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ −1012.00 1752.84i −0.312259 0.540848i
$$220$$ 0 0
$$221$$ −774.000 + 1340.61i −0.235588 + 0.408050i
$$222$$ 0 0
$$223$$ 680.000 0.204198 0.102099 0.994774i $$-0.467444\pi$$
0.102099 + 0.994774i $$0.467444\pi$$
$$224$$ 0 0
$$225$$ −275.000 −0.0814815
$$226$$ 0 0
$$227$$ −1194.00 + 2068.07i −0.349113 + 0.604681i −0.986092 0.166200i $$-0.946850\pi$$
0.636979 + 0.770881i $$0.280184\pi$$
$$228$$ 0 0
$$229$$ 1937.00 + 3354.98i 0.558954 + 0.968137i 0.997584 + 0.0694695i $$0.0221307\pi$$
−0.438630 + 0.898668i $$0.644536\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −1581.00 2738.37i −0.444527 0.769943i 0.553492 0.832854i $$-0.313295\pi$$
−0.998019 + 0.0629112i $$0.979962\pi$$
$$234$$ 0 0
$$235$$ −420.000 + 727.461i −0.116586 + 0.201933i
$$236$$ 0 0
$$237$$ 1088.00 0.298199
$$238$$ 0 0
$$239$$ 5424.00 1.46799 0.733995 0.679155i $$-0.237654\pi$$
0.733995 + 0.679155i $$0.237654\pi$$
$$240$$ 0 0
$$241$$ 1943.00 3365.37i 0.519335 0.899514i −0.480413 0.877042i $$-0.659513\pi$$
0.999747 0.0224714i $$-0.00715348\pi$$
$$242$$ 0 0
$$243$$ −1430.00 2476.83i −0.377508 0.653864i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −1892.00 3277.04i −0.487389 0.844182i
$$248$$ 0 0
$$249$$ −1896.00 + 3283.97i −0.482547 + 0.835795i
$$250$$ 0 0
$$251$$ −5100.00 −1.28251 −0.641253 0.767329i $$-0.721585\pi$$
−0.641253 + 0.767329i $$0.721585\pi$$
$$252$$ 0 0
$$253$$ −2880.00 −0.715668
$$254$$ 0 0
$$255$$ −180.000 + 311.769i −0.0442041 + 0.0765637i
$$256$$ 0 0
$$257$$ −1089.00 1886.20i −0.264319 0.457814i 0.703066 0.711125i $$-0.251814\pi$$
−0.967385 + 0.253311i $$0.918480\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ −1023.00 1771.89i −0.242613 0.420219i
$$262$$ 0 0
$$263$$ 3072.00 5320.86i 0.720257 1.24752i −0.240639 0.970615i $$-0.577357\pi$$
0.960897 0.276907i $$-0.0893095\pi$$
$$264$$ 0 0
$$265$$ −2490.00 −0.577206
$$266$$ 0 0
$$267$$ −4056.00 −0.929675
$$268$$ 0 0
$$269$$ −411.000 + 711.873i −0.0931566 + 0.161352i −0.908838 0.417150i $$-0.863029\pi$$
0.815681 + 0.578502i $$0.196362\pi$$
$$270$$ 0 0
$$271$$ −4240.00 7343.90i −0.950412 1.64616i −0.744534 0.667584i $$-0.767328\pi$$
−0.205878 0.978578i $$-0.566005\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 750.000 + 1299.04i 0.164461 + 0.284854i
$$276$$ 0 0
$$277$$ 569.000 985.537i 0.123422 0.213773i −0.797693 0.603064i $$-0.793946\pi$$
0.921115 + 0.389291i $$0.127280\pi$$
$$278$$ 0 0
$$279$$ −1936.00 −0.415431
$$280$$ 0 0
$$281$$ 5706.00 1.21136 0.605679 0.795709i $$-0.292902\pi$$
0.605679 + 0.795709i $$0.292902\pi$$
$$282$$ 0 0
$$283$$ 1514.00 2622.32i 0.318014 0.550816i −0.662060 0.749451i $$-0.730317\pi$$
0.980074 + 0.198635i $$0.0636508\pi$$
$$284$$ 0 0
$$285$$ −440.000 762.102i −0.0914504 0.158397i
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 2294.50 + 3974.19i 0.467026 + 0.808913i
$$290$$ 0 0
$$291$$ 1532.00 2653.50i 0.308617 0.534540i
$$292$$ 0 0
$$293$$ 3390.00 0.675925 0.337962 0.941160i $$-0.390262\pi$$
0.337962 + 0.941160i $$0.390262\pi$$
$$294$$ 0 0
$$295$$ −1260.00 −0.248678
$$296$$ 0 0
$$297$$ −4560.00 + 7898.15i −0.890902 + 1.54309i
$$298$$ 0 0
$$299$$ −2064.00 3574.95i −0.399211 0.691454i
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 2628.00 + 4551.83i 0.498266 + 0.863022i
$$304$$ 0 0
$$305$$ 145.000 251.147i 0.0272219 0.0471497i
$$306$$ 0 0
$$307$$ −4156.00 −0.772624 −0.386312 0.922368i $$-0.626251\pi$$
−0.386312 + 0.922368i $$0.626251\pi$$
$$308$$ 0 0
$$309$$ −1792.00 −0.329914
$$310$$ 0 0
$$311$$ −3276.00 + 5674.20i −0.597315 + 1.03458i 0.395901 + 0.918293i $$0.370432\pi$$
−0.993216 + 0.116286i $$0.962901\pi$$
$$312$$ 0 0
$$313$$ 683.000 + 1182.99i 0.123340 + 0.213631i 0.921083 0.389367i $$-0.127306\pi$$
−0.797743 + 0.602998i $$0.793973\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −1299.00 2249.93i −0.230155 0.398640i 0.727699 0.685897i $$-0.240590\pi$$
−0.957854 + 0.287257i $$0.907257\pi$$
$$318$$ 0 0
$$319$$ −5580.00 + 9664.84i −0.979373 + 1.69632i
$$320$$ 0 0
$$321$$ 6192.00 1.07665
$$322$$ 0 0
$$323$$ 792.000 0.136434
$$324$$ 0 0
$$325$$ −1075.00 + 1861.95i −0.183478 + 0.317793i
$$326$$ 0 0
$$327$$ −556.000 963.020i −0.0940271 0.162860i
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 1646.00 + 2850.96i 0.273330 + 0.473422i 0.969713 0.244249i $$-0.0785415\pi$$
−0.696382 + 0.717671i $$0.745208\pi$$
$$332$$ 0 0
$$333$$ 1397.00 2419.67i 0.229895 0.398190i
$$334$$ 0 0
$$335$$ −5180.00 −0.844817
$$336$$ 0 0
$$337$$ 6194.00 1.00121 0.500606 0.865675i $$-0.333110\pi$$
0.500606 + 0.865675i $$0.333110\pi$$
$$338$$ 0 0
$$339$$ 1116.00 1932.97i 0.178799 0.309689i
$$340$$ 0 0
$$341$$ 5280.00 + 9145.23i 0.838499 + 1.45232i
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ −480.000 831.384i −0.0749053 0.129740i
$$346$$ 0 0
$$347$$ 5010.00 8677.57i 0.775075 1.34247i −0.159678 0.987169i $$-0.551046\pi$$
0.934753 0.355299i $$-0.115621\pi$$
$$348$$ 0 0
$$349$$ −3130.00 −0.480072 −0.240036 0.970764i $$-0.577159\pi$$
−0.240036 + 0.970764i $$0.577159\pi$$
$$350$$ 0 0
$$351$$ −13072.0 −1.98784
$$352$$ 0 0
$$353$$ −2097.00 + 3632.11i −0.316181 + 0.547642i −0.979688 0.200528i $$-0.935734\pi$$
0.663506 + 0.748171i $$0.269068\pi$$
$$354$$ 0 0
$$355$$ −420.000 727.461i −0.0627924 0.108760i
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 2052.00 + 3554.17i 0.301672 + 0.522512i 0.976515 0.215450i $$-0.0691218\pi$$
−0.674842 + 0.737962i $$0.735788\pi$$
$$360$$ 0 0
$$361$$ 2461.50 4263.44i 0.358872 0.621584i
$$362$$ 0 0
$$363$$ 9076.00 1.31230
$$364$$ 0 0
$$365$$ 2530.00 0.362812
$$366$$ 0 0
$$367$$ −3748.00 + 6491.73i −0.533090 + 0.923339i 0.466163 + 0.884699i $$0.345636\pi$$
−0.999253 + 0.0386401i $$0.987697\pi$$
$$368$$ 0 0
$$369$$ 1023.00 + 1771.89i 0.144323 + 0.249975i
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 2921.00 + 5059.32i 0.405479 + 0.702310i 0.994377 0.105897i $$-0.0337714\pi$$
−0.588898 + 0.808207i $$0.700438\pi$$
$$374$$ 0 0
$$375$$ −250.000 + 433.013i −0.0344265 + 0.0596285i
$$376$$ 0 0
$$377$$ −15996.0 −2.18524
$$378$$ 0 0
$$379$$ −412.000 −0.0558391 −0.0279195 0.999610i $$-0.508888\pi$$
−0.0279195 + 0.999610i $$0.508888\pi$$
$$380$$ 0 0
$$381$$ −688.000 + 1191.65i −0.0925126 + 0.160237i
$$382$$ 0 0
$$383$$ −1284.00 2223.95i −0.171304 0.296707i 0.767572 0.640963i $$-0.221465\pi$$
−0.938876 + 0.344256i $$0.888131\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −550.000 952.628i −0.0722431 0.125129i
$$388$$ 0 0
$$389$$ −6543.00 + 11332.8i −0.852810 + 1.47711i 0.0258510 + 0.999666i $$0.491770\pi$$
−0.878662 + 0.477445i $$0.841563\pi$$
$$390$$ 0 0
$$391$$ 864.000 0.111750
$$392$$ 0 0
$$393$$ 3120.00 0.400466
$$394$$ 0 0
$$395$$ −680.000 + 1177.79i −0.0866190 + 0.150029i
$$396$$ 0 0
$$397$$ −5227.00 9053.43i −0.660795 1.14453i −0.980407 0.196982i $$-0.936886\pi$$
0.319612 0.947548i $$-0.396447\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 5415.00 + 9379.06i 0.674345 + 1.16800i 0.976660 + 0.214791i $$0.0689071\pi$$
−0.302315 + 0.953208i $$0.597760\pi$$
$$402$$ 0 0
$$403$$ −7568.00 + 13108.2i −0.935456 + 1.62026i
$$404$$ 0 0
$$405$$ −1555.00 −0.190787
$$406$$ 0 0
$$407$$ −15240.0 −1.85607
$$408$$ 0 0
$$409$$ 4283.00 7418.37i 0.517801 0.896858i −0.481985 0.876180i $$-0.660084\pi$$
0.999786 0.0206786i $$-0.00658267\pi$$
$$410$$ 0 0
$$411$$ −1332.00 2307.09i −0.159861 0.276887i
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −2370.00 4104.96i −0.280334 0.485553i
$$416$$ 0 0
$$417$$ −1768.00 + 3062.27i −0.207624 + 0.359616i
$$418$$ 0 0
$$419$$ 13884.0 1.61880 0.809401 0.587257i $$-0.199792\pi$$
0.809401 + 0.587257i $$0.199792\pi$$
$$420$$ 0 0
$$421$$ 4286.00 0.496168 0.248084 0.968738i $$-0.420199\pi$$
0.248084 + 0.968738i $$0.420199\pi$$
$$422$$ 0 0
$$423$$ 924.000 1600.41i 0.106209 0.183959i
$$424$$ 0 0
$$425$$ −225.000 389.711i −0.0256802 0.0444795i
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 10320.0 + 17874.8i 1.16143 + 2.01166i
$$430$$ 0 0
$$431$$ −3168.00 + 5487.14i −0.354054 + 0.613239i −0.986956 0.160993i $$-0.948530\pi$$
0.632902 + 0.774232i $$0.281864\pi$$
$$432$$ 0 0
$$433$$ −8974.00 −0.995988 −0.497994 0.867180i $$-0.665930\pi$$
−0.497994 + 0.867180i $$0.665930\pi$$
$$434$$ 0 0
$$435$$ −3720.00 −0.410024
$$436$$ 0 0
$$437$$ −1056.00 + 1829.05i −0.115596 + 0.200218i
$$438$$ 0 0
$$439$$ 1484.00 + 2570.36i 0.161338 + 0.279446i 0.935349 0.353727i $$-0.115086\pi$$
−0.774011 + 0.633173i $$0.781752\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 6186.00 + 10714.5i 0.663444 + 1.14912i 0.979705 + 0.200446i $$0.0642393\pi$$
−0.316261 + 0.948672i $$0.602427\pi$$
$$444$$ 0 0
$$445$$ 2535.00 4390.75i 0.270046 0.467734i
$$446$$ 0 0
$$447$$ −456.000 −0.0482507
$$448$$ 0 0
$$449$$ 11394.0 1.19759 0.598793 0.800904i $$-0.295647\pi$$
0.598793 + 0.800904i $$0.295647\pi$$
$$450$$ 0 0
$$451$$ 5580.00 9664.84i 0.582599 1.00909i
$$452$$ 0 0
$$453$$ 80.0000 + 138.564i 0.00829741 + 0.0143715i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 179.000 + 310.037i 0.0183222 + 0.0317351i 0.875041 0.484049i $$-0.160834\pi$$
−0.856719 + 0.515784i $$0.827501\pi$$
$$458$$ 0 0
$$459$$ 1368.00 2369.45i 0.139113 0.240950i
$$460$$ 0 0
$$461$$ −7530.00 −0.760753 −0.380376 0.924832i $$-0.624206\pi$$
−0.380376 + 0.924832i $$0.624206\pi$$
$$462$$ 0 0
$$463$$ −13768.0 −1.38197 −0.690986 0.722868i $$-0.742823\pi$$
−0.690986 + 0.722868i $$0.742823\pi$$
$$464$$ 0 0
$$465$$ −1760.00 + 3048.41i −0.175523 + 0.304014i
$$466$$ 0 0
$$467$$ −6690.00 11587.4i −0.662904 1.14818i −0.979849 0.199740i $$-0.935990\pi$$
0.316945 0.948444i $$-0.397343\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 308.000 + 533.472i 0.0301314 + 0.0521891i
$$472$$ 0 0
$$473$$ −3000.00 + 5196.15i −0.291628 + 0.505115i
$$474$$ 0 0
$$475$$ 1100.00 0.106256
$$476$$ 0 0
$$477$$ 5478.00 0.525829
$$478$$ 0 0
$$479$$ 3168.00 5487.14i 0.302191 0.523411i −0.674441 0.738329i $$-0.735615\pi$$
0.976632 + 0.214918i $$0.0689485\pi$$
$$480$$ 0 0
$$481$$ −10922.0 18917.5i −1.03534 1.79327i
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 1915.00 + 3316.88i 0.179290 + 0.310539i
$$486$$ 0 0
$$487$$ 2504.00 4337.06i 0.232992 0.403554i −0.725695 0.688016i $$-0.758482\pi$$
0.958687 + 0.284462i $$0.0918151\pi$$
$$488$$ 0 0
$$489$$ 8720.00 0.806405
$$490$$ 0 0
$$491$$ 12900.0 1.18568 0.592840 0.805320i $$-0.298007\pi$$
0.592840 + 0.805320i $$0.298007\pi$$
$$492$$ 0 0
$$493$$ 1674.00 2899.45i 0.152927 0.264878i
$$494$$ 0 0
$$495$$ −1650.00 2857.88i −0.149822 0.259500i
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 4058.00 + 7028.66i 0.364050 + 0.630553i 0.988623 0.150413i $$-0.0480603\pi$$
−0.624573 + 0.780966i $$0.714727\pi$$
$$500$$ 0 0
$$501$$ −7392.00 + 12803.3i −0.659182 + 1.14174i
$$502$$ 0 0
$$503$$ −4944.00 −0.438255 −0.219127 0.975696i $$-0.570321\pi$$
−0.219127 + 0.975696i $$0.570321\pi$$
$$504$$ 0 0
$$505$$ −6570.00 −0.578933
$$506$$ 0 0
$$507$$ −10398.0 + 18009.9i −0.910831 + 1.57761i
$$508$$ 0 0
$$509$$ 2733.00 + 4733.69i 0.237992 + 0.412215i 0.960138 0.279526i $$-0.0901774\pi$$
−0.722146 + 0.691741i $$0.756844\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 3344.00 + 5791.98i 0.287800 + 0.498484i
$$514$$ 0 0
$$515$$ 1120.00 1939.90i 0.0958313 0.165985i
$$516$$ 0 0
$$517$$ −10080.0 −0.857481
$$518$$ 0 0
$$519$$ 5208.00 0.440474
$$520$$ 0 0
$$521$$ −5037.00 + 8724.34i −0.423560 + 0.733628i −0.996285 0.0861198i $$-0.972553\pi$$
0.572724 + 0.819748i $$0.305887\pi$$
$$522$$ 0 0
$$523$$ 6914.00 + 11975.4i 0.578065 + 1.00124i 0.995701 + 0.0926239i $$0.0295254\pi$$
−0.417636 + 0.908614i $$0.637141\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −1584.00 2743.57i −0.130930 0.226777i
$$528$$ 0 0
$$529$$ 4931.50 8541.61i 0.405318 0.702031i
$$530$$ 0 0
$$531$$ 2772.00 0.226543
$$532$$ 0 0
$$533$$ 15996.0 1.29993
$$534$$ 0 0
$$535$$ −3870.00 + 6703.04i −0.312738 + 0.541678i
$$536$$ 0 0
$$537$$ 8616.00 + 14923.3i 0.692380 + 1.19924i
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ 7613.00 + 13186.1i 0.605006 + 1.04790i 0.992050 + 0.125841i $$0.0401628\pi$$
−0.387044 + 0.922061i $$0.626504\pi$$
$$542$$ 0 0
$$543$$ −3100.00 + 5369.36i −0.244998 + 0.424348i
$$544$$ 0 0
$$545$$ 1390.00 0.109250
$$546$$ 0 0
$$547$$ −13228.0 −1.03398 −0.516991 0.855991i $$-0.672948\pi$$
−0.516991 + 0.855991i $$0.672948\pi$$
$$548$$ 0 0
$$549$$ −319.000 + 552.524i −0.0247989 + 0.0429529i
$$550$$ 0 0
$$551$$ 4092.00 + 7087.55i 0.316379 + 0.547985i
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ −2540.00 4399.41i −0.194265 0.336477i
$$556$$ 0 0
$$557$$ 4245.00 7352.56i 0.322920 0.559314i −0.658169 0.752870i $$-0.728669\pi$$
0.981089 + 0.193556i $$0.0620022\pi$$
$$558$$ 0 0
$$559$$ −8600.00 −0.650700
$$560$$ 0 0
$$561$$ −4320.00 −0.325117
$$562$$ 0 0
$$563$$ 5142.00 8906.21i 0.384919 0.666699i −0.606839 0.794825i $$-0.707563\pi$$
0.991758 + 0.128125i $$0.0408960\pi$$
$$564$$ 0 0
$$565$$ 1395.00 + 2416.21i 0.103873 + 0.179913i
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −885.000 1532.86i −0.0652041 0.112937i 0.831580 0.555404i $$-0.187437\pi$$
−0.896785 + 0.442468i $$0.854103\pi$$
$$570$$ 0 0
$$571$$ −3034.00 + 5255.04i −0.222362 + 0.385143i −0.955525 0.294911i $$-0.904710\pi$$
0.733162 + 0.680054i $$0.238043\pi$$
$$572$$ 0 0
$$573$$ 192.000 0.0139981
$$574$$ 0 0
$$575$$ 1200.00 0.0870321
$$576$$ 0 0
$$577$$ −10753.0 + 18624.7i −0.775829 + 1.34377i 0.158499 + 0.987359i $$0.449335\pi$$
−0.934327 + 0.356416i $$0.883999\pi$$
$$578$$ 0 0
$$579$$ −2116.00 3665.02i −0.151879 0.263062i
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ −14940.0 25876.8i −1.06132 1.83827i
$$584$$ 0 0
$$585$$ 2365.00 4096.30i 0.167147 0.289506i
$$586$$ 0 0
$$587$$ 12108.0 0.851364 0.425682 0.904873i $$-0.360034\pi$$
0.425682 + 0.904873i $$0.360034\pi$$
$$588$$ 0 0
$$589$$ 7744.00 0.541742
$$590$$ 0 0
$$591$$ 7428.00 12865.7i 0.517000 0.895471i
$$592$$ 0 0
$$593$$ −7737.00 13400.9i −0.535785 0.928007i −0.999125 0.0418262i $$-0.986682\pi$$
0.463340 0.886181i $$-0.346651\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 3536.00 + 6124.53i 0.242410 + 0.419867i
$$598$$ 0 0
$$599$$ 1260.00 2182.38i 0.0859469 0.148864i −0.819847 0.572582i $$-0.805942\pi$$
0.905794 + 0.423718i $$0.139275\pi$$
$$600$$ 0 0
$$601$$ −12790.0 −0.868078 −0.434039 0.900894i $$-0.642912\pi$$
−0.434039 + 0.900894i $$0.642912\pi$$
$$602$$ 0 0
$$603$$ 11396.0 0.769620
$$604$$ 0 0
$$605$$ −5672.50 + 9825.06i −0.381190 + 0.660240i
$$606$$ 0 0
$$607$$ −5788.00 10025.1i −0.387031 0.670357i 0.605018 0.796212i $$-0.293166\pi$$
−0.992049 + 0.125855i $$0.959833\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −7224.00 12512.3i −0.478317 0.828470i
$$612$$ 0 0
$$613$$ −10063.0 + 17429.6i −0.663035 + 1.14841i 0.316778 + 0.948500i $$0.397399\pi$$
−0.979814 + 0.199912i $$0.935935\pi$$
$$614$$ 0 0
$$615$$ 3720.00 0.243910
$$616$$ 0 0
$$617$$ −27942.0 −1.82318 −0.911590 0.411100i $$-0.865145\pi$$
−0.911590 + 0.411100i $$0.865145\pi$$
$$618$$ 0 0
$$619$$ 11270.0 19520.2i 0.731792 1.26750i −0.224324 0.974515i $$-0.572017\pi$$
0.956116 0.292987i $$-0.0946493\pi$$
$$620$$ 0 0
$$621$$ 3648.00 + 6318.52i 0.235731 + 0.408299i
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −312.500 541.266i −0.0200000 0.0346410i
$$626$$ 0 0
$$627$$ 5280.00 9145.23i 0.336304 0.582496i
$$628$$ 0 0
$$629$$ 4572.00 0.289821
$$630$$ 0 0
$$631$$ −5128.00 −0.323522 −0.161761 0.986830i $$-0.551717\pi$$
−0.161761 + 0.986830i $$0.551717\pi$$
$$632$$ 0 0
$$633$$ 8072.00 13981.1i 0.506845 0.877882i
$$634$$ 0 0
$$635$$ −860.000 1489.56i −0.0537450 0.0930890i
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 924.000 + 1600.41i 0.0572032 + 0.0990789i
$$640$$ 0 0
$$641$$ 6399.00 11083.4i 0.394298 0.682945i −0.598713 0.800964i $$-0.704321\pi$$
0.993011 + 0.118019i $$0.0376543\pi$$
$$642$$ 0 0
$$643$$ −21148.0 −1.29704 −0.648519 0.761198i $$-0.724611\pi$$
−0.648519 + 0.761198i $$0.724611\pi$$
$$644$$ 0 0
$$645$$ −2000.00 −0.122093
$$646$$ 0 0
$$647$$ −8232.00 + 14258.2i −0.500206 + 0.866382i 0.499794 + 0.866144i $$0.333409\pi$$
−1.00000 0.000237943i $$0.999924\pi$$
$$648$$ 0 0
$$649$$ −7560.00 13094.3i −0.457251 0.791982i
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 12117.0 + 20987.3i 0.726148 + 1.25773i 0.958500 + 0.285094i $$0.0920248\pi$$
−0.232351 + 0.972632i $$0.574642\pi$$
$$654$$ 0 0
$$655$$ −1950.00 + 3377.50i −0.116325 + 0.201481i
$$656$$ 0 0
$$657$$ −5566.00 −0.330518
$$658$$ 0 0
$$659$$ −22836.0 −1.34987 −0.674935 0.737877i $$-0.735828\pi$$
−0.674935 + 0.737877i $$0.735828\pi$$
$$660$$ 0 0
$$661$$ −13159.0 + 22792.1i −0.774320 + 1.34116i 0.160855 + 0.986978i $$0.448575\pi$$
−0.935176 + 0.354184i $$0.884759\pi$$
$$662$$ 0 0
$$663$$ −3096.00 5362.43i −0.181355 0.314117i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 4464.00 + 7731.87i 0.259141 + 0.448845i
$$668$$ 0 0
$$669$$ −1360.00 + 2355.59i −0.0785959 + 0.136132i
$$670$$ 0 0
$$671$$ 3480.00 0.200214
$$672$$ 0 0
$$673$$ 28802.0 1.64968 0.824841 0.565365i $$-0.191265\pi$$
0.824841 + 0.565365i $$0.191265\pi$$
$$674$$ 0 0
$$675$$ 1900.00 3290.90i 0.108342 0.187654i
$$676$$ 0 0
$$677$$ −1263.00 2187.58i −0.0717002 0.124188i 0.827946 0.560807i $$-0.189509\pi$$
−0.899647 + 0.436619i $$0.856176\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ −4776.00 8272.27i −0.268747 0.465483i
$$682$$ 0 0
$$683$$ 11538.0 19984.4i 0.646397 1.11959i −0.337580 0.941297i $$-0.609608\pi$$
0.983977 0.178296i $$-0.0570584\pi$$
$$684$$ 0 0
$$685$$ 3330.00 0.185741
$$686$$ 0 0
$$687$$ −15496.0 −0.860567
$$688$$ 0 0
$$689$$ 21414.0 37090.1i 1.18405 2.05083i
$$690$$ 0 0
$$691$$ −3934.00 6813.89i −0.216579 0.375127i 0.737181 0.675696i $$-0.236157\pi$$
−0.953760 + 0.300569i $$0.902823\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −2210.00 3827.83i −0.120619 0.208918i
$$696$$ 0 0
$$697$$ −1674.00 + 2899.45i −0.0909717 + 0.157568i
$$698$$ 0 0
$$699$$ 12648.0 0.684394
$$700$$ 0 0
$$701$$ 21510.0 1.15895 0.579473 0.814991i $$-0.303258\pi$$
0.579473 + 0.814991i $$0.303258\pi$$
$$702$$ 0 0
$$703$$ −5588.00 + 9678.70i −0.299794 + 0.519259i
$$704$$ 0 0
$$705$$ −1680.00 2909.85i −0.0897482 0.155448i
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ −15007.0 25992.9i −0.794922 1.37685i −0.922889 0.385067i $$-0.874178\pi$$
0.127967 0.991778i $$-0.459155\pi$$
$$710$$ 0 0
$$711$$ 1496.00 2591.15i 0.0789091 0.136675i
$$712$$ 0 0
$$713$$ 8448.00 0.443731
$$714$$ 0 0
$$715$$ −25800.0 −1.34946
$$716$$ 0 0
$$717$$ −10848.0 + 18789.3i −0.565029 + 0.978659i
$$718$$ 0 0
$$719$$ 408.000 + 706.677i 0.0211625 + 0.0366545i 0.876413 0.481561i $$-0.159930\pi$$
−0.855250 + 0.518215i $$0.826597\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 7772.00 + 13461.5i 0.399784 + 0.692446i
$$724$$ 0 0
$$725$$ 2325.00 4027.02i 0.119101 0.206289i
$$726$$ 0 0
$$727$$ −9952.00 −0.507702 −0.253851 0.967243i $$-0.581697\pi$$
−0.253851 + 0.967243i $$0.581697\pi$$
$$728$$ 0 0
$$729$$ 19837.0 1.00782
$$730$$ 0 0
$$731$$ 900.000 1558.85i 0.0455372 0.0788728i
$$732$$ 0 0
$$733$$ 16973.0 + 29398.1i 0.855269 + 1.48137i 0.876395 + 0.481592i $$0.159941\pi$$
−0.0211266 + 0.999777i $$0.506725\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −31080.0 53832.1i −1.55339 2.69055i
$$738$$ 0 0
$$739$$ −11710.0 + 20282.3i −0.582895 + 1.00960i 0.412239 + 0.911076i $$0.364747\pi$$
−0.995134 + 0.0985280i $$0.968587\pi$$
$$740$$ 0 0
$$741$$ 15136.0 0.750384
$$742$$ 0 0
$$743$$ −14592.0 −0.720496 −0.360248 0.932857i $$-0.617308\pi$$
−0.360248 + 0.932857i $$0.617308\pi$$
$$744$$ 0 0
$$745$$ 285.000 493.634i 0.0140156 0.0242757i
$$746$$ 0 0
$$747$$ 5214.00 + 9030.91i 0.255382 + 0.442334i
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ −4528.00 7842.73i −0.220012 0.381072i 0.734799 0.678285i $$-0.237276\pi$$
−0.954811 + 0.297213i $$0.903943\pi$$
$$752$$ 0 0
$$753$$ 10200.0 17666.9i 0.493637 0.855004i
$$754$$ 0 0
$$755$$ −200.000 −0.00964072
$$756$$ 0 0
$$757$$ −17554.0 −0.842815 −0.421408 0.906871i $$-0.638464\pi$$
−0.421408 + 0.906871i $$0.638464\pi$$
$$758$$ 0 0
$$759$$ 5760.00 9976.61i 0.275461 0.477112i
$$760$$ 0 0
$$761$$ 18219.0 + 31556.2i 0.867856 + 1.50317i 0.864183 + 0.503177i $$0.167836\pi$$
0.00367239 + 0.999993i $$0.498831\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 495.000 + 857.365i 0.0233945 + 0.0405204i
$$766$$ 0 0
$$767$$ 10836.0 18768.5i 0.510124 0.883561i
$$768$$ 0 0
$$769$$ −9022.00 −0.423071 −0.211536 0.977370i $$-0.567846\pi$$
−0.211536 + 0.977370i $$0.567846\pi$$
$$770$$ 0 0
$$771$$ 8712.00 0.406946
$$772$$ 0 0
$$773$$ −735.000 + 1273.06i −0.0341994 + 0.0592350i −0.882618 0.470090i $$-0.844221\pi$$
0.848419 + 0.529325i $$0.177555\pi$$
$$774$$ 0 0
$$775$$ −2200.00 3810.51i −0.101969 0.176616i
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −4092.00 7087.55i −0.188204 0.325979i
$$780$$ 0 0
$$781$$ 5040.00 8729.54i 0.230916 0.399958i
$$782$$ 0 0
$$783$$ 28272.0 1.29037
$$784$$ 0 0
$$785$$ −770.000 −0.0350095
$$786$$ 0 0
$$787$$ −2626.00 + 4548.37i −0.118941 + 0.206012i −0.919348 0.393444i $$-0.871283\pi$$
0.800407 + 0.599457i $$0.204617\pi$$
$$788$$ 0 0
$$789$$ 12288.0 + 21283.4i 0.554454 + 0.960343i
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 2494.00 + 4319.73i 0.111683 + 0.193440i