Properties

Label 980.4.i.e.361.1
Level $980$
Weight $4$
Character 980.361
Analytic conductor $57.822$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 980.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(57.8218718056\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 980.361
Dual form 980.4.i.e.961.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.00000 + 3.46410i) q^{3} +(-2.50000 - 4.33013i) q^{5} +(5.50000 + 9.52628i) q^{9} +O(q^{10})\) \(q+(-2.00000 + 3.46410i) q^{3} +(-2.50000 - 4.33013i) q^{5} +(5.50000 + 9.52628i) q^{9} +(30.0000 - 51.9615i) q^{11} +86.0000 q^{13} +20.0000 q^{15} +(-9.00000 + 15.5885i) q^{17} +(-22.0000 - 38.1051i) q^{19} +(-24.0000 - 41.5692i) q^{23} +(-12.5000 + 21.6506i) q^{25} -152.000 q^{27} -186.000 q^{29} +(-88.0000 + 152.420i) q^{31} +(120.000 + 207.846i) q^{33} +(-127.000 - 219.970i) q^{37} +(-172.000 + 297.913i) q^{39} +186.000 q^{41} -100.000 q^{43} +(27.5000 - 47.6314i) q^{45} +(-84.0000 - 145.492i) q^{47} +(-36.0000 - 62.3538i) q^{51} +(249.000 - 431.281i) q^{53} -300.000 q^{55} +176.000 q^{57} +(126.000 - 218.238i) q^{59} +(29.0000 + 50.2295i) q^{61} +(-215.000 - 372.391i) q^{65} +(518.000 - 897.202i) q^{67} +192.000 q^{69} +168.000 q^{71} +(-253.000 + 438.209i) q^{73} +(-50.0000 - 86.6025i) q^{75} +(-136.000 - 235.559i) q^{79} +(155.500 - 269.334i) q^{81} +948.000 q^{83} +90.0000 q^{85} +(372.000 - 644.323i) q^{87} +(507.000 + 878.150i) q^{89} +(-352.000 - 609.682i) q^{93} +(-110.000 + 190.526i) q^{95} -766.000 q^{97} +660.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} - 5 q^{5} + 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{3} - 5 q^{5} + 11 q^{9} + 60 q^{11} + 172 q^{13} + 40 q^{15} - 18 q^{17} - 44 q^{19} - 48 q^{23} - 25 q^{25} - 304 q^{27} - 372 q^{29} - 176 q^{31} + 240 q^{33} - 254 q^{37} - 344 q^{39} + 372 q^{41} - 200 q^{43} + 55 q^{45} - 168 q^{47} - 72 q^{51} + 498 q^{53} - 600 q^{55} + 352 q^{57} + 252 q^{59} + 58 q^{61} - 430 q^{65} + 1036 q^{67} + 384 q^{69} + 336 q^{71} - 506 q^{73} - 100 q^{75} - 272 q^{79} + 311 q^{81} + 1896 q^{83} + 180 q^{85} + 744 q^{87} + 1014 q^{89} - 704 q^{93} - 220 q^{95} - 1532 q^{97} + 1320 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 + 3.46410i −0.384900 + 0.666667i −0.991755 0.128146i \(-0.959097\pi\)
0.606855 + 0.794812i \(0.292431\pi\)
\(4\) 0 0
\(5\) −2.50000 4.33013i −0.223607 0.387298i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 5.50000 + 9.52628i 0.203704 + 0.352825i
\(10\) 0 0
\(11\) 30.0000 51.9615i 0.822304 1.42427i −0.0816590 0.996660i \(-0.526022\pi\)
0.903963 0.427611i \(-0.140645\pi\)
\(12\) 0 0
\(13\) 86.0000 1.83478 0.917389 0.397992i \(-0.130293\pi\)
0.917389 + 0.397992i \(0.130293\pi\)
\(14\) 0 0
\(15\) 20.0000 0.344265
\(16\) 0 0
\(17\) −9.00000 + 15.5885i −0.128401 + 0.222397i −0.923057 0.384662i \(-0.874318\pi\)
0.794656 + 0.607060i \(0.207651\pi\)
\(18\) 0 0
\(19\) −22.0000 38.1051i −0.265639 0.460101i 0.702092 0.712087i \(-0.252250\pi\)
−0.967731 + 0.251986i \(0.918916\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −24.0000 41.5692i −0.217580 0.376860i 0.736487 0.676451i \(-0.236483\pi\)
−0.954068 + 0.299591i \(0.903150\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) −152.000 −1.08342
\(28\) 0 0
\(29\) −186.000 −1.19101 −0.595506 0.803351i \(-0.703048\pi\)
−0.595506 + 0.803351i \(0.703048\pi\)
\(30\) 0 0
\(31\) −88.0000 + 152.420i −0.509847 + 0.883081i 0.490088 + 0.871673i \(0.336965\pi\)
−0.999935 + 0.0114083i \(0.996369\pi\)
\(32\) 0 0
\(33\) 120.000 + 207.846i 0.633010 + 1.09640i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −127.000 219.970i −0.564288 0.977376i −0.997115 0.0758992i \(-0.975817\pi\)
0.432827 0.901477i \(-0.357516\pi\)
\(38\) 0 0
\(39\) −172.000 + 297.913i −0.706206 + 1.22319i
\(40\) 0 0
\(41\) 186.000 0.708496 0.354248 0.935152i \(-0.384737\pi\)
0.354248 + 0.935152i \(0.384737\pi\)
\(42\) 0 0
\(43\) −100.000 −0.354648 −0.177324 0.984153i \(-0.556744\pi\)
−0.177324 + 0.984153i \(0.556744\pi\)
\(44\) 0 0
\(45\) 27.5000 47.6314i 0.0910991 0.157788i
\(46\) 0 0
\(47\) −84.0000 145.492i −0.260695 0.451537i 0.705732 0.708479i \(-0.250618\pi\)
−0.966427 + 0.256942i \(0.917285\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −36.0000 62.3538i −0.0988433 0.171202i
\(52\) 0 0
\(53\) 249.000 431.281i 0.645335 1.11775i −0.338888 0.940827i \(-0.610051\pi\)
0.984224 0.176927i \(-0.0566157\pi\)
\(54\) 0 0
\(55\) −300.000 −0.735491
\(56\) 0 0
\(57\) 176.000 0.408978
\(58\) 0 0
\(59\) 126.000 218.238i 0.278031 0.481563i −0.692865 0.721068i \(-0.743652\pi\)
0.970895 + 0.239505i \(0.0769850\pi\)
\(60\) 0 0
\(61\) 29.0000 + 50.2295i 0.0608700 + 0.105430i 0.894855 0.446358i \(-0.147279\pi\)
−0.833985 + 0.551788i \(0.813946\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −215.000 372.391i −0.410269 0.710606i
\(66\) 0 0
\(67\) 518.000 897.202i 0.944534 1.63598i 0.187852 0.982197i \(-0.439847\pi\)
0.756682 0.653783i \(-0.226819\pi\)
\(68\) 0 0
\(69\) 192.000 0.334987
\(70\) 0 0
\(71\) 168.000 0.280816 0.140408 0.990094i \(-0.455159\pi\)
0.140408 + 0.990094i \(0.455159\pi\)
\(72\) 0 0
\(73\) −253.000 + 438.209i −0.405636 + 0.702582i −0.994395 0.105727i \(-0.966283\pi\)
0.588759 + 0.808308i \(0.299617\pi\)
\(74\) 0 0
\(75\) −50.0000 86.6025i −0.0769800 0.133333i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −136.000 235.559i −0.193686 0.335474i 0.752783 0.658269i \(-0.228711\pi\)
−0.946469 + 0.322795i \(0.895378\pi\)
\(80\) 0 0
\(81\) 155.500 269.334i 0.213306 0.369457i
\(82\) 0 0
\(83\) 948.000 1.25369 0.626846 0.779143i \(-0.284345\pi\)
0.626846 + 0.779143i \(0.284345\pi\)
\(84\) 0 0
\(85\) 90.0000 0.114846
\(86\) 0 0
\(87\) 372.000 644.323i 0.458421 0.794008i
\(88\) 0 0
\(89\) 507.000 + 878.150i 0.603841 + 1.04588i 0.992233 + 0.124390i \(0.0396973\pi\)
−0.388392 + 0.921494i \(0.626969\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −352.000 609.682i −0.392481 0.679796i
\(94\) 0 0
\(95\) −110.000 + 190.526i −0.118797 + 0.205763i
\(96\) 0 0
\(97\) −766.000 −0.801809 −0.400905 0.916120i \(-0.631304\pi\)
−0.400905 + 0.916120i \(0.631304\pi\)
\(98\) 0 0
\(99\) 660.000 0.670025
\(100\) 0 0
\(101\) 657.000 1137.96i 0.647267 1.12110i −0.336506 0.941681i \(-0.609245\pi\)
0.983773 0.179418i \(-0.0574214\pi\)
\(102\) 0 0
\(103\) 224.000 + 387.979i 0.214285 + 0.371153i 0.953051 0.302809i \(-0.0979245\pi\)
−0.738766 + 0.673962i \(0.764591\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −774.000 1340.61i −0.699303 1.21123i −0.968708 0.248201i \(-0.920161\pi\)
0.269406 0.963027i \(-0.413173\pi\)
\(108\) 0 0
\(109\) −139.000 + 240.755i −0.122145 + 0.211561i −0.920613 0.390476i \(-0.872311\pi\)
0.798468 + 0.602037i \(0.205644\pi\)
\(110\) 0 0
\(111\) 1016.00 0.868779
\(112\) 0 0
\(113\) −558.000 −0.464533 −0.232266 0.972652i \(-0.574614\pi\)
−0.232266 + 0.972652i \(0.574614\pi\)
\(114\) 0 0
\(115\) −120.000 + 207.846i −0.0973048 + 0.168537i
\(116\) 0 0
\(117\) 473.000 + 819.260i 0.373751 + 0.647356i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1134.50 1965.01i −0.852367 1.47634i
\(122\) 0 0
\(123\) −372.000 + 644.323i −0.272700 + 0.472330i
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 344.000 0.240355 0.120177 0.992752i \(-0.461654\pi\)
0.120177 + 0.992752i \(0.461654\pi\)
\(128\) 0 0
\(129\) 200.000 346.410i 0.136504 0.236432i
\(130\) 0 0
\(131\) −390.000 675.500i −0.260110 0.450524i 0.706161 0.708052i \(-0.250426\pi\)
−0.966271 + 0.257527i \(0.917092\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 380.000 + 658.179i 0.242261 + 0.419608i
\(136\) 0 0
\(137\) −333.000 + 576.773i −0.207665 + 0.359686i −0.950979 0.309257i \(-0.899920\pi\)
0.743314 + 0.668943i \(0.233253\pi\)
\(138\) 0 0
\(139\) 884.000 0.539424 0.269712 0.962941i \(-0.413072\pi\)
0.269712 + 0.962941i \(0.413072\pi\)
\(140\) 0 0
\(141\) 672.000 0.401366
\(142\) 0 0
\(143\) 2580.00 4468.69i 1.50874 2.61322i
\(144\) 0 0
\(145\) 465.000 + 805.404i 0.266318 + 0.461277i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 57.0000 + 98.7269i 0.0313397 + 0.0542820i 0.881270 0.472613i \(-0.156689\pi\)
−0.849930 + 0.526895i \(0.823356\pi\)
\(150\) 0 0
\(151\) 20.0000 34.6410i 0.0107787 0.0186692i −0.860586 0.509306i \(-0.829902\pi\)
0.871364 + 0.490636i \(0.163236\pi\)
\(152\) 0 0
\(153\) −198.000 −0.104623
\(154\) 0 0
\(155\) 880.000 0.456021
\(156\) 0 0
\(157\) 77.0000 133.368i 0.0391418 0.0677957i −0.845791 0.533515i \(-0.820871\pi\)
0.884933 + 0.465719i \(0.154204\pi\)
\(158\) 0 0
\(159\) 996.000 + 1725.12i 0.496779 + 0.860447i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1090.00 1887.94i −0.523775 0.907206i −0.999617 0.0276746i \(-0.991190\pi\)
0.475842 0.879531i \(-0.342144\pi\)
\(164\) 0 0
\(165\) 600.000 1039.23i 0.283091 0.490327i
\(166\) 0 0
\(167\) 3696.00 1.71261 0.856303 0.516474i \(-0.172756\pi\)
0.856303 + 0.516474i \(0.172756\pi\)
\(168\) 0 0
\(169\) 5199.00 2.36641
\(170\) 0 0
\(171\) 242.000 419.156i 0.108223 0.187448i
\(172\) 0 0
\(173\) −651.000 1127.57i −0.286096 0.495533i 0.686778 0.726867i \(-0.259024\pi\)
−0.972874 + 0.231334i \(0.925691\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 504.000 + 872.954i 0.214028 + 0.370707i
\(178\) 0 0
\(179\) 2154.00 3730.84i 0.899427 1.55785i 0.0712000 0.997462i \(-0.477317\pi\)
0.828227 0.560392i \(-0.189350\pi\)
\(180\) 0 0
\(181\) 1550.00 0.636523 0.318261 0.948003i \(-0.396901\pi\)
0.318261 + 0.948003i \(0.396901\pi\)
\(182\) 0 0
\(183\) −232.000 −0.0937155
\(184\) 0 0
\(185\) −635.000 + 1099.85i −0.252357 + 0.437096i
\(186\) 0 0
\(187\) 540.000 + 935.307i 0.211170 + 0.365756i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −24.0000 41.5692i −0.00909204 0.0157479i 0.861444 0.507853i \(-0.169561\pi\)
−0.870536 + 0.492105i \(0.836227\pi\)
\(192\) 0 0
\(193\) −529.000 + 916.255i −0.197297 + 0.341728i −0.947651 0.319308i \(-0.896550\pi\)
0.750354 + 0.661036i \(0.229883\pi\)
\(194\) 0 0
\(195\) 1720.00 0.631650
\(196\) 0 0
\(197\) −3714.00 −1.34321 −0.671603 0.740911i \(-0.734394\pi\)
−0.671603 + 0.740911i \(0.734394\pi\)
\(198\) 0 0
\(199\) 884.000 1531.13i 0.314900 0.545423i −0.664516 0.747274i \(-0.731362\pi\)
0.979416 + 0.201851i \(0.0646957\pi\)
\(200\) 0 0
\(201\) 2072.00 + 3588.81i 0.727103 + 1.25938i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −465.000 805.404i −0.158424 0.274399i
\(206\) 0 0
\(207\) 264.000 457.261i 0.0886438 0.153536i
\(208\) 0 0
\(209\) −2640.00 −0.873745
\(210\) 0 0
\(211\) −4036.00 −1.31682 −0.658412 0.752658i \(-0.728771\pi\)
−0.658412 + 0.752658i \(0.728771\pi\)
\(212\) 0 0
\(213\) −336.000 + 581.969i −0.108086 + 0.187211i
\(214\) 0 0
\(215\) 250.000 + 433.013i 0.0793017 + 0.137355i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1012.00 1752.84i −0.312259 0.540848i
\(220\) 0 0
\(221\) −774.000 + 1340.61i −0.235588 + 0.408050i
\(222\) 0 0
\(223\) 680.000 0.204198 0.102099 0.994774i \(-0.467444\pi\)
0.102099 + 0.994774i \(0.467444\pi\)
\(224\) 0 0
\(225\) −275.000 −0.0814815
\(226\) 0 0
\(227\) −1194.00 + 2068.07i −0.349113 + 0.604681i −0.986092 0.166200i \(-0.946850\pi\)
0.636979 + 0.770881i \(0.280184\pi\)
\(228\) 0 0
\(229\) 1937.00 + 3354.98i 0.558954 + 0.968137i 0.997584 + 0.0694695i \(0.0221307\pi\)
−0.438630 + 0.898668i \(0.644536\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1581.00 2738.37i −0.444527 0.769943i 0.553492 0.832854i \(-0.313295\pi\)
−0.998019 + 0.0629112i \(0.979962\pi\)
\(234\) 0 0
\(235\) −420.000 + 727.461i −0.116586 + 0.201933i
\(236\) 0 0
\(237\) 1088.00 0.298199
\(238\) 0 0
\(239\) 5424.00 1.46799 0.733995 0.679155i \(-0.237654\pi\)
0.733995 + 0.679155i \(0.237654\pi\)
\(240\) 0 0
\(241\) 1943.00 3365.37i 0.519335 0.899514i −0.480413 0.877042i \(-0.659513\pi\)
0.999747 0.0224714i \(-0.00715348\pi\)
\(242\) 0 0
\(243\) −1430.00 2476.83i −0.377508 0.653864i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1892.00 3277.04i −0.487389 0.844182i
\(248\) 0 0
\(249\) −1896.00 + 3283.97i −0.482547 + 0.835795i
\(250\) 0 0
\(251\) −5100.00 −1.28251 −0.641253 0.767329i \(-0.721585\pi\)
−0.641253 + 0.767329i \(0.721585\pi\)
\(252\) 0 0
\(253\) −2880.00 −0.715668
\(254\) 0 0
\(255\) −180.000 + 311.769i −0.0442041 + 0.0765637i
\(256\) 0 0
\(257\) −1089.00 1886.20i −0.264319 0.457814i 0.703066 0.711125i \(-0.251814\pi\)
−0.967385 + 0.253311i \(0.918480\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1023.00 1771.89i −0.242613 0.420219i
\(262\) 0 0
\(263\) 3072.00 5320.86i 0.720257 1.24752i −0.240639 0.970615i \(-0.577357\pi\)
0.960897 0.276907i \(-0.0893095\pi\)
\(264\) 0 0
\(265\) −2490.00 −0.577206
\(266\) 0 0
\(267\) −4056.00 −0.929675
\(268\) 0 0
\(269\) −411.000 + 711.873i −0.0931566 + 0.161352i −0.908838 0.417150i \(-0.863029\pi\)
0.815681 + 0.578502i \(0.196362\pi\)
\(270\) 0 0
\(271\) −4240.00 7343.90i −0.950412 1.64616i −0.744534 0.667584i \(-0.767328\pi\)
−0.205878 0.978578i \(-0.566005\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 750.000 + 1299.04i 0.164461 + 0.284854i
\(276\) 0 0
\(277\) 569.000 985.537i 0.123422 0.213773i −0.797693 0.603064i \(-0.793946\pi\)
0.921115 + 0.389291i \(0.127280\pi\)
\(278\) 0 0
\(279\) −1936.00 −0.415431
\(280\) 0 0
\(281\) 5706.00 1.21136 0.605679 0.795709i \(-0.292902\pi\)
0.605679 + 0.795709i \(0.292902\pi\)
\(282\) 0 0
\(283\) 1514.00 2622.32i 0.318014 0.550816i −0.662060 0.749451i \(-0.730317\pi\)
0.980074 + 0.198635i \(0.0636508\pi\)
\(284\) 0 0
\(285\) −440.000 762.102i −0.0914504 0.158397i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2294.50 + 3974.19i 0.467026 + 0.808913i
\(290\) 0 0
\(291\) 1532.00 2653.50i 0.308617 0.534540i
\(292\) 0 0
\(293\) 3390.00 0.675925 0.337962 0.941160i \(-0.390262\pi\)
0.337962 + 0.941160i \(0.390262\pi\)
\(294\) 0 0
\(295\) −1260.00 −0.248678
\(296\) 0 0
\(297\) −4560.00 + 7898.15i −0.890902 + 1.54309i
\(298\) 0 0
\(299\) −2064.00 3574.95i −0.399211 0.691454i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2628.00 + 4551.83i 0.498266 + 0.863022i
\(304\) 0 0
\(305\) 145.000 251.147i 0.0272219 0.0471497i
\(306\) 0 0
\(307\) −4156.00 −0.772624 −0.386312 0.922368i \(-0.626251\pi\)
−0.386312 + 0.922368i \(0.626251\pi\)
\(308\) 0 0
\(309\) −1792.00 −0.329914
\(310\) 0 0
\(311\) −3276.00 + 5674.20i −0.597315 + 1.03458i 0.395901 + 0.918293i \(0.370432\pi\)
−0.993216 + 0.116286i \(0.962901\pi\)
\(312\) 0 0
\(313\) 683.000 + 1182.99i 0.123340 + 0.213631i 0.921083 0.389367i \(-0.127306\pi\)
−0.797743 + 0.602998i \(0.793973\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1299.00 2249.93i −0.230155 0.398640i 0.727699 0.685897i \(-0.240590\pi\)
−0.957854 + 0.287257i \(0.907257\pi\)
\(318\) 0 0
\(319\) −5580.00 + 9664.84i −0.979373 + 1.69632i
\(320\) 0 0
\(321\) 6192.00 1.07665
\(322\) 0 0
\(323\) 792.000 0.136434
\(324\) 0 0
\(325\) −1075.00 + 1861.95i −0.183478 + 0.317793i
\(326\) 0 0
\(327\) −556.000 963.020i −0.0940271 0.162860i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1646.00 + 2850.96i 0.273330 + 0.473422i 0.969713 0.244249i \(-0.0785415\pi\)
−0.696382 + 0.717671i \(0.745208\pi\)
\(332\) 0 0
\(333\) 1397.00 2419.67i 0.229895 0.398190i
\(334\) 0 0
\(335\) −5180.00 −0.844817
\(336\) 0 0
\(337\) 6194.00 1.00121 0.500606 0.865675i \(-0.333110\pi\)
0.500606 + 0.865675i \(0.333110\pi\)
\(338\) 0 0
\(339\) 1116.00 1932.97i 0.178799 0.309689i
\(340\) 0 0
\(341\) 5280.00 + 9145.23i 0.838499 + 1.45232i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −480.000 831.384i −0.0749053 0.129740i
\(346\) 0 0
\(347\) 5010.00 8677.57i 0.775075 1.34247i −0.159678 0.987169i \(-0.551046\pi\)
0.934753 0.355299i \(-0.115621\pi\)
\(348\) 0 0
\(349\) −3130.00 −0.480072 −0.240036 0.970764i \(-0.577159\pi\)
−0.240036 + 0.970764i \(0.577159\pi\)
\(350\) 0 0
\(351\) −13072.0 −1.98784
\(352\) 0 0
\(353\) −2097.00 + 3632.11i −0.316181 + 0.547642i −0.979688 0.200528i \(-0.935734\pi\)
0.663506 + 0.748171i \(0.269068\pi\)
\(354\) 0 0
\(355\) −420.000 727.461i −0.0627924 0.108760i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2052.00 + 3554.17i 0.301672 + 0.522512i 0.976515 0.215450i \(-0.0691218\pi\)
−0.674842 + 0.737962i \(0.735788\pi\)
\(360\) 0 0
\(361\) 2461.50 4263.44i 0.358872 0.621584i
\(362\) 0 0
\(363\) 9076.00 1.31230
\(364\) 0 0
\(365\) 2530.00 0.362812
\(366\) 0 0
\(367\) −3748.00 + 6491.73i −0.533090 + 0.923339i 0.466163 + 0.884699i \(0.345636\pi\)
−0.999253 + 0.0386401i \(0.987697\pi\)
\(368\) 0 0
\(369\) 1023.00 + 1771.89i 0.144323 + 0.249975i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2921.00 + 5059.32i 0.405479 + 0.702310i 0.994377 0.105897i \(-0.0337714\pi\)
−0.588898 + 0.808207i \(0.700438\pi\)
\(374\) 0 0
\(375\) −250.000 + 433.013i −0.0344265 + 0.0596285i
\(376\) 0 0
\(377\) −15996.0 −2.18524
\(378\) 0 0
\(379\) −412.000 −0.0558391 −0.0279195 0.999610i \(-0.508888\pi\)
−0.0279195 + 0.999610i \(0.508888\pi\)
\(380\) 0 0
\(381\) −688.000 + 1191.65i −0.0925126 + 0.160237i
\(382\) 0 0
\(383\) −1284.00 2223.95i −0.171304 0.296707i 0.767572 0.640963i \(-0.221465\pi\)
−0.938876 + 0.344256i \(0.888131\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −550.000 952.628i −0.0722431 0.125129i
\(388\) 0 0
\(389\) −6543.00 + 11332.8i −0.852810 + 1.47711i 0.0258510 + 0.999666i \(0.491770\pi\)
−0.878662 + 0.477445i \(0.841563\pi\)
\(390\) 0 0
\(391\) 864.000 0.111750
\(392\) 0 0
\(393\) 3120.00 0.400466
\(394\) 0 0
\(395\) −680.000 + 1177.79i −0.0866190 + 0.150029i
\(396\) 0 0
\(397\) −5227.00 9053.43i −0.660795 1.14453i −0.980407 0.196982i \(-0.936886\pi\)
0.319612 0.947548i \(-0.396447\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5415.00 + 9379.06i 0.674345 + 1.16800i 0.976660 + 0.214791i \(0.0689071\pi\)
−0.302315 + 0.953208i \(0.597760\pi\)
\(402\) 0 0
\(403\) −7568.00 + 13108.2i −0.935456 + 1.62026i
\(404\) 0 0
\(405\) −1555.00 −0.190787
\(406\) 0 0
\(407\) −15240.0 −1.85607
\(408\) 0 0
\(409\) 4283.00 7418.37i 0.517801 0.896858i −0.481985 0.876180i \(-0.660084\pi\)
0.999786 0.0206786i \(-0.00658267\pi\)
\(410\) 0 0
\(411\) −1332.00 2307.09i −0.159861 0.276887i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2370.00 4104.96i −0.280334 0.485553i
\(416\) 0 0
\(417\) −1768.00 + 3062.27i −0.207624 + 0.359616i
\(418\) 0 0
\(419\) 13884.0 1.61880 0.809401 0.587257i \(-0.199792\pi\)
0.809401 + 0.587257i \(0.199792\pi\)
\(420\) 0 0
\(421\) 4286.00 0.496168 0.248084 0.968738i \(-0.420199\pi\)
0.248084 + 0.968738i \(0.420199\pi\)
\(422\) 0 0
\(423\) 924.000 1600.41i 0.106209 0.183959i
\(424\) 0 0
\(425\) −225.000 389.711i −0.0256802 0.0444795i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 10320.0 + 17874.8i 1.16143 + 2.01166i
\(430\) 0 0
\(431\) −3168.00 + 5487.14i −0.354054 + 0.613239i −0.986956 0.160993i \(-0.948530\pi\)
0.632902 + 0.774232i \(0.281864\pi\)
\(432\) 0 0
\(433\) −8974.00 −0.995988 −0.497994 0.867180i \(-0.665930\pi\)
−0.497994 + 0.867180i \(0.665930\pi\)
\(434\) 0 0
\(435\) −3720.00 −0.410024
\(436\) 0 0
\(437\) −1056.00 + 1829.05i −0.115596 + 0.200218i
\(438\) 0 0
\(439\) 1484.00 + 2570.36i 0.161338 + 0.279446i 0.935349 0.353727i \(-0.115086\pi\)
−0.774011 + 0.633173i \(0.781752\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6186.00 + 10714.5i 0.663444 + 1.14912i 0.979705 + 0.200446i \(0.0642393\pi\)
−0.316261 + 0.948672i \(0.602427\pi\)
\(444\) 0 0
\(445\) 2535.00 4390.75i 0.270046 0.467734i
\(446\) 0 0
\(447\) −456.000 −0.0482507
\(448\) 0 0
\(449\) 11394.0 1.19759 0.598793 0.800904i \(-0.295647\pi\)
0.598793 + 0.800904i \(0.295647\pi\)
\(450\) 0 0
\(451\) 5580.00 9664.84i 0.582599 1.00909i
\(452\) 0 0
\(453\) 80.0000 + 138.564i 0.00829741 + 0.0143715i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 179.000 + 310.037i 0.0183222 + 0.0317351i 0.875041 0.484049i \(-0.160834\pi\)
−0.856719 + 0.515784i \(0.827501\pi\)
\(458\) 0 0
\(459\) 1368.00 2369.45i 0.139113 0.240950i
\(460\) 0 0
\(461\) −7530.00 −0.760753 −0.380376 0.924832i \(-0.624206\pi\)
−0.380376 + 0.924832i \(0.624206\pi\)
\(462\) 0 0
\(463\) −13768.0 −1.38197 −0.690986 0.722868i \(-0.742823\pi\)
−0.690986 + 0.722868i \(0.742823\pi\)
\(464\) 0 0
\(465\) −1760.00 + 3048.41i −0.175523 + 0.304014i
\(466\) 0 0
\(467\) −6690.00 11587.4i −0.662904 1.14818i −0.979849 0.199740i \(-0.935990\pi\)
0.316945 0.948444i \(-0.397343\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 308.000 + 533.472i 0.0301314 + 0.0521891i
\(472\) 0 0
\(473\) −3000.00 + 5196.15i −0.291628 + 0.505115i
\(474\) 0 0
\(475\) 1100.00 0.106256
\(476\) 0 0
\(477\) 5478.00 0.525829
\(478\) 0 0
\(479\) 3168.00 5487.14i 0.302191 0.523411i −0.674441 0.738329i \(-0.735615\pi\)
0.976632 + 0.214918i \(0.0689485\pi\)
\(480\) 0 0
\(481\) −10922.0 18917.5i −1.03534 1.79327i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1915.00 + 3316.88i 0.179290 + 0.310539i
\(486\) 0 0
\(487\) 2504.00 4337.06i 0.232992 0.403554i −0.725695 0.688016i \(-0.758482\pi\)
0.958687 + 0.284462i \(0.0918151\pi\)
\(488\) 0 0
\(489\) 8720.00 0.806405
\(490\) 0 0
\(491\) 12900.0 1.18568 0.592840 0.805320i \(-0.298007\pi\)
0.592840 + 0.805320i \(0.298007\pi\)
\(492\) 0 0
\(493\) 1674.00 2899.45i 0.152927 0.264878i
\(494\) 0 0
\(495\) −1650.00 2857.88i −0.149822 0.259500i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4058.00 + 7028.66i 0.364050 + 0.630553i 0.988623 0.150413i \(-0.0480603\pi\)
−0.624573 + 0.780966i \(0.714727\pi\)
\(500\) 0 0
\(501\) −7392.00 + 12803.3i −0.659182 + 1.14174i
\(502\) 0 0
\(503\) −4944.00 −0.438255 −0.219127 0.975696i \(-0.570321\pi\)
−0.219127 + 0.975696i \(0.570321\pi\)
\(504\) 0 0
\(505\) −6570.00 −0.578933
\(506\) 0 0
\(507\) −10398.0 + 18009.9i −0.910831 + 1.57761i
\(508\) 0 0
\(509\) 2733.00 + 4733.69i 0.237992 + 0.412215i 0.960138 0.279526i \(-0.0901774\pi\)
−0.722146 + 0.691741i \(0.756844\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 3344.00 + 5791.98i 0.287800 + 0.498484i
\(514\) 0 0
\(515\) 1120.00 1939.90i 0.0958313 0.165985i
\(516\) 0 0
\(517\) −10080.0 −0.857481
\(518\) 0 0
\(519\) 5208.00 0.440474
\(520\) 0 0
\(521\) −5037.00 + 8724.34i −0.423560 + 0.733628i −0.996285 0.0861198i \(-0.972553\pi\)
0.572724 + 0.819748i \(0.305887\pi\)
\(522\) 0 0
\(523\) 6914.00 + 11975.4i 0.578065 + 1.00124i 0.995701 + 0.0926239i \(0.0295254\pi\)
−0.417636 + 0.908614i \(0.637141\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1584.00 2743.57i −0.130930 0.226777i
\(528\) 0 0
\(529\) 4931.50 8541.61i 0.405318 0.702031i
\(530\) 0 0
\(531\) 2772.00 0.226543
\(532\) 0 0
\(533\) 15996.0 1.29993
\(534\) 0 0
\(535\) −3870.00 + 6703.04i −0.312738 + 0.541678i
\(536\) 0 0
\(537\) 8616.00 + 14923.3i 0.692380 + 1.19924i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 7613.00 + 13186.1i 0.605006 + 1.04790i 0.992050 + 0.125841i \(0.0401628\pi\)
−0.387044 + 0.922061i \(0.626504\pi\)
\(542\) 0 0
\(543\) −3100.00 + 5369.36i −0.244998 + 0.424348i
\(544\) 0 0
\(545\) 1390.00 0.109250
\(546\) 0 0
\(547\) −13228.0 −1.03398 −0.516991 0.855991i \(-0.672948\pi\)
−0.516991 + 0.855991i \(0.672948\pi\)
\(548\) 0 0
\(549\) −319.000 + 552.524i −0.0247989 + 0.0429529i
\(550\) 0 0
\(551\) 4092.00 + 7087.55i 0.316379 + 0.547985i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2540.00 4399.41i −0.194265 0.336477i
\(556\) 0 0
\(557\) 4245.00 7352.56i 0.322920 0.559314i −0.658169 0.752870i \(-0.728669\pi\)
0.981089 + 0.193556i \(0.0620022\pi\)
\(558\) 0 0
\(559\) −8600.00 −0.650700
\(560\) 0 0
\(561\) −4320.00 −0.325117
\(562\) 0 0
\(563\) 5142.00 8906.21i 0.384919 0.666699i −0.606839 0.794825i \(-0.707563\pi\)
0.991758 + 0.128125i \(0.0408960\pi\)
\(564\) 0 0
\(565\) 1395.00 + 2416.21i 0.103873 + 0.179913i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −885.000 1532.86i −0.0652041 0.112937i 0.831580 0.555404i \(-0.187437\pi\)
−0.896785 + 0.442468i \(0.854103\pi\)
\(570\) 0 0
\(571\) −3034.00 + 5255.04i −0.222362 + 0.385143i −0.955525 0.294911i \(-0.904710\pi\)
0.733162 + 0.680054i \(0.238043\pi\)
\(572\) 0 0
\(573\) 192.000 0.0139981
\(574\) 0 0
\(575\) 1200.00 0.0870321
\(576\) 0 0
\(577\) −10753.0 + 18624.7i −0.775829 + 1.34377i 0.158499 + 0.987359i \(0.449335\pi\)
−0.934327 + 0.356416i \(0.883999\pi\)
\(578\) 0 0
\(579\) −2116.00 3665.02i −0.151879 0.263062i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −14940.0 25876.8i −1.06132 1.83827i
\(584\) 0 0
\(585\) 2365.00 4096.30i 0.167147 0.289506i
\(586\) 0 0
\(587\) 12108.0 0.851364 0.425682 0.904873i \(-0.360034\pi\)
0.425682 + 0.904873i \(0.360034\pi\)
\(588\) 0 0
\(589\) 7744.00 0.541742
\(590\) 0 0
\(591\) 7428.00 12865.7i 0.517000 0.895471i
\(592\) 0 0
\(593\) −7737.00 13400.9i −0.535785 0.928007i −0.999125 0.0418262i \(-0.986682\pi\)
0.463340 0.886181i \(-0.346651\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3536.00 + 6124.53i 0.242410 + 0.419867i
\(598\) 0 0
\(599\) 1260.00 2182.38i 0.0859469 0.148864i −0.819847 0.572582i \(-0.805942\pi\)
0.905794 + 0.423718i \(0.139275\pi\)
\(600\) 0 0
\(601\) −12790.0 −0.868078 −0.434039 0.900894i \(-0.642912\pi\)
−0.434039 + 0.900894i \(0.642912\pi\)
\(602\) 0 0
\(603\) 11396.0 0.769620
\(604\) 0 0
\(605\) −5672.50 + 9825.06i −0.381190 + 0.660240i
\(606\) 0 0
\(607\) −5788.00 10025.1i −0.387031 0.670357i 0.605018 0.796212i \(-0.293166\pi\)
−0.992049 + 0.125855i \(0.959833\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7224.00 12512.3i −0.478317 0.828470i
\(612\) 0 0
\(613\) −10063.0 + 17429.6i −0.663035 + 1.14841i 0.316778 + 0.948500i \(0.397399\pi\)
−0.979814 + 0.199912i \(0.935935\pi\)
\(614\) 0 0
\(615\) 3720.00 0.243910
\(616\) 0 0
\(617\) −27942.0 −1.82318 −0.911590 0.411100i \(-0.865145\pi\)
−0.911590 + 0.411100i \(0.865145\pi\)
\(618\) 0 0
\(619\) 11270.0 19520.2i 0.731792 1.26750i −0.224324 0.974515i \(-0.572017\pi\)
0.956116 0.292987i \(-0.0946493\pi\)
\(620\) 0 0
\(621\) 3648.00 + 6318.52i 0.235731 + 0.408299i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 5280.00 9145.23i 0.336304 0.582496i
\(628\) 0 0
\(629\) 4572.00 0.289821
\(630\) 0 0
\(631\) −5128.00 −0.323522 −0.161761 0.986830i \(-0.551717\pi\)
−0.161761 + 0.986830i \(0.551717\pi\)
\(632\) 0 0
\(633\) 8072.00 13981.1i 0.506845 0.877882i
\(634\) 0 0
\(635\) −860.000 1489.56i −0.0537450 0.0930890i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 924.000 + 1600.41i 0.0572032 + 0.0990789i
\(640\) 0 0
\(641\) 6399.00 11083.4i 0.394298 0.682945i −0.598713 0.800964i \(-0.704321\pi\)
0.993011 + 0.118019i \(0.0376543\pi\)
\(642\) 0 0
\(643\) −21148.0 −1.29704 −0.648519 0.761198i \(-0.724611\pi\)
−0.648519 + 0.761198i \(0.724611\pi\)
\(644\) 0 0
\(645\) −2000.00 −0.122093
\(646\) 0 0
\(647\) −8232.00 + 14258.2i −0.500206 + 0.866382i 0.499794 + 0.866144i \(0.333409\pi\)
−1.00000 0.000237943i \(0.999924\pi\)
\(648\) 0 0
\(649\) −7560.00 13094.3i −0.457251 0.791982i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12117.0 + 20987.3i 0.726148 + 1.25773i 0.958500 + 0.285094i \(0.0920248\pi\)
−0.232351 + 0.972632i \(0.574642\pi\)
\(654\) 0 0
\(655\) −1950.00 + 3377.50i −0.116325 + 0.201481i
\(656\) 0 0
\(657\) −5566.00 −0.330518
\(658\) 0 0
\(659\) −22836.0 −1.34987 −0.674935 0.737877i \(-0.735828\pi\)
−0.674935 + 0.737877i \(0.735828\pi\)
\(660\) 0 0
\(661\) −13159.0 + 22792.1i −0.774320 + 1.34116i 0.160855 + 0.986978i \(0.448575\pi\)
−0.935176 + 0.354184i \(0.884759\pi\)
\(662\) 0 0
\(663\) −3096.00 5362.43i −0.181355 0.314117i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4464.00 + 7731.87i 0.259141 + 0.448845i
\(668\) 0 0
\(669\) −1360.00 + 2355.59i −0.0785959 + 0.136132i
\(670\) 0 0
\(671\) 3480.00 0.200214
\(672\) 0 0
\(673\) 28802.0 1.64968 0.824841 0.565365i \(-0.191265\pi\)
0.824841 + 0.565365i \(0.191265\pi\)
\(674\) 0 0
\(675\) 1900.00 3290.90i 0.108342 0.187654i
\(676\) 0 0
\(677\) −1263.00 2187.58i −0.0717002 0.124188i 0.827946 0.560807i \(-0.189509\pi\)
−0.899647 + 0.436619i \(0.856176\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −4776.00 8272.27i −0.268747 0.465483i
\(682\) 0 0
\(683\) 11538.0 19984.4i 0.646397 1.11959i −0.337580 0.941297i \(-0.609608\pi\)
0.983977 0.178296i \(-0.0570584\pi\)
\(684\) 0 0
\(685\) 3330.00 0.185741
\(686\) 0 0
\(687\) −15496.0 −0.860567
\(688\) 0 0
\(689\) 21414.0 37090.1i 1.18405 2.05083i
\(690\) 0 0
\(691\) −3934.00 6813.89i −0.216579 0.375127i 0.737181 0.675696i \(-0.236157\pi\)
−0.953760 + 0.300569i \(0.902823\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2210.00 3827.83i −0.120619 0.208918i
\(696\) 0 0
\(697\) −1674.00 + 2899.45i −0.0909717 + 0.157568i
\(698\) 0 0
\(699\) 12648.0 0.684394
\(700\) 0 0
\(701\) 21510.0 1.15895 0.579473 0.814991i \(-0.303258\pi\)
0.579473 + 0.814991i \(0.303258\pi\)
\(702\) 0 0
\(703\) −5588.00 + 9678.70i −0.299794 + 0.519259i
\(704\) 0 0
\(705\) −1680.00 2909.85i −0.0897482 0.155448i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −15007.0 25992.9i −0.794922 1.37685i −0.922889 0.385067i \(-0.874178\pi\)
0.127967 0.991778i \(-0.459155\pi\)
\(710\) 0 0
\(711\) 1496.00 2591.15i 0.0789091 0.136675i
\(712\) 0 0
\(713\) 8448.00 0.443731
\(714\) 0 0
\(715\) −25800.0 −1.34946
\(716\) 0 0
\(717\) −10848.0 + 18789.3i −0.565029 + 0.978659i
\(718\) 0 0
\(719\) 408.000 + 706.677i 0.0211625 + 0.0366545i 0.876413 0.481561i \(-0.159930\pi\)
−0.855250 + 0.518215i \(0.826597\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 7772.00 + 13461.5i 0.399784 + 0.692446i
\(724\) 0 0
\(725\) 2325.00 4027.02i 0.119101 0.206289i
\(726\) 0 0
\(727\) −9952.00 −0.507702 −0.253851 0.967243i \(-0.581697\pi\)
−0.253851 + 0.967243i \(0.581697\pi\)
\(728\) 0 0
\(729\) 19837.0 1.00782
\(730\) 0 0
\(731\) 900.000 1558.85i 0.0455372 0.0788728i
\(732\) 0 0
\(733\) 16973.0 + 29398.1i 0.855269 + 1.48137i 0.876395 + 0.481592i \(0.159941\pi\)
−0.0211266 + 0.999777i \(0.506725\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −31080.0 53832.1i −1.55339 2.69055i
\(738\) 0 0
\(739\) −11710.0 + 20282.3i −0.582895 + 1.00960i 0.412239 + 0.911076i \(0.364747\pi\)
−0.995134 + 0.0985280i \(0.968587\pi\)
\(740\) 0 0
\(741\) 15136.0 0.750384
\(742\) 0 0
\(743\) −14592.0 −0.720496 −0.360248 0.932857i \(-0.617308\pi\)
−0.360248 + 0.932857i \(0.617308\pi\)
\(744\) 0 0
\(745\) 285.000 493.634i 0.0140156 0.0242757i
\(746\) 0 0
\(747\) 5214.00 + 9030.91i 0.255382 + 0.442334i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −4528.00 7842.73i −0.220012 0.381072i 0.734799 0.678285i \(-0.237276\pi\)
−0.954811 + 0.297213i \(0.903943\pi\)
\(752\) 0 0
\(753\) 10200.0 17666.9i 0.493637 0.855004i
\(754\) 0 0
\(755\) −200.000 −0.00964072
\(756\) 0 0
\(757\) −17554.0 −0.842815 −0.421408 0.906871i \(-0.638464\pi\)
−0.421408 + 0.906871i \(0.638464\pi\)
\(758\) 0 0
\(759\) 5760.00 9976.61i 0.275461 0.477112i
\(760\) 0 0
\(761\) 18219.0 + 31556.2i 0.867856 + 1.50317i 0.864183 + 0.503177i \(0.167836\pi\)
0.00367239 + 0.999993i \(0.498831\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 495.000 + 857.365i 0.0233945 + 0.0405204i
\(766\) 0 0
\(767\) 10836.0 18768.5i 0.510124 0.883561i
\(768\) 0 0
\(769\) −9022.00 −0.423071 −0.211536 0.977370i \(-0.567846\pi\)
−0.211536 + 0.977370i \(0.567846\pi\)
\(770\) 0 0
\(771\) 8712.00 0.406946
\(772\) 0 0
\(773\) −735.000 + 1273.06i −0.0341994 + 0.0592350i −0.882618 0.470090i \(-0.844221\pi\)
0.848419 + 0.529325i \(0.177555\pi\)
\(774\) 0 0
\(775\) −2200.00 3810.51i −0.101969 0.176616i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4092.00 7087.55i −0.188204 0.325979i
\(780\) 0 0
\(781\) 5040.00 8729.54i 0.230916 0.399958i
\(782\) 0 0
\(783\) 28272.0 1.29037
\(784\) 0 0
\(785\) −770.000 −0.0350095
\(786\) 0 0
\(787\) −2626.00 + 4548.37i −0.118941 + 0.206012i −0.919348 0.393444i \(-0.871283\pi\)
0.800407 + 0.599457i \(0.204617\pi\)
\(788\) 0 0
\(789\) 12288.0 + 21283.4i 0.554454 + 0.960343i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 2494.00 + 4319.73i 0.111683 + 0.193440i