Properties

Label 980.2.x.n.667.17
Level $980$
Weight $2$
Character 980.667
Analytic conductor $7.825$
Analytic rank $0$
Dimension $112$
CM no
Inner twists $16$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(28\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 667.17
Character \(\chi\) \(=\) 980.667
Dual form 980.2.x.n.263.17

$q$-expansion

\(f(q)\) \(=\) \(q+(0.604271 - 1.27862i) q^{2} +(-0.844627 + 3.15219i) q^{3} +(-1.26971 - 1.54526i) q^{4} +(1.79332 - 1.33567i) q^{5} +(3.52006 + 2.98473i) q^{6} +(-2.74304 + 0.689718i) q^{8} +(-6.62484 - 3.82485i) q^{9} +O(q^{10})\) \(q+(0.604271 - 1.27862i) q^{2} +(-0.844627 + 3.15219i) q^{3} +(-1.26971 - 1.54526i) q^{4} +(1.79332 - 1.33567i) q^{5} +(3.52006 + 2.98473i) q^{6} +(-2.74304 + 0.689718i) q^{8} +(-6.62484 - 3.82485i) q^{9} +(-0.624159 - 3.10007i) q^{10} +(-1.96875 + 1.13666i) q^{11} +(5.94339 - 2.69721i) q^{12} +(-1.38240 + 1.38240i) q^{13} +(2.69561 + 6.78102i) q^{15} +(-0.775657 + 3.92407i) q^{16} +(-0.0499069 + 0.186255i) q^{17} +(-8.89371 + 6.15937i) q^{18} +(-3.45645 + 5.98675i) q^{19} +(-4.34096 - 1.07522i) q^{20} +(0.263690 + 3.20413i) q^{22} +(-3.23487 + 0.866782i) q^{23} +(0.142725 - 9.22915i) q^{24} +(1.43197 - 4.79056i) q^{25} +(0.932215 + 2.60291i) q^{26} +(10.7295 - 10.7295i) q^{27} +7.33156i q^{29} +(10.2992 + 0.650933i) q^{30} +(-0.430790 + 0.248717i) q^{31} +(4.54867 + 3.36297i) q^{32} +(-1.92011 - 7.16594i) q^{33} +(0.207991 + 0.176360i) q^{34} +(2.50125 + 15.0936i) q^{36} +(-3.37605 + 0.904610i) q^{37} +(5.56612 + 8.03710i) q^{38} +(-3.18998 - 5.52522i) q^{39} +(-3.99791 + 4.90069i) q^{40} -3.22939 q^{41} +(-2.91165 - 2.91165i) q^{43} +(4.25618 + 1.59900i) q^{44} +(-16.9892 + 1.98943i) q^{45} +(-0.846460 + 4.65993i) q^{46} +(-0.645725 - 2.40988i) q^{47} +(-11.7143 - 5.75940i) q^{48} +(-5.25998 - 4.72573i) q^{50} +(-0.544959 - 0.314632i) q^{51} +(3.89143 + 0.380917i) q^{52} +(-6.98469 - 1.87154i) q^{53} +(-7.23537 - 20.2024i) q^{54} +(-2.01239 + 4.66799i) q^{55} +(-15.9520 - 15.9520i) q^{57} +(9.37424 + 4.43025i) q^{58} +(2.61146 + 4.52318i) q^{59} +(7.05580 - 12.7754i) q^{60} +(-5.00922 + 8.67623i) q^{61} +(0.0576991 + 0.701107i) q^{62} +(7.04858 - 3.78386i) q^{64} +(-0.632652 + 4.32552i) q^{65} +(-10.3227 - 1.87509i) q^{66} +(-12.0126 - 3.21877i) q^{67} +(0.351180 - 0.159371i) q^{68} -10.9290i q^{69} -3.60061i q^{71} +(20.8103 + 5.92247i) q^{72} +(12.6457 + 3.38841i) q^{73} +(-0.883401 + 4.86330i) q^{74} +(13.8913 + 8.56008i) q^{75} +(13.6398 - 2.26034i) q^{76} +(-8.99224 + 0.740035i) q^{78} +(5.66954 - 9.81994i) q^{79} +(3.85027 + 8.07313i) q^{80} +(13.2844 + 23.0093i) q^{81} +(-1.95143 + 4.12915i) q^{82} +(0.591847 + 0.591847i) q^{83} +(0.159277 + 0.400674i) q^{85} +(-5.48231 + 1.96345i) q^{86} +(-23.1105 - 6.19243i) q^{87} +(4.61640 - 4.47579i) q^{88} +(3.45672 + 1.99574i) q^{89} +(-7.72235 + 22.9248i) q^{90} +(5.44676 + 3.89816i) q^{92} +(-0.420146 - 1.56801i) q^{93} +(-3.47150 - 0.630586i) q^{94} +(1.79781 + 15.3528i) q^{95} +(-14.4427 + 11.4978i) q^{96} +(1.09368 + 1.09368i) q^{97} +17.3902 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112q + 4q^{2} - 32q^{8} + O(q^{10}) \) \( 112q + 4q^{2} - 32q^{8} - 32q^{16} + 40q^{22} - 32q^{25} + 28q^{30} + 64q^{32} + 32q^{36} + 8q^{37} + 184q^{46} - 24q^{50} - 96q^{53} - 16q^{57} - 124q^{58} - 8q^{60} + 120q^{65} + 80q^{72} - 72q^{78} + 72q^{81} + 192q^{85} - 104q^{86} - 48q^{88} - 304q^{92} + 176q^{93} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.604271 1.27862i 0.427284 0.904117i
\(3\) −0.844627 + 3.15219i −0.487646 + 1.81992i 0.0801936 + 0.996779i \(0.474446\pi\)
−0.567839 + 0.823139i \(0.692221\pi\)
\(4\) −1.26971 1.54526i −0.634857 0.772630i
\(5\) 1.79332 1.33567i 0.801996 0.597330i
\(6\) 3.52006 + 2.98473i 1.43706 + 1.21851i
\(7\) 0 0
\(8\) −2.74304 + 0.689718i −0.969812 + 0.243852i
\(9\) −6.62484 3.82485i −2.20828 1.27495i
\(10\) −0.624159 3.10007i −0.197376 0.980328i
\(11\) −1.96875 + 1.13666i −0.593601 + 0.342716i −0.766520 0.642220i \(-0.778013\pi\)
0.172919 + 0.984936i \(0.444680\pi\)
\(12\) 5.94339 2.69721i 1.71571 0.778618i
\(13\) −1.38240 + 1.38240i −0.383410 + 0.383410i −0.872329 0.488919i \(-0.837391\pi\)
0.488919 + 0.872329i \(0.337391\pi\)
\(14\) 0 0
\(15\) 2.69561 + 6.78102i 0.696002 + 1.75085i
\(16\) −0.775657 + 3.92407i −0.193914 + 0.981018i
\(17\) −0.0499069 + 0.186255i −0.0121042 + 0.0451735i −0.971714 0.236162i \(-0.924111\pi\)
0.959610 + 0.281335i \(0.0907772\pi\)
\(18\) −8.89371 + 6.15937i −2.09627 + 1.45178i
\(19\) −3.45645 + 5.98675i −0.792965 + 1.37346i 0.131158 + 0.991361i \(0.458130\pi\)
−0.924123 + 0.382094i \(0.875203\pi\)
\(20\) −4.34096 1.07522i −0.970667 0.240427i
\(21\) 0 0
\(22\) 0.263690 + 3.20413i 0.0562189 + 0.683122i
\(23\) −3.23487 + 0.866782i −0.674518 + 0.180736i −0.579789 0.814767i \(-0.696865\pi\)
−0.0947286 + 0.995503i \(0.530198\pi\)
\(24\) 0.142725 9.22915i 0.0291336 1.88389i
\(25\) 1.43197 4.79056i 0.286394 0.958112i
\(26\) 0.932215 + 2.60291i 0.182822 + 0.510472i
\(27\) 10.7295 10.7295i 2.06489 2.06489i
\(28\) 0 0
\(29\) 7.33156i 1.36144i 0.732546 + 0.680718i \(0.238332\pi\)
−0.732546 + 0.680718i \(0.761668\pi\)
\(30\) 10.2992 + 0.650933i 1.88037 + 0.118844i
\(31\) −0.430790 + 0.248717i −0.0773722 + 0.0446709i −0.538187 0.842825i \(-0.680891\pi\)
0.460815 + 0.887496i \(0.347557\pi\)
\(32\) 4.54867 + 3.36297i 0.804099 + 0.594495i
\(33\) −1.92011 7.16594i −0.334248 1.24743i
\(34\) 0.207991 + 0.176360i 0.0356702 + 0.0302455i
\(35\) 0 0
\(36\) 2.50125 + 15.0936i 0.416876 + 2.51559i
\(37\) −3.37605 + 0.904610i −0.555019 + 0.148717i −0.525417 0.850845i \(-0.676091\pi\)
−0.0296020 + 0.999562i \(0.509424\pi\)
\(38\) 5.56612 + 8.03710i 0.902944 + 1.30379i
\(39\) −3.18998 5.52522i −0.510806 0.884743i
\(40\) −3.99791 + 4.90069i −0.632125 + 0.774866i
\(41\) −3.22939 −0.504346 −0.252173 0.967682i \(-0.581145\pi\)
−0.252173 + 0.967682i \(0.581145\pi\)
\(42\) 0 0
\(43\) −2.91165 2.91165i −0.444022 0.444022i 0.449339 0.893361i \(-0.351660\pi\)
−0.893361 + 0.449339i \(0.851660\pi\)
\(44\) 4.25618 + 1.59900i 0.641644 + 0.241059i
\(45\) −16.9892 + 1.98943i −2.53260 + 0.296567i
\(46\) −0.846460 + 4.65993i −0.124804 + 0.687069i
\(47\) −0.645725 2.40988i −0.0941887 0.351517i 0.902707 0.430257i \(-0.141577\pi\)
−0.996895 + 0.0787399i \(0.974910\pi\)
\(48\) −11.7143 5.75940i −1.69081 0.831298i
\(49\) 0 0
\(50\) −5.25998 4.72573i −0.743874 0.668320i
\(51\) −0.544959 0.314632i −0.0763095 0.0440573i
\(52\) 3.89143 + 0.380917i 0.539644 + 0.0528237i
\(53\) −6.98469 1.87154i −0.959421 0.257076i −0.255066 0.966924i \(-0.582097\pi\)
−0.704355 + 0.709847i \(0.748764\pi\)
\(54\) −7.23537 20.2024i −0.984610 2.74920i
\(55\) −2.01239 + 4.66799i −0.271351 + 0.629432i
\(56\) 0 0
\(57\) −15.9520 15.9520i −2.11289 2.11289i
\(58\) 9.37424 + 4.43025i 1.23090 + 0.581720i
\(59\) 2.61146 + 4.52318i 0.339983 + 0.588868i 0.984429 0.175782i \(-0.0562452\pi\)
−0.644446 + 0.764650i \(0.722912\pi\)
\(60\) 7.05580 12.7754i 0.910899 1.64929i
\(61\) −5.00922 + 8.67623i −0.641365 + 1.11088i 0.343763 + 0.939056i \(0.388298\pi\)
−0.985128 + 0.171821i \(0.945035\pi\)
\(62\) 0.0576991 + 0.701107i 0.00732779 + 0.0890407i
\(63\) 0 0
\(64\) 7.04858 3.78386i 0.881072 0.472982i
\(65\) −0.632652 + 4.32552i −0.0784708 + 0.536515i
\(66\) −10.3227 1.87509i −1.27064 0.230808i
\(67\) −12.0126 3.21877i −1.46757 0.393235i −0.565474 0.824766i \(-0.691307\pi\)
−0.902098 + 0.431531i \(0.857974\pi\)
\(68\) 0.351180 0.159371i 0.0425868 0.0193266i
\(69\) 10.9290i 1.31570i
\(70\) 0 0
\(71\) 3.60061i 0.427314i −0.976909 0.213657i \(-0.931462\pi\)
0.976909 0.213657i \(-0.0685375\pi\)
\(72\) 20.8103 + 5.92247i 2.45252 + 0.697969i
\(73\) 12.6457 + 3.38841i 1.48007 + 0.396584i 0.906371 0.422482i \(-0.138841\pi\)
0.573700 + 0.819066i \(0.305508\pi\)
\(74\) −0.883401 + 4.86330i −0.102693 + 0.565347i
\(75\) 13.8913 + 8.56008i 1.60403 + 0.988433i
\(76\) 13.6398 2.26034i 1.56459 0.259279i
\(77\) 0 0
\(78\) −8.99224 + 0.740035i −1.01817 + 0.0837925i
\(79\) 5.66954 9.81994i 0.637874 1.10483i −0.348025 0.937485i \(-0.613148\pi\)
0.985899 0.167344i \(-0.0535191\pi\)
\(80\) 3.85027 + 8.07313i 0.430473 + 0.902603i
\(81\) 13.2844 + 23.0093i 1.47605 + 2.55659i
\(82\) −1.95143 + 4.12915i −0.215499 + 0.455988i
\(83\) 0.591847 + 0.591847i 0.0649636 + 0.0649636i 0.738842 0.673879i \(-0.235373\pi\)
−0.673879 + 0.738842i \(0.735373\pi\)
\(84\) 0 0
\(85\) 0.159277 + 0.400674i 0.0172760 + 0.0434592i
\(86\) −5.48231 + 1.96345i −0.591172 + 0.211725i
\(87\) −23.1105 6.19243i −2.47770 0.663898i
\(88\) 4.61640 4.47579i 0.492110 0.477121i
\(89\) 3.45672 + 1.99574i 0.366412 + 0.211548i 0.671890 0.740651i \(-0.265483\pi\)
−0.305478 + 0.952199i \(0.598816\pi\)
\(90\) −7.72235 + 22.9248i −0.814008 + 2.41648i
\(91\) 0 0
\(92\) 5.44676 + 3.89816i 0.567864 + 0.406411i
\(93\) −0.420146 1.56801i −0.0435671 0.162595i
\(94\) −3.47150 0.630586i −0.358058 0.0650400i
\(95\) 1.79781 + 15.3528i 0.184452 + 1.57517i
\(96\) −14.4427 + 11.4978i −1.47405 + 1.17349i
\(97\) 1.09368 + 1.09368i 0.111047 + 0.111047i 0.760447 0.649400i \(-0.224980\pi\)
−0.649400 + 0.760447i \(0.724980\pi\)
\(98\) 0 0
\(99\) 17.3902 1.74778
\(100\) −9.22085 + 3.86987i −0.922085 + 0.386987i
\(101\) 2.49645 + 4.32397i 0.248406 + 0.430251i 0.963084 0.269202i \(-0.0867601\pi\)
−0.714678 + 0.699454i \(0.753427\pi\)
\(102\) −0.731597 + 0.506670i −0.0724389 + 0.0501678i
\(103\) −10.0333 + 2.68842i −0.988612 + 0.264898i −0.716667 0.697415i \(-0.754333\pi\)
−0.271945 + 0.962313i \(0.587667\pi\)
\(104\) 2.83852 4.74546i 0.278340 0.465331i
\(105\) 0 0
\(106\) −6.61363 + 7.79981i −0.642373 + 0.757585i
\(107\) 0.553575 + 2.06597i 0.0535161 + 0.199725i 0.987508 0.157570i \(-0.0503659\pi\)
−0.933992 + 0.357295i \(0.883699\pi\)
\(108\) −30.2033 2.95648i −2.90631 0.284488i
\(109\) −8.19415 + 4.73090i −0.784857 + 0.453138i −0.838149 0.545441i \(-0.816362\pi\)
0.0532916 + 0.998579i \(0.483029\pi\)
\(110\) 4.75254 + 5.39381i 0.453137 + 0.514280i
\(111\) 11.4060i 1.08261i
\(112\) 0 0
\(113\) 12.1490 12.1490i 1.14289 1.14289i 0.154967 0.987920i \(-0.450473\pi\)
0.987920 0.154967i \(-0.0495270\pi\)
\(114\) −30.0358 + 10.7571i −2.81311 + 1.00750i
\(115\) −4.64342 + 5.87514i −0.433001 + 0.547859i
\(116\) 11.3292 9.30897i 1.05189 0.864316i
\(117\) 14.4457 3.87071i 1.33550 0.357847i
\(118\) 7.36144 0.605825i 0.677676 0.0557707i
\(119\) 0 0
\(120\) −12.0712 16.7414i −1.10194 1.52828i
\(121\) −2.91601 + 5.05068i −0.265092 + 0.459153i
\(122\) 8.06663 + 11.6477i 0.730318 + 1.05453i
\(123\) 2.72763 10.1797i 0.245942 0.917869i
\(124\) 0.931312 + 0.349884i 0.0836343 + 0.0314205i
\(125\) −3.83064 10.5036i −0.342622 0.939473i
\(126\) 0 0
\(127\) −2.01009 + 2.01009i −0.178367 + 0.178367i −0.790643 0.612277i \(-0.790254\pi\)
0.612277 + 0.790643i \(0.290254\pi\)
\(128\) −0.578844 11.2989i −0.0511630 0.998690i
\(129\) 11.6373 6.71882i 1.02461 0.591559i
\(130\) 5.14838 + 3.42271i 0.451543 + 0.300191i
\(131\) 5.65370 + 3.26417i 0.493966 + 0.285191i 0.726218 0.687464i \(-0.241276\pi\)
−0.232252 + 0.972656i \(0.574609\pi\)
\(132\) −8.63525 + 12.0657i −0.751602 + 1.05019i
\(133\) 0 0
\(134\) −11.3744 + 13.4145i −0.982601 + 1.15883i
\(135\) 4.91031 33.5725i 0.422613 2.88946i
\(136\) 0.00843325 0.545328i 0.000723145 0.0467615i
\(137\) 1.52380 5.68690i 0.130187 0.485865i −0.869784 0.493432i \(-0.835742\pi\)
0.999971 + 0.00756731i \(0.00240877\pi\)
\(138\) −13.9740 6.60411i −1.18955 0.562179i
\(139\) 6.55194 0.555729 0.277864 0.960620i \(-0.410373\pi\)
0.277864 + 0.960620i \(0.410373\pi\)
\(140\) 0 0
\(141\) 8.14180 0.685663
\(142\) −4.60380 2.17575i −0.386342 0.182585i
\(143\) 1.15029 4.29293i 0.0961919 0.358993i
\(144\) 20.1476 23.0296i 1.67897 1.91913i
\(145\) 9.79254 + 13.1478i 0.813226 + 1.09187i
\(146\) 11.9739 14.1215i 0.990969 1.16870i
\(147\) 0 0
\(148\) 5.68447 + 4.06828i 0.467261 + 0.334410i
\(149\) 12.4603 + 7.19395i 1.02079 + 0.589352i 0.914332 0.404966i \(-0.132717\pi\)
0.106455 + 0.994318i \(0.466050\pi\)
\(150\) 19.3391 12.5890i 1.57903 1.02789i
\(151\) 6.33365 3.65673i 0.515425 0.297581i −0.219636 0.975582i \(-0.570487\pi\)
0.735061 + 0.678001i \(0.237154\pi\)
\(152\) 5.35203 18.8059i 0.434107 1.52536i
\(153\) 1.04302 1.04302i 0.0843235 0.0843235i
\(154\) 0 0
\(155\) −0.440339 + 1.02142i −0.0353689 + 0.0820426i
\(156\) −4.48753 + 11.9448i −0.359290 + 0.956349i
\(157\) 5.19817 19.3998i 0.414859 1.54828i −0.370258 0.928929i \(-0.620731\pi\)
0.785117 0.619347i \(-0.212603\pi\)
\(158\) −9.12998 13.1831i −0.726342 1.04879i
\(159\) 11.7989 20.4363i 0.935715 1.62071i
\(160\) 12.6490 0.0446550i 0.999994 0.00353029i
\(161\) 0 0
\(162\) 37.4475 3.08182i 2.94215 0.242131i
\(163\) 12.8941 3.45495i 1.00994 0.270613i 0.284336 0.958725i \(-0.408227\pi\)
0.725604 + 0.688112i \(0.241560\pi\)
\(164\) 4.10040 + 4.99025i 0.320187 + 0.389673i
\(165\) −13.0147 10.2862i −1.01319 0.800777i
\(166\) 1.11438 0.399108i 0.0864927 0.0309768i
\(167\) −4.21040 + 4.21040i −0.325811 + 0.325811i −0.850991 0.525180i \(-0.823998\pi\)
0.525180 + 0.850991i \(0.323998\pi\)
\(168\) 0 0
\(169\) 9.17792i 0.705994i
\(170\) 0.608553 + 0.0384620i 0.0466739 + 0.00294990i
\(171\) 45.7969 26.4409i 3.50218 2.02198i
\(172\) −0.802296 + 8.19622i −0.0611745 + 0.624956i
\(173\) 5.25823 + 19.6240i 0.399776 + 1.49198i 0.813491 + 0.581578i \(0.197564\pi\)
−0.413715 + 0.910406i \(0.635769\pi\)
\(174\) −21.8827 + 25.8075i −1.65892 + 1.95646i
\(175\) 0 0
\(176\) −2.93326 8.60719i −0.221103 0.648791i
\(177\) −16.4637 + 4.41142i −1.23748 + 0.331583i
\(178\) 4.64058 3.21385i 0.347826 0.240888i
\(179\) 1.59053 + 2.75487i 0.118881 + 0.205909i 0.919325 0.393500i \(-0.128736\pi\)
−0.800443 + 0.599409i \(0.795402\pi\)
\(180\) 24.6456 + 23.7267i 1.83697 + 1.76848i
\(181\) −9.22913 −0.685996 −0.342998 0.939336i \(-0.611442\pi\)
−0.342998 + 0.939336i \(0.611442\pi\)
\(182\) 0 0
\(183\) −23.1182 23.1182i −1.70895 1.70895i
\(184\) 8.27556 4.60877i 0.610083 0.339763i
\(185\) −4.84606 + 6.13154i −0.356290 + 0.450800i
\(186\) −2.25876 0.410296i −0.165620 0.0300843i
\(187\) −0.113454 0.423417i −0.00829660 0.0309633i
\(188\) −2.90400 + 4.05767i −0.211796 + 0.295936i
\(189\) 0 0
\(190\) 20.7167 + 6.97856i 1.50295 + 0.506278i
\(191\) −12.7944 7.38687i −0.925773 0.534495i −0.0403006 0.999188i \(-0.512832\pi\)
−0.885472 + 0.464692i \(0.846165\pi\)
\(192\) 5.97402 + 25.4144i 0.431138 + 1.83413i
\(193\) −2.95127 0.790790i −0.212437 0.0569223i 0.151031 0.988529i \(-0.451741\pi\)
−0.363468 + 0.931607i \(0.618407\pi\)
\(194\) 2.05928 0.737520i 0.147848 0.0529508i
\(195\) −13.1005 5.64769i −0.938148 0.404440i
\(196\) 0 0
\(197\) 6.45634 + 6.45634i 0.459995 + 0.459995i 0.898654 0.438658i \(-0.144546\pi\)
−0.438658 + 0.898654i \(0.644546\pi\)
\(198\) 10.5084 22.2354i 0.746800 1.58020i
\(199\) −7.48432 12.9632i −0.530549 0.918939i −0.999365 0.0356423i \(-0.988652\pi\)
0.468815 0.883296i \(-0.344681\pi\)
\(200\) −0.623816 + 14.1284i −0.0441105 + 0.999027i
\(201\) 20.2923 35.1474i 1.43131 2.47910i
\(202\) 7.03722 0.579143i 0.495137 0.0407484i
\(203\) 0 0
\(204\) 0.205753 + 1.24160i 0.0144056 + 0.0869291i
\(205\) −5.79132 + 4.31340i −0.404483 + 0.301261i
\(206\) −2.62539 + 14.4533i −0.182920 + 1.00701i
\(207\) 24.7458 + 6.63062i 1.71995 + 0.460860i
\(208\) −4.35238 6.49692i −0.301783 0.450481i
\(209\) 15.7152i 1.08705i
\(210\) 0 0
\(211\) 16.6114i 1.14358i −0.820401 0.571789i \(-0.806250\pi\)
0.820401 0.571789i \(-0.193750\pi\)
\(212\) 5.97654 + 13.1695i 0.410470 + 0.904484i
\(213\) 11.3498 + 3.04118i 0.777677 + 0.208378i
\(214\) 2.97609 + 0.540596i 0.203441 + 0.0369544i
\(215\) −9.11052 1.33251i −0.621332 0.0908761i
\(216\) −22.0312 + 36.8318i −1.49903 + 2.50609i
\(217\) 0 0
\(218\) 1.09751 + 13.3359i 0.0743325 + 0.903222i
\(219\) −21.3619 + 36.9998i −1.44350 + 2.50022i
\(220\) 9.76843 2.81734i 0.658587 0.189945i
\(221\) −0.188488 0.326471i −0.0126791 0.0219608i
\(222\) −14.5839 6.89232i −0.978807 0.462582i
\(223\) 10.5774 + 10.5774i 0.708318 + 0.708318i 0.966181 0.257863i \(-0.0830185\pi\)
−0.257863 + 0.966181i \(0.583018\pi\)
\(224\) 0 0
\(225\) −27.8098 + 26.2596i −1.85398 + 1.75064i
\(226\) −8.19264 22.8753i −0.544966 1.52164i
\(227\) 8.10649 + 2.17213i 0.538047 + 0.144169i 0.517602 0.855622i \(-0.326825\pi\)
0.0204453 + 0.999791i \(0.493492\pi\)
\(228\) −4.39552 + 44.9044i −0.291100 + 2.97387i
\(229\) −8.28192 4.78157i −0.547285 0.315975i 0.200741 0.979644i \(-0.435665\pi\)
−0.748026 + 0.663669i \(0.768998\pi\)
\(230\) 4.70616 + 9.48732i 0.310315 + 0.625575i
\(231\) 0 0
\(232\) −5.05671 20.1108i −0.331989 1.32034i
\(233\) 2.57959 + 9.62717i 0.168995 + 0.630697i 0.997497 + 0.0707108i \(0.0225268\pi\)
−0.828502 + 0.559986i \(0.810807\pi\)
\(234\) 3.77996 20.8094i 0.247104 1.36036i
\(235\) −4.37679 3.45920i −0.285511 0.225653i
\(236\) 3.67369 9.77853i 0.239137 0.636528i
\(237\) 26.1657 + 26.1657i 1.69964 + 1.69964i
\(238\) 0 0
\(239\) 19.5170 1.26245 0.631225 0.775600i \(-0.282552\pi\)
0.631225 + 0.775600i \(0.282552\pi\)
\(240\) −28.7001 + 5.31800i −1.85258 + 0.343276i
\(241\) −4.81231 8.33517i −0.309988 0.536915i 0.668371 0.743828i \(-0.266992\pi\)
−0.978359 + 0.206913i \(0.933658\pi\)
\(242\) 4.69581 + 6.78043i 0.301858 + 0.435863i
\(243\) −39.7800 + 10.6590i −2.55189 + 0.683776i
\(244\) 19.7673 3.27577i 1.26547 0.209710i
\(245\) 0 0
\(246\) −11.3676 9.63886i −0.724774 0.614551i
\(247\) −3.49790 13.0543i −0.222566 0.830627i
\(248\) 1.01013 0.979365i 0.0641434 0.0621897i
\(249\) −2.36550 + 1.36572i −0.149908 + 0.0865493i
\(250\) −15.7448 1.44913i −0.995791 0.0916511i
\(251\) 27.2830i 1.72209i 0.508532 + 0.861043i \(0.330188\pi\)
−0.508532 + 0.861043i \(0.669812\pi\)
\(252\) 0 0
\(253\) 5.38343 5.38343i 0.338453 0.338453i
\(254\) 1.35549 + 3.78477i 0.0850511 + 0.237477i
\(255\) −1.39753 + 0.163650i −0.0875167 + 0.0102482i
\(256\) −14.7967 6.08747i −0.924794 0.380467i
\(257\) −27.8738 + 7.46875i −1.73872 + 0.465888i −0.982161 0.188041i \(-0.939786\pi\)
−0.756556 + 0.653929i \(0.773120\pi\)
\(258\) −1.55868 18.9397i −0.0970391 1.17913i
\(259\) 0 0
\(260\) 7.48734 4.51456i 0.464345 0.279981i
\(261\) 28.0421 48.5704i 1.73576 3.00643i
\(262\) 7.58998 5.25647i 0.468910 0.324746i
\(263\) −1.35037 + 5.03964i −0.0832672 + 0.310757i −0.994980 0.100070i \(-0.968093\pi\)
0.911713 + 0.410827i \(0.134760\pi\)
\(264\) 10.2094 + 18.3321i 0.628346 + 1.12827i
\(265\) −15.0255 + 5.97298i −0.923011 + 0.366917i
\(266\) 0 0
\(267\) −9.21059 + 9.21059i −0.563679 + 0.563679i
\(268\) 10.2787 + 22.6495i 0.627873 + 1.38354i
\(269\) −11.0061 + 6.35438i −0.671054 + 0.387433i −0.796476 0.604670i \(-0.793305\pi\)
0.125422 + 0.992104i \(0.459972\pi\)
\(270\) −39.9591 26.5653i −2.43183 1.61671i
\(271\) 25.0351 + 14.4540i 1.52078 + 0.878021i 0.999700 + 0.0245112i \(0.00780294\pi\)
0.521077 + 0.853510i \(0.325530\pi\)
\(272\) −0.692168 0.340309i −0.0419689 0.0206342i
\(273\) 0 0
\(274\) −6.35057 5.38479i −0.383652 0.325307i
\(275\) 2.62604 + 11.0591i 0.158356 + 0.666888i
\(276\) −16.8882 + 13.8768i −1.01655 + 0.835282i
\(277\) 5.66377 21.1375i 0.340303 1.27003i −0.557701 0.830042i \(-0.688316\pi\)
0.898004 0.439987i \(-0.145017\pi\)
\(278\) 3.95915 8.37741i 0.237454 0.502444i
\(279\) 3.80522 0.227813
\(280\) 0 0
\(281\) 6.96882 0.415725 0.207862 0.978158i \(-0.433349\pi\)
0.207862 + 0.978158i \(0.433349\pi\)
\(282\) 4.91985 10.4102i 0.292973 0.619920i
\(283\) −6.97386 + 26.0268i −0.414553 + 1.54713i 0.371176 + 0.928562i \(0.378954\pi\)
−0.785729 + 0.618570i \(0.787712\pi\)
\(284\) −5.56389 + 4.57175i −0.330156 + 0.271283i
\(285\) −49.9135 7.30036i −2.95662 0.432436i
\(286\) −4.79392 4.06487i −0.283471 0.240361i
\(287\) 0 0
\(288\) −17.2714 39.6772i −1.01772 2.33800i
\(289\) 14.6902 + 8.48141i 0.864131 + 0.498906i
\(290\) 22.7283 4.57606i 1.33465 0.268715i
\(291\) −4.37126 + 2.52375i −0.256248 + 0.147945i
\(292\) −10.8205 23.8433i −0.633220 1.39532i
\(293\) −9.60083 + 9.60083i −0.560886 + 0.560886i −0.929559 0.368673i \(-0.879812\pi\)
0.368673 + 0.929559i \(0.379812\pi\)
\(294\) 0 0
\(295\) 10.7247 + 4.62345i 0.624414 + 0.269188i
\(296\) 8.63672 4.80991i 0.501999 0.279570i
\(297\) −8.92794 + 33.3195i −0.518051 + 1.93339i
\(298\) 16.7277 11.5848i 0.969009 0.671091i
\(299\) 3.27366 5.67014i 0.189320 0.327913i
\(300\) −4.41040 32.3345i −0.254634 1.86683i
\(301\) 0 0
\(302\) −0.848314 10.3080i −0.0488150 0.593156i
\(303\) −15.7386 + 4.21713i −0.904156 + 0.242268i
\(304\) −20.8114 18.2071i −1.19362 1.04425i
\(305\) 2.60546 + 22.2499i 0.149188 + 1.27402i
\(306\) −0.703357 1.96390i −0.0402082 0.112268i
\(307\) 9.95915 9.95915i 0.568399 0.568399i −0.363281 0.931680i \(-0.618343\pi\)
0.931680 + 0.363281i \(0.118343\pi\)
\(308\) 0 0
\(309\) 33.8977i 1.92837i
\(310\) 1.03992 + 1.18024i 0.0590635 + 0.0670331i
\(311\) −7.83321 + 4.52251i −0.444181 + 0.256448i −0.705369 0.708840i \(-0.749219\pi\)
0.261189 + 0.965288i \(0.415886\pi\)
\(312\) 12.5611 + 12.9557i 0.711133 + 0.733473i
\(313\) −4.12250 15.3854i −0.233018 0.869634i −0.979032 0.203704i \(-0.934702\pi\)
0.746015 0.665929i \(-0.231965\pi\)
\(314\) −21.6638 18.3692i −1.22256 1.03664i
\(315\) 0 0
\(316\) −22.3731 + 3.70758i −1.25858 + 0.208568i
\(317\) −11.8007 + 3.16198i −0.662792 + 0.177595i −0.574506 0.818500i \(-0.694806\pi\)
−0.0882865 + 0.996095i \(0.528139\pi\)
\(318\) −19.0005 27.4354i −1.06549 1.53850i
\(319\) −8.33348 14.4340i −0.466585 0.808150i
\(320\) 7.58635 16.2002i 0.424090 0.905620i
\(321\) −6.97990 −0.389580
\(322\) 0 0
\(323\) −0.942563 0.942563i −0.0524456 0.0524456i
\(324\) 18.6880 49.7432i 1.03822 2.76351i
\(325\) 4.64293 + 8.60204i 0.257543 + 0.477156i
\(326\) 3.37395 18.5743i 0.186866 1.02873i
\(327\) −7.99169 29.8254i −0.441941 1.64935i
\(328\) 8.85836 2.22737i 0.489121 0.122986i
\(329\) 0 0
\(330\) −21.0164 + 10.4251i −1.15692 + 0.573886i
\(331\) 25.1183 + 14.5020i 1.38062 + 0.797104i 0.992233 0.124390i \(-0.0396975\pi\)
0.388392 + 0.921494i \(0.373031\pi\)
\(332\) 0.163082 1.66603i 0.00895027 0.0914355i
\(333\) 25.8258 + 6.92000i 1.41524 + 0.379214i
\(334\) 2.83926 + 7.92771i 0.155357 + 0.433785i
\(335\) −25.8416 + 10.2726i −1.41188 + 0.561252i
\(336\) 0 0
\(337\) 0.436142 + 0.436142i 0.0237582 + 0.0237582i 0.718886 0.695128i \(-0.244652\pi\)
−0.695128 + 0.718886i \(0.744652\pi\)
\(338\) 11.7350 + 5.54595i 0.638301 + 0.301660i
\(339\) 28.0347 + 48.5575i 1.52264 + 2.63728i
\(340\) 0.416909 0.754864i 0.0226101 0.0409383i
\(341\) 0.565413 0.979324i 0.0306188 0.0530333i
\(342\) −6.13394 74.5341i −0.331685 4.03034i
\(343\) 0 0
\(344\) 9.99500 + 5.97856i 0.538894 + 0.322343i
\(345\) −14.5976 19.5992i −0.785909 1.05519i
\(346\) 28.2689 + 5.13495i 1.51975 + 0.276057i
\(347\) −20.0808 5.38063i −1.07799 0.288847i −0.324219 0.945982i \(-0.605102\pi\)
−0.753773 + 0.657135i \(0.771768\pi\)
\(348\) 19.7747 + 43.5743i 1.06004 + 2.33583i
\(349\) 11.4922i 0.615164i 0.951522 + 0.307582i \(0.0995198\pi\)
−0.951522 + 0.307582i \(0.900480\pi\)
\(350\) 0 0
\(351\) 29.6650i 1.58340i
\(352\) −12.7778 1.45056i −0.681057 0.0773154i
\(353\) −17.5453 4.70125i −0.933843 0.250222i −0.240350 0.970686i \(-0.577262\pi\)
−0.693493 + 0.720464i \(0.743929\pi\)
\(354\) −4.30800 + 23.7164i −0.228967 + 1.26051i
\(355\) −4.80923 6.45704i −0.255248 0.342704i
\(356\) −1.30511 7.87555i −0.0691706 0.417403i
\(357\) 0 0
\(358\) 4.48353 0.368981i 0.236962 0.0195013i
\(359\) −11.2339 + 19.4577i −0.592902 + 1.02694i 0.400938 + 0.916105i \(0.368684\pi\)
−0.993839 + 0.110831i \(0.964649\pi\)
\(360\) 45.2299 17.1748i 2.38383 0.905194i
\(361\) −14.3942 24.9314i −0.757587 1.31218i
\(362\) −5.57689 + 11.8005i −0.293115 + 0.620221i
\(363\) −13.4578 13.4578i −0.706349 0.706349i
\(364\) 0 0
\(365\) 27.2036 10.8140i 1.42390 0.566032i
\(366\) −43.5289 + 15.5896i −2.27529 + 0.814883i
\(367\) −10.3023 2.76049i −0.537776 0.144097i −0.0202990 0.999794i \(-0.506462\pi\)
−0.517476 + 0.855697i \(0.673128\pi\)
\(368\) −0.892162 13.3662i −0.0465071 0.696762i
\(369\) 21.3942 + 12.3519i 1.11374 + 0.643016i
\(370\) 4.91154 + 9.90136i 0.255339 + 0.514747i
\(371\) 0 0
\(372\) −1.88951 + 2.64015i −0.0979667 + 0.136886i
\(373\) −5.01170 18.7039i −0.259496 0.968452i −0.965534 0.260278i \(-0.916186\pi\)
0.706038 0.708174i \(-0.250481\pi\)
\(374\) −0.609945 0.110794i −0.0315395 0.00572904i
\(375\) 36.3449 3.20325i 1.87684 0.165415i
\(376\) 3.43339 + 6.16503i 0.177064 + 0.317937i
\(377\) −10.1352 10.1352i −0.521988 0.521988i
\(378\) 0 0
\(379\) 11.3167 0.581298 0.290649 0.956830i \(-0.406129\pi\)
0.290649 + 0.956830i \(0.406129\pi\)
\(380\) 21.4414 22.2718i 1.09992 1.14252i
\(381\) −4.63841 8.03396i −0.237633 0.411592i
\(382\) −17.1763 + 11.8955i −0.878814 + 0.608626i
\(383\) −4.31792 + 1.15698i −0.220635 + 0.0591191i −0.367443 0.930046i \(-0.619767\pi\)
0.146808 + 0.989165i \(0.453100\pi\)
\(384\) 36.1052 + 7.71872i 1.84248 + 0.393894i
\(385\) 0 0
\(386\) −2.79448 + 3.29568i −0.142235 + 0.167746i
\(387\) 8.15258 + 30.4259i 0.414419 + 1.54663i
\(388\) 0.301361 3.07869i 0.0152993 0.156297i
\(389\) 23.3678 13.4914i 1.18480 0.684043i 0.227677 0.973737i \(-0.426887\pi\)
0.957119 + 0.289694i \(0.0935535\pi\)
\(390\) −15.1375 + 13.3378i −0.766517 + 0.675385i
\(391\) 0.645770i 0.0326580i
\(392\) 0 0
\(393\) −15.0645 + 15.0645i −0.759906 + 0.759906i
\(394\) 12.1566 4.35380i 0.612439 0.219341i
\(395\) −2.94891 25.1829i −0.148376 1.26709i
\(396\) −22.0806 26.8724i −1.10959 1.35039i
\(397\) −8.72496 + 2.33785i −0.437893 + 0.117333i −0.471029 0.882118i \(-0.656117\pi\)
0.0331358 + 0.999451i \(0.489451\pi\)
\(398\) −21.0975 + 1.73627i −1.05752 + 0.0870311i
\(399\) 0 0
\(400\) 17.6878 + 9.33499i 0.884390 + 0.466749i
\(401\) −3.01957 + 5.23005i −0.150790 + 0.261176i −0.931518 0.363695i \(-0.881515\pi\)
0.780728 + 0.624871i \(0.214848\pi\)
\(402\) −32.6779 47.1846i −1.62982 2.35335i
\(403\) 0.251699 0.939353i 0.0125380 0.0467925i
\(404\) 3.51189 9.34786i 0.174723 0.465073i
\(405\) 54.5561 + 23.5194i 2.71092 + 1.16869i
\(406\) 0 0
\(407\) 5.61837 5.61837i 0.278492 0.278492i
\(408\) 1.71185 + 0.487182i 0.0847494 + 0.0241191i
\(409\) −18.5956 + 10.7362i −0.919493 + 0.530869i −0.883473 0.468482i \(-0.844801\pi\)
−0.0360194 + 0.999351i \(0.511468\pi\)
\(410\) 2.01565 + 10.0113i 0.0995460 + 0.494424i
\(411\) 16.6392 + 9.60663i 0.820749 + 0.473860i
\(412\) 16.8937 + 12.0906i 0.832295 + 0.595659i
\(413\) 0 0
\(414\) 23.4312 27.6337i 1.15158 1.35812i
\(415\) 1.85188 + 0.270857i 0.0909053 + 0.0132958i
\(416\) −10.9371 + 1.63912i −0.536235 + 0.0803643i
\(417\) −5.53395 + 20.6530i −0.270999 + 1.01138i
\(418\) −20.0938 9.49627i −0.982817 0.464478i
\(419\) 12.1274 0.592464 0.296232 0.955116i \(-0.404270\pi\)
0.296232 + 0.955116i \(0.404270\pi\)
\(420\) 0 0
\(421\) −30.9496 −1.50839 −0.754196 0.656649i \(-0.771973\pi\)
−0.754196 + 0.656649i \(0.771973\pi\)
\(422\) −21.2396 10.0378i −1.03393 0.488633i
\(423\) −4.93961 + 18.4349i −0.240172 + 0.896334i
\(424\) 20.4502 + 0.316252i 0.993147 + 0.0153586i
\(425\) 0.820801 + 0.505794i 0.0398147 + 0.0245346i
\(426\) 10.7469 12.6744i 0.520687 0.614075i
\(427\) 0 0
\(428\) 2.48958 3.47861i 0.120338 0.168145i
\(429\) 12.5606 + 7.25185i 0.606430 + 0.350123i
\(430\) −7.20898 + 10.8436i −0.347648 + 0.522927i
\(431\) −19.5042 + 11.2608i −0.939486 + 0.542413i −0.889799 0.456352i \(-0.849156\pi\)
−0.0496870 + 0.998765i \(0.515822\pi\)
\(432\) 33.7809 + 50.4258i 1.62529 + 2.42611i
\(433\) 14.7279 14.7279i 0.707779 0.707779i −0.258289 0.966068i \(-0.583159\pi\)
0.966068 + 0.258289i \(0.0831586\pi\)
\(434\) 0 0
\(435\) −49.7154 + 19.7630i −2.38367 + 0.947562i
\(436\) 17.7147 + 6.65522i 0.848380 + 0.318727i
\(437\) 5.99198 22.3624i 0.286635 1.06974i
\(438\) 34.4002 + 49.6715i 1.64370 + 2.37340i
\(439\) −16.3149 + 28.2582i −0.778666 + 1.34869i 0.154045 + 0.988064i \(0.450770\pi\)
−0.932711 + 0.360625i \(0.882563\pi\)
\(440\) 2.30048 14.1925i 0.109671 0.676601i
\(441\) 0 0
\(442\) −0.531329 + 0.0437268i −0.0252727 + 0.00207987i
\(443\) −35.4675 + 9.50348i −1.68511 + 0.451524i −0.969120 0.246588i \(-0.920691\pi\)
−0.715989 + 0.698111i \(0.754024\pi\)
\(444\) −17.6253 + 14.4824i −0.836457 + 0.687302i
\(445\) 8.86465 1.03805i 0.420225 0.0492082i
\(446\) 19.9161 7.13284i 0.943056 0.337750i
\(447\) −33.2010 + 33.2010i −1.57035 + 1.57035i
\(448\) 0 0
\(449\) 29.6263i 1.39815i 0.715047 + 0.699077i \(0.246405\pi\)
−0.715047 + 0.699077i \(0.753595\pi\)
\(450\) 16.7713 + 51.4259i 0.790608 + 2.42424i
\(451\) 6.35787 3.67072i 0.299380 0.172847i
\(452\) −34.1992 3.34763i −1.60860 0.157459i
\(453\) 6.17715 + 23.0534i 0.290228 + 1.08315i
\(454\) 7.67584 9.05253i 0.360245 0.424856i
\(455\) 0 0
\(456\) 54.7594 + 32.7546i 2.56434 + 1.53387i
\(457\) 5.76995 1.54605i 0.269907 0.0723213i −0.121327 0.992613i \(-0.538715\pi\)
0.391234 + 0.920291i \(0.372048\pi\)
\(458\) −11.1183 + 7.70002i −0.519525 + 0.359799i
\(459\) 1.46295 + 2.53390i 0.0682846 + 0.118272i
\(460\) 14.9744 0.284453i 0.698186 0.0132627i
\(461\) 6.73072 0.313481 0.156740 0.987640i \(-0.449901\pi\)
0.156740 + 0.987640i \(0.449901\pi\)
\(462\) 0 0
\(463\) −0.122270 0.122270i −0.00568238 0.00568238i 0.704260 0.709942i \(-0.251279\pi\)
−0.709942 + 0.704260i \(0.751279\pi\)
\(464\) −28.7696 5.68678i −1.33559 0.264002i
\(465\) −2.84779 2.25076i −0.132063 0.104376i
\(466\) 13.8682 + 2.51911i 0.642433 + 0.116696i
\(467\) 1.25037 + 4.66643i 0.0578601 + 0.215937i 0.988803 0.149229i \(-0.0476791\pi\)
−0.930943 + 0.365165i \(0.881012\pi\)
\(468\) −24.3231 17.4077i −1.12434 0.804669i
\(469\) 0 0
\(470\) −7.06775 + 3.50594i −0.326011 + 0.161717i
\(471\) 56.7615 + 32.7713i 2.61543 + 1.51002i
\(472\) −10.2831 10.6061i −0.473317 0.488186i
\(473\) 9.04187 + 2.42276i 0.415746 + 0.111399i
\(474\) 49.2670 17.6447i 2.26291 0.810447i
\(475\) 23.7304 + 25.1312i 1.08882 + 1.15310i
\(476\) 0 0
\(477\) 39.1141 + 39.1141i 1.79091 + 1.79091i
\(478\) 11.7936 24.9547i 0.539425 1.14140i
\(479\) −15.7076 27.2063i −0.717697 1.24309i −0.961910 0.273365i \(-0.911863\pi\)
0.244214 0.969721i \(-0.421470\pi\)
\(480\) −10.5430 + 39.9099i −0.481218 + 1.82163i
\(481\) 3.41653 5.91760i 0.155780 0.269819i
\(482\) −13.5654 + 1.11639i −0.617888 + 0.0508503i
\(483\) 0 0
\(484\) 11.5071 1.90692i 0.523050 0.0866781i
\(485\) 3.42212 + 0.500521i 0.155391 + 0.0227275i
\(486\) −10.4091 + 57.3042i −0.472167 + 2.59937i
\(487\) −5.63804 1.51071i −0.255484 0.0684568i 0.128804 0.991670i \(-0.458886\pi\)
−0.384288 + 0.923213i \(0.625553\pi\)
\(488\) 7.75636 27.2542i 0.351114 1.23374i
\(489\) 43.5627i 1.96997i
\(490\) 0 0
\(491\) 4.53656i 0.204732i −0.994747 0.102366i \(-0.967359\pi\)
0.994747 0.102366i \(-0.0326413\pi\)
\(492\) −19.1935 + 8.71034i −0.865311 + 0.392693i
\(493\) −1.36554 0.365895i −0.0615008 0.0164791i
\(494\) −18.8051 3.41589i −0.846083 0.153688i
\(495\) 31.1862 23.2276i 1.40171 1.04400i
\(496\) −0.641838 1.88337i −0.0288194 0.0845659i
\(497\) 0 0
\(498\) 0.316830 + 3.84984i 0.0141975 + 0.172515i
\(499\) 16.1667 28.0016i 0.723722 1.25352i −0.235776 0.971808i \(-0.575763\pi\)
0.959498 0.281716i \(-0.0909036\pi\)
\(500\) −11.3670 + 19.2559i −0.508349 + 0.861151i
\(501\) −9.71578 16.8282i −0.434069 0.751829i
\(502\) 34.8844 + 16.4863i 1.55697 + 0.735820i
\(503\) −19.0966 19.0966i −0.851475 0.851475i 0.138840 0.990315i \(-0.455663\pi\)
−0.990315 + 0.138840i \(0.955663\pi\)
\(504\) 0 0
\(505\) 10.2523 + 4.41982i 0.456222 + 0.196679i
\(506\) −3.63028 10.1364i −0.161386 0.450617i
\(507\) −28.9306 7.75192i −1.28485 0.344275i
\(508\) 5.65835 + 0.553874i 0.251049 + 0.0245742i
\(509\) 25.4928 + 14.7183i 1.12995 + 0.652377i 0.943922 0.330167i \(-0.107105\pi\)
0.186028 + 0.982544i \(0.440439\pi\)
\(510\) −0.635240 + 1.88579i −0.0281289 + 0.0835042i
\(511\) 0 0
\(512\) −16.7248 + 15.2408i −0.739137 + 0.673555i
\(513\) 27.1489 + 101.321i 1.19865 + 4.47343i
\(514\) −7.29365 + 40.1530i −0.321709 + 1.77107i
\(515\) −14.4021 + 18.2224i −0.634631 + 0.802975i
\(516\) −25.1584 9.45174i −1.10754 0.416090i
\(517\) 4.01048 + 4.01048i 0.176381 + 0.176381i
\(518\) 0 0
\(519\) −66.2998 −2.91024
\(520\) −1.24800 12.3014i −0.0547285 0.539454i
\(521\) −19.2144 33.2803i −0.841798 1.45804i −0.888373 0.459122i \(-0.848164\pi\)
0.0465748 0.998915i \(-0.485169\pi\)
\(522\) −45.1578 65.2048i −1.97650 2.85393i
\(523\) 40.8579 10.9478i 1.78659 0.478716i 0.794831 0.606830i \(-0.207559\pi\)
0.991759 + 0.128115i \(0.0408926\pi\)
\(524\) −2.13459 12.8810i −0.0932501 0.562709i
\(525\) 0 0
\(526\) 5.62777 + 4.77191i 0.245382 + 0.208065i
\(527\) −0.0248254 0.0926496i −0.00108141 0.00403588i
\(528\) 29.6090 1.97633i 1.28857 0.0860087i
\(529\) −10.2055 + 5.89214i −0.443717 + 0.256180i
\(530\) −1.44235 + 22.8212i −0.0626518 + 0.991288i
\(531\) 39.9538i 1.73385i
\(532\) 0 0
\(533\) 4.46432 4.46432i 0.193371 0.193371i
\(534\) 6.21111 + 17.3425i 0.268781 + 0.750483i
\(535\) 3.75219 + 2.96554i 0.162221 + 0.128212i
\(536\) 35.1711 + 0.543906i 1.51916 + 0.0234931i
\(537\) −10.0273 + 2.68680i −0.432709 + 0.115944i
\(538\) 1.47413 + 17.9123i 0.0635544 + 0.772256i
\(539\) 0 0
\(540\) −58.1129 + 35.0397i −2.50078 + 1.50787i
\(541\) 12.8616 22.2770i 0.552964 0.957762i −0.445095 0.895484i \(-0.646830\pi\)
0.998059 0.0622786i \(-0.0198367\pi\)
\(542\) 33.6092 23.2762i 1.44364 0.999796i
\(543\) 7.79517 29.0920i 0.334523 1.24846i
\(544\) −0.853381 + 0.679378i −0.0365884 + 0.0291281i
\(545\) −8.37579 + 19.4287i −0.358779 + 0.832233i
\(546\) 0 0
\(547\) 14.6703 14.6703i 0.627257 0.627257i −0.320120 0.947377i \(-0.603723\pi\)
0.947377 + 0.320120i \(0.103723\pi\)
\(548\) −10.7225 + 4.86607i −0.458044 + 0.207868i
\(549\) 66.3706 38.3191i 2.83263 1.63542i
\(550\) 15.7272 + 3.32499i 0.670608 + 0.141778i
\(551\) −43.8922 25.3412i −1.86987 1.07957i
\(552\) 7.53796 + 29.9788i 0.320837 + 1.27598i
\(553\) 0 0
\(554\) −23.6043 20.0146i −1.00285 0.850337i
\(555\) −15.2347 20.4546i −0.646676 0.868249i
\(556\) −8.31909 10.1245i −0.352808 0.429373i
\(557\) 0.0844516 0.315178i 0.00357833 0.0133545i −0.964114 0.265490i \(-0.914466\pi\)
0.967692 + 0.252136i \(0.0811329\pi\)
\(558\) 2.29939 4.86541i 0.0973407 0.205969i
\(559\) 8.05015 0.340485
\(560\) 0 0
\(561\) 1.43052 0.0603966
\(562\) 4.21106 8.91044i 0.177633 0.375864i
\(563\) −3.98515 + 14.8728i −0.167954 + 0.626812i 0.829691 + 0.558223i \(0.188517\pi\)
−0.997645 + 0.0685896i \(0.978150\pi\)
\(564\) −10.3377 12.5812i −0.435298 0.529764i
\(565\) 5.55997 38.0142i 0.233910 1.59927i
\(566\) 29.0642 + 24.6441i 1.22166 + 1.03587i
\(567\) 0 0
\(568\) 2.48341 + 9.87664i 0.104202 + 0.414415i
\(569\) −6.11191 3.52871i −0.256224 0.147931i 0.366387 0.930463i \(-0.380595\pi\)
−0.622611 + 0.782531i \(0.713928\pi\)
\(570\) −39.4957 + 59.4088i −1.65429 + 2.48836i
\(571\) 12.6951 7.32953i 0.531274 0.306731i −0.210261 0.977645i \(-0.567431\pi\)
0.741535 + 0.670914i \(0.234098\pi\)
\(572\) −8.09423 + 3.67330i −0.338437 + 0.153588i
\(573\) 34.0914 34.0914i 1.42419 1.42419i
\(574\) 0 0
\(575\) −0.479869 + 16.7381i −0.0200119 + 0.698025i
\(576\) −61.1684 1.89234i −2.54868 0.0788473i
\(577\) −1.01912 + 3.80340i −0.0424265 + 0.158338i −0.983889 0.178779i \(-0.942785\pi\)
0.941463 + 0.337117i \(0.109452\pi\)
\(578\) 19.7213 13.6581i 0.820300 0.568101i
\(579\) 4.98544 8.63504i 0.207188 0.358860i
\(580\) 7.88305 31.8260i 0.327326 1.32150i
\(581\) 0 0
\(582\) 0.585477 + 7.11418i 0.0242688 + 0.294892i
\(583\) 15.8784 4.25461i 0.657618 0.176208i
\(584\) −37.0248 0.572573i −1.53210 0.0236932i
\(585\) 20.7357 26.2361i 0.857316 1.08473i
\(586\) 6.47426 + 18.0773i 0.267449 + 0.746765i
\(587\) −10.0254 + 10.0254i −0.413791 + 0.413791i −0.883057 0.469266i \(-0.844519\pi\)
0.469266 + 0.883057i \(0.344519\pi\)
\(588\) 0 0
\(589\) 3.43871i 0.141690i
\(590\) 12.3922 10.9189i 0.510179 0.449524i
\(591\) −25.8048 + 14.8984i −1.06147 + 0.612839i
\(592\) −0.931097 13.9495i −0.0382679 0.573322i
\(593\) 3.54698 + 13.2375i 0.145657 + 0.543599i 0.999725 + 0.0234382i \(0.00746130\pi\)
−0.854068 + 0.520161i \(0.825872\pi\)
\(594\) 37.2079 + 31.5494i 1.52666 + 1.29449i
\(595\) 0 0
\(596\) −4.70447 28.3886i −0.192702 1.16284i
\(597\) 47.1840 12.6429i 1.93111 0.517440i
\(598\) −5.27175 7.61205i −0.215578 0.311280i
\(599\) 21.0392 + 36.4409i 0.859637 + 1.48893i 0.872276 + 0.489014i \(0.162643\pi\)
−0.0126393 + 0.999920i \(0.504023\pi\)
\(600\) −44.0084 13.8996i −1.79664 0.567449i
\(601\) −35.4599 −1.44644 −0.723220 0.690618i \(-0.757339\pi\)
−0.723220 + 0.690618i \(0.757339\pi\)
\(602\) 0 0
\(603\) 67.2702 + 67.2702i 2.73946 + 2.73946i
\(604\) −13.6925 5.14413i −0.557141 0.209312i
\(605\) 1.51671 + 12.9523i 0.0616631 + 0.526586i
\(606\) −4.11826 + 22.6718i −0.167293 + 0.920981i
\(607\) −4.60061 17.1697i −0.186733 0.696898i −0.994253 0.107057i \(-0.965857\pi\)
0.807520 0.589841i \(-0.200809\pi\)
\(608\) −35.8556 + 15.6078i −1.45414 + 0.632981i
\(609\) 0 0
\(610\) 30.0234 + 10.1136i 1.21561 + 0.409487i
\(611\) 4.22408 + 2.43877i 0.170888 + 0.0986622i
\(612\) −2.93608 0.287402i −0.118684 0.0116175i
\(613\) −34.1959 9.16276i −1.38116 0.370080i −0.509617 0.860401i \(-0.670213\pi\)
−0.871542 + 0.490321i \(0.836880\pi\)
\(614\) −6.71589 18.7519i −0.271031 0.756767i
\(615\) −8.70516 21.8986i −0.351026 0.883035i
\(616\) 0 0
\(617\) −20.4594 20.4594i −0.823663 0.823663i 0.162968 0.986631i \(-0.447893\pi\)
−0.986631 + 0.162968i \(0.947893\pi\)
\(618\) −43.3420 20.4834i −1.74347 0.823962i
\(619\) 0.816411 + 1.41407i 0.0328143 + 0.0568361i 0.881966 0.471313i \(-0.156220\pi\)
−0.849152 + 0.528149i \(0.822886\pi\)
\(620\) 2.13747 0.616473i 0.0858427 0.0247582i
\(621\) −25.4084 + 44.0087i −1.01961 + 1.76601i
\(622\) 1.04916 + 12.7485i 0.0420676 + 0.511168i
\(623\) 0 0
\(624\) 24.1557 8.23206i 0.967002 0.329546i
\(625\) −20.8989 13.7199i −0.835957 0.548795i
\(626\) −22.1631 4.02585i −0.885816 0.160905i
\(627\) 49.5375 + 13.2735i 1.97834 + 0.530094i
\(628\) −36.5780 + 16.5997i −1.45962 + 0.662400i
\(629\) 0.673953i 0.0268723i
\(630\) 0 0
\(631\) 41.6810i 1.65929i 0.558289 + 0.829647i \(0.311458\pi\)
−0.558289 + 0.829647i \(0.688542\pi\)
\(632\) −8.77882 + 30.8469i −0.349203 + 1.22702i
\(633\) 52.3624 + 14.0305i 2.08122 + 0.557661i
\(634\) −3.08785 + 16.9992i −0.122634 + 0.675126i
\(635\) −0.919910 + 6.28954i −0.0365055 + 0.249593i
\(636\) −46.5607 + 7.71588i −1.84625 + 0.305954i
\(637\) 0 0
\(638\) −23.4912 + 1.93326i −0.930027 + 0.0765385i
\(639\) −13.7718 + 23.8535i −0.544805 + 0.943630i
\(640\) −16.1296 19.4893i −0.637580 0.770384i
\(641\) 9.61057 + 16.6460i 0.379595 + 0.657477i 0.991003 0.133838i \(-0.0427301\pi\)
−0.611408 + 0.791315i \(0.709397\pi\)
\(642\) −4.21775 + 8.92460i −0.166461 + 0.352226i
\(643\) −9.73498 9.73498i −0.383910 0.383910i 0.488599 0.872509i \(-0.337508\pi\)
−0.872509 + 0.488599i \(0.837508\pi\)
\(644\) 0 0
\(645\) 11.8953 27.5926i 0.468377 1.08646i
\(646\) −1.77474 + 0.635612i −0.0698261 + 0.0250078i
\(647\) 41.9129 + 11.2305i 1.64777 + 0.441518i 0.958986 0.283452i \(-0.0914798\pi\)
0.688780 + 0.724970i \(0.258146\pi\)
\(648\) −52.3098 53.9531i −2.05492 2.11948i
\(649\) −10.2826 5.93668i −0.403629 0.233035i
\(650\) 13.8043 0.738550i 0.541449 0.0289683i
\(651\) 0 0
\(652\) −21.7105 15.5379i −0.850251 0.608510i
\(653\) −9.62651 35.9266i −0.376714 1.40592i −0.850824 0.525451i \(-0.823897\pi\)
0.474109 0.880466i \(-0.342770\pi\)
\(654\) −42.9643 7.80432i −1.68004 0.305173i
\(655\) 14.4987 1.69780i 0.566512 0.0663385i
\(656\) 2.50490 12.6724i 0.0977999 0.494773i
\(657\) −70.8158 70.8158i −2.76279 2.76279i
\(658\) 0 0
\(659\) −31.4251 −1.22415 −0.612074 0.790800i \(-0.709665\pi\)
−0.612074 + 0.790800i \(0.709665\pi\)
\(660\) 0.630124 + 33.1716i 0.0245275 + 1.29120i
\(661\) −1.81769 3.14833i −0.0707000 0.122456i 0.828508 0.559977i \(-0.189190\pi\)
−0.899208 + 0.437521i \(0.855857\pi\)
\(662\) 33.7208 23.3534i 1.31059 0.907657i
\(663\) 1.18830 0.318405i 0.0461498 0.0123658i
\(664\) −2.03167 1.21525i −0.0788441 0.0471610i
\(665\) 0 0
\(666\) 24.4538 28.8397i 0.947565 1.11752i
\(667\) −6.35486 23.7166i −0.246061 0.918312i
\(668\) 11.8522 + 1.16016i 0.458574 + 0.0448881i
\(669\) −42.2761 + 24.4081i −1.63449 + 0.943673i
\(670\) −2.48062 + 39.2489i −0.0958348 + 1.51632i
\(671\) 22.7751i 0.879224i
\(672\) 0 0
\(673\) 7.66159 7.66159i 0.295333 0.295333i −0.543850 0.839183i \(-0.683034\pi\)
0.839183 + 0.543850i \(0.183034\pi\)
\(674\) 0.821205 0.294110i 0.0316317 0.0113287i
\(675\) −36.0360 66.7646i −1.38703 2.56977i
\(676\) 14.1823 11.6533i 0.545472 0.448205i
\(677\) −0.273888 + 0.0733880i −0.0105264 + 0.00282053i −0.264078 0.964501i \(-0.585068\pi\)
0.253552 + 0.967322i \(0.418401\pi\)
\(678\) 79.0270 6.50369i 3.03501 0.249773i
\(679\) 0 0
\(680\) −0.713255 0.989209i −0.0273521 0.0379344i
\(681\) −13.6939 + 23.7186i −0.524753 + 0.908898i
\(682\) −0.910515 1.31472i −0.0348654 0.0503433i
\(683\) −11.1511 + 41.6163i −0.426683 + 1.59240i 0.333536 + 0.942737i \(0.391758\pi\)
−0.760220 + 0.649666i \(0.774909\pi\)
\(684\) −99.0070 37.1958i −3.78563 1.42222i
\(685\) −4.86317 12.2337i −0.185812 0.467426i
\(686\) 0 0
\(687\) 22.0676 22.0676i 0.841930 0.841930i
\(688\) 13.6840 9.16709i 0.521697 0.349492i
\(689\) 12.2429 7.06844i 0.466417 0.269286i
\(690\) −33.8808 + 6.82146i −1.28982 + 0.259689i
\(691\) −2.91753 1.68444i −0.110988 0.0640791i 0.443478 0.896285i \(-0.353744\pi\)
−0.554467 + 0.832206i \(0.687078\pi\)
\(692\) 23.6477 33.0422i 0.898951 1.25607i
\(693\) 0 0
\(694\) −19.0140 + 22.4242i −0.721761 + 0.851212i
\(695\) 11.7497 8.75124i 0.445692 0.331953i
\(696\) 67.6641 + 1.04639i 2.56480 + 0.0396635i
\(697\) 0.161169 0.601490i 0.00610471 0.0227831i
\(698\) 14.6941 + 6.94441i 0.556180 + 0.262850i
\(699\) −32.5255 −1.23023
\(700\) 0 0
\(701\) −20.4918 −0.773966 −0.386983 0.922087i \(-0.626483\pi\)
−0.386983 + 0.922087i \(0.626483\pi\)
\(702\) 37.9301 + 17.9257i 1.43158 + 0.676562i
\(703\) 6.25348 23.3383i 0.235855 0.880221i
\(704\) −9.57595 + 15.4613i −0.360907 + 0.582720i
\(705\) 14.6008 10.8748i 0.549899 0.409567i
\(706\) −16.6132 + 19.5929i −0.625247 + 0.737387i
\(707\) 0 0
\(708\) 27.7209 + 19.8394i 1.04182 + 0.745610i
\(709\) 24.0284 + 13.8728i 0.902407 + 0.521005i 0.877980 0.478697i \(-0.158891\pi\)
0.0244266 + 0.999702i \(0.492224\pi\)
\(710\) −11.1622 + 2.24736i −0.418908 + 0.0843418i
\(711\) −75.1197 + 43.3704i −2.81721 + 1.62652i
\(712\) −10.8584 3.09024i −0.406937 0.115811i
\(713\) 1.17797 1.17797i 0.0441153 0.0441153i
\(714\) 0 0
\(715\) −3.67111 9.23499i −0.137292 0.345369i
\(716\) 2.23748 5.95567i 0.0836186 0.222574i
\(717\) −16.4846 + 61.5213i −0.615628 + 2.29756i
\(718\) 18.0905 + 26.1215i 0.675133 + 0.974846i
\(719\) −8.96044 + 15.5199i −0.334168 + 0.578796i −0.983325 0.181859i \(-0.941789\pi\)
0.649157 + 0.760655i \(0.275122\pi\)
\(720\) 5.37111 68.2099i 0.200170 2.54203i
\(721\) 0 0
\(722\) −40.5756 + 3.33926i −1.51007 + 0.124274i
\(723\) 30.3387 8.12922i 1.12831 0.302329i
\(724\) 11.7183 + 14.2614i 0.435509 + 0.530021i
\(725\) 35.1223 + 10.4986i 1.30441 + 0.389907i
\(726\) −25.3394 + 9.07516i −0.940435 + 0.336811i
\(727\) 12.7173 12.7173i 0.471659 0.471659i −0.430792 0.902451i \(-0.641766\pi\)
0.902451 + 0.430792i \(0.141766\pi\)
\(728\) 0 0
\(729\) 54.6902i 2.02556i
\(730\) 2.61137 41.3175i 0.0966510 1.52923i
\(731\) 0.687621 0.396998i 0.0254326 0.0146835i
\(732\) −6.37015 + 65.0771i −0.235448 + 2.40532i
\(733\) −8.28399 30.9163i −0.305976 1.14192i −0.932102 0.362196i \(-0.882027\pi\)
0.626126 0.779722i \(-0.284640\pi\)
\(734\) −9.75499 + 11.5046i −0.360063 + 0.424642i
\(735\) 0 0
\(736\) −17.6293 6.93608i −0.649826 0.255667i
\(737\) 27.3085 7.31728i 1.00592 0.269536i
\(738\) 28.7213 19.8910i 1.05724 0.732198i
\(739\) −17.8879 30.9827i −0.658016 1.13972i −0.981128 0.193357i \(-0.938062\pi\)
0.323112 0.946361i \(-0.395271\pi\)
\(740\) 15.6279 0.296867i 0.574494 0.0109130i
\(741\) 44.1041 1.62021
\(742\) 0 0
\(743\) −1.03957 1.03957i −0.0381381 0.0381381i 0.687781 0.725919i \(-0.258585\pi\)
−0.725919 + 0.687781i \(0.758585\pi\)
\(744\) 2.23396 + 4.01133i 0.0819010 + 0.147062i
\(745\) 31.9540 3.74181i 1.17070 0.137089i
\(746\) −26.9435 4.89420i −0.986473 0.179189i
\(747\) −1.65716 6.18462i −0.0606325 0.226283i
\(748\) −0.510235 + 0.712935i −0.0186561 + 0.0260675i
\(749\) 0 0
\(750\) 17.8665 48.4068i 0.652391 1.76757i
\(751\) −2.97538 1.71784i −0.108573 0.0626847i 0.444730 0.895665i \(-0.353300\pi\)
−0.553303 + 0.832980i \(0.686633\pi\)
\(752\) 9.95740 0.664633i 0.363109 0.0242367i
\(753\) −86.0012 23.0439i −3.13406 0.839768i
\(754\) −19.0834 + 6.83459i −0.694975 + 0.248901i
\(755\) 6.47404 15.0173i 0.235615 0.546537i
\(756\) 0 0
\(757\) 21.8519 + 21.8519i 0.794220 + 0.794220i 0.982177 0.187957i \(-0.0601866\pi\)
−0.187957 + 0.982177i \(0.560187\pi\)
\(758\) 6.83833 14.4697i 0.248379 0.525562i
\(759\) 12.4226 + 21.5166i 0.450912 + 0.781002i
\(760\) −15.5206 40.8735i −0.562992 1.48264i
\(761\) −3.32790 + 5.76410i −0.120636 + 0.208948i −0.920019 0.391874i \(-0.871827\pi\)
0.799382 + 0.600823i \(0.205160\pi\)
\(762\) −13.0752 + 1.07605i −0.473665 + 0.0389812i
\(763\) 0 0
\(764\) 4.83062 + 29.1499i 0.174766 + 1.05461i
\(765\) 0.477336 3.26361i 0.0172581 0.117996i
\(766\) −1.12986 + 6.22009i −0.0408234 + 0.224741i
\(767\) −9.86296 2.64277i −0.356131 0.0954249i
\(768\) 31.6866 41.5004i 1.14339 1.49752i
\(769\) 10.3364i 0.372740i 0.982480 + 0.186370i \(0.0596723\pi\)
−0.982480 + 0.186370i \(0.940328\pi\)
\(770\) 0 0
\(771\) 94.1718i 3.39151i
\(772\) 2.52529 + 5.56455i 0.0908871 + 0.200273i
\(773\) −24.1755 6.47780i −0.869531 0.232990i −0.203646 0.979045i \(-0.565279\pi\)
−0.665885 + 0.746054i \(0.731946\pi\)
\(774\) 43.8293 + 7.96145i 1.57541 + 0.286168i
\(775\) 0.574615 + 2.41988i 0.0206408 + 0.0869247i
\(776\) −3.75436 2.24569i −0.134774 0.0806156i
\(777\) 0 0
\(778\) −3.12984 38.0310i −0.112210 1.36348i
\(779\) 11.1622 19.3336i 0.399929 0.692697i
\(780\) 7.90675