# Properties

 Label 980.2.x.m.667.2 Level $980$ Weight $2$ Character 980.667 Analytic conductor $7.825$ Analytic rank $0$ Dimension $72$ CM no Inner twists $8$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$980 = 2^{2} \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 980.x (of order $$12$$, degree $$4$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$7.82533939809$$ Analytic rank: $$0$$ Dimension: $$72$$ Relative dimension: $$18$$ over $$\Q(\zeta_{12})$$ Twist minimal: no (minimal twist has level 140) Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 667.2 Character $$\chi$$ $$=$$ 980.667 Dual form 980.2.x.m.263.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.24304 - 0.674418i) q^{2} +(-0.664287 + 2.47915i) q^{3} +(1.09032 + 1.67666i) q^{4} +(1.93933 + 1.11310i) q^{5} +(2.49773 - 2.63369i) q^{6} +(-0.224544 - 2.81950i) q^{8} +(-3.10685 - 1.79374i) q^{9} +O(q^{10})$$ $$q+(-1.24304 - 0.674418i) q^{2} +(-0.664287 + 2.47915i) q^{3} +(1.09032 + 1.67666i) q^{4} +(1.93933 + 1.11310i) q^{5} +(2.49773 - 2.63369i) q^{6} +(-0.224544 - 2.81950i) q^{8} +(-3.10685 - 1.79374i) q^{9} +(-1.65998 - 2.69156i) q^{10} +(-1.59653 + 0.921758i) q^{11} +(-4.88099 + 1.58929i) q^{12} +(2.94578 - 2.94578i) q^{13} +(-4.04783 + 4.06848i) q^{15} +(-1.62240 + 3.65620i) q^{16} +(-0.795631 + 2.96933i) q^{17} +(2.65222 + 4.32502i) q^{18} +(-2.66374 + 4.61374i) q^{19} +(0.248189 + 4.46524i) q^{20} +(2.60621 - 0.0690563i) q^{22} +(2.44429 - 0.654945i) q^{23} +(7.13914 + 1.31628i) q^{24} +(2.52200 + 4.31735i) q^{25} +(-5.64842 + 1.67505i) q^{26} +(1.06621 - 1.06621i) q^{27} +6.35796i q^{29} +(7.77549 - 2.32737i) q^{30} +(-3.78330 + 2.18429i) q^{31} +(4.48253 - 3.45064i) q^{32} +(-1.22462 - 4.57036i) q^{33} +(2.99158 - 3.15443i) q^{34} +(-0.379961 - 7.16490i) q^{36} +(3.86848 - 1.03655i) q^{37} +(6.42274 - 3.93860i) q^{38} +(5.34619 + 9.25988i) q^{39} +(2.70293 - 5.71788i) q^{40} -10.6462 q^{41} +(-1.02386 - 1.02386i) q^{43} +(-3.28621 - 1.67184i) q^{44} +(-4.02859 - 6.93691i) q^{45} +(-3.48006 - 0.834346i) q^{46} +(-0.210467 - 0.785472i) q^{47} +(-7.98654 - 6.45096i) q^{48} +(-0.223257 - 7.06754i) q^{50} +(-6.83291 - 3.94498i) q^{51} +(8.15092 + 1.72724i) q^{52} +(-2.61122 - 0.699675i) q^{53} +(-2.04441 + 0.606273i) q^{54} +(-4.12221 + 0.0104869i) q^{55} +(-9.66867 - 9.66867i) q^{57} +(4.28793 - 7.90323i) q^{58} +(2.11446 + 3.66235i) q^{59} +(-11.2349 - 2.35091i) q^{60} +(6.00599 - 10.4027i) q^{61} +(6.17593 - 0.163643i) q^{62} +(-7.89916 + 1.26620i) q^{64} +(8.99179 - 2.43388i) q^{65} +(-1.56007 + 6.50707i) q^{66} +(-3.19541 - 0.856208i) q^{67} +(-5.84607 + 1.90352i) q^{68} +6.49484i q^{69} +10.5316i q^{71} +(-4.35983 + 9.16254i) q^{72} +(-1.97704 - 0.529747i) q^{73} +(-5.50776 - 1.32049i) q^{74} +(-12.3787 + 3.38446i) q^{75} +(-10.6400 + 0.564249i) q^{76} +(-0.400526 - 15.1160i) q^{78} +(-3.95797 + 6.85541i) q^{79} +(-7.21611 + 5.28467i) q^{80} +(-3.44620 - 5.96900i) q^{81} +(13.2337 + 7.18001i) q^{82} +(0.227439 + 0.227439i) q^{83} +(-4.84817 + 4.87290i) q^{85} +(0.582195 + 1.96322i) q^{86} +(-15.7624 - 4.22352i) q^{87} +(2.95739 + 4.29444i) q^{88} +(3.75731 + 2.16929i) q^{89} +(0.329341 + 11.3398i) q^{90} +(3.76318 + 3.38415i) q^{92} +(-2.90199 - 10.8304i) q^{93} +(-0.268117 + 1.11832i) q^{94} +(-10.3014 + 5.98253i) q^{95} +(5.57699 + 13.4051i) q^{96} +(-0.196142 - 0.196142i) q^{97} +6.61358 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$72q + 2q^{2} + 8q^{5} + 16q^{6} - 4q^{8} + O(q^{10})$$ $$72q + 2q^{2} + 8q^{5} + 16q^{6} - 4q^{8} - 2q^{10} - 10q^{12} - 28q^{16} - 4q^{17} - 20q^{18} + 56q^{20} - 16q^{22} - 16q^{25} + 4q^{26} - 32q^{30} - 38q^{32} + 64q^{33} + 16q^{36} - 4q^{37} - 12q^{38} - 2q^{40} + 40q^{41} + 12q^{45} - 28q^{46} - 12q^{48} - 28q^{50} - 48q^{52} - 24q^{53} - 16q^{57} + 30q^{58} - 10q^{60} + 20q^{61} - 56q^{62} + 4q^{65} - 44q^{66} + 12q^{68} + 44q^{72} + 12q^{73} - 112q^{76} + 64q^{78} - 52q^{80} - 52q^{81} + 34q^{82} + 16q^{85} + 64q^{86} + 16q^{88} + 32q^{90} + 44q^{92} + 12q^{93} + 48q^{96} + 24q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/980\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$197$$ $$491$$ $$\chi(n)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{4}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.24304 0.674418i −0.878965 0.476886i
$$3$$ −0.664287 + 2.47915i −0.383527 + 1.43134i 0.456950 + 0.889492i $$0.348942\pi$$
−0.840476 + 0.541848i $$0.817725\pi$$
$$4$$ 1.09032 + 1.67666i 0.545160 + 0.838332i
$$5$$ 1.93933 + 1.11310i 0.867295 + 0.497795i
$$6$$ 2.49773 2.63369i 1.01969 1.07520i
$$7$$ 0 0
$$8$$ −0.224544 2.81950i −0.0793882 0.996844i
$$9$$ −3.10685 1.79374i −1.03562 0.597914i
$$10$$ −1.65998 2.69156i −0.524930 0.851145i
$$11$$ −1.59653 + 0.921758i −0.481372 + 0.277920i −0.720988 0.692947i $$-0.756312\pi$$
0.239616 + 0.970868i $$0.422978\pi$$
$$12$$ −4.88099 + 1.58929i −1.40902 + 0.458787i
$$13$$ 2.94578 2.94578i 0.817012 0.817012i −0.168662 0.985674i $$-0.553945\pi$$
0.985674 + 0.168662i $$0.0539447\pi$$
$$14$$ 0 0
$$15$$ −4.04783 + 4.06848i −1.04514 + 1.05048i
$$16$$ −1.62240 + 3.65620i −0.405601 + 0.914050i
$$17$$ −0.795631 + 2.96933i −0.192969 + 0.720169i 0.799815 + 0.600247i $$0.204931\pi$$
−0.992783 + 0.119922i $$0.961736\pi$$
$$18$$ 2.65222 + 4.32502i 0.625135 + 1.01942i
$$19$$ −2.66374 + 4.61374i −0.611104 + 1.05846i 0.379950 + 0.925007i $$0.375941\pi$$
−0.991055 + 0.133457i $$0.957392\pi$$
$$20$$ 0.248189 + 4.46524i 0.0554967 + 0.998459i
$$21$$ 0 0
$$22$$ 2.60621 0.0690563i 0.555646 0.0147228i
$$23$$ 2.44429 0.654945i 0.509669 0.136565i 0.00518527 0.999987i $$-0.498349\pi$$
0.504484 + 0.863421i $$0.331683\pi$$
$$24$$ 7.13914 + 1.31628i 1.45727 + 0.268684i
$$25$$ 2.52200 + 4.31735i 0.504400 + 0.863470i
$$26$$ −5.64842 + 1.67505i −1.10775 + 0.328504i
$$27$$ 1.06621 1.06621i 0.205191 0.205191i
$$28$$ 0 0
$$29$$ 6.35796i 1.18064i 0.807168 + 0.590322i $$0.200999\pi$$
−0.807168 + 0.590322i $$0.799001\pi$$
$$30$$ 7.77549 2.32737i 1.41960 0.424917i
$$31$$ −3.78330 + 2.18429i −0.679500 + 0.392310i −0.799667 0.600444i $$-0.794991\pi$$
0.120166 + 0.992754i $$0.461657\pi$$
$$32$$ 4.48253 3.45064i 0.792407 0.609993i
$$33$$ −1.22462 4.57036i −0.213180 0.795597i
$$34$$ 2.99158 3.15443i 0.513051 0.540980i
$$35$$ 0 0
$$36$$ −0.379961 7.16490i −0.0633268 1.19415i
$$37$$ 3.86848 1.03655i 0.635973 0.170409i 0.0735946 0.997288i $$-0.476553\pi$$
0.562379 + 0.826880i $$0.309886\pi$$
$$38$$ 6.42274 3.93860i 1.04191 0.638926i
$$39$$ 5.34619 + 9.25988i 0.856076 + 1.48277i
$$40$$ 2.70293 5.71788i 0.427371 0.904076i
$$41$$ −10.6462 −1.66266 −0.831331 0.555777i $$-0.812421\pi$$
−0.831331 + 0.555777i $$0.812421\pi$$
$$42$$ 0 0
$$43$$ −1.02386 1.02386i −0.156137 0.156137i 0.624715 0.780853i $$-0.285215\pi$$
−0.780853 + 0.624715i $$0.785215\pi$$
$$44$$ −3.28621 1.67184i −0.495414 0.252039i
$$45$$ −4.02859 6.93691i −0.600547 1.03409i
$$46$$ −3.48006 0.834346i −0.513108 0.123018i
$$47$$ −0.210467 0.785472i −0.0306997 0.114573i 0.948876 0.315650i $$-0.102223\pi$$
−0.979575 + 0.201077i $$0.935556\pi$$
$$48$$ −7.98654 6.45096i −1.15276 0.931116i
$$49$$ 0 0
$$50$$ −0.223257 7.06754i −0.0315734 0.999501i
$$51$$ −6.83291 3.94498i −0.956799 0.552408i
$$52$$ 8.15092 + 1.72724i 1.13033 + 0.239525i
$$53$$ −2.61122 0.699675i −0.358679 0.0961077i 0.0749796 0.997185i $$-0.476111\pi$$
−0.433658 + 0.901077i $$0.642778\pi$$
$$54$$ −2.04441 + 0.606273i −0.278209 + 0.0825033i
$$55$$ −4.12221 + 0.0104869i −0.555839 + 0.00141406i
$$56$$ 0 0
$$57$$ −9.66867 9.66867i −1.28065 1.28065i
$$58$$ 4.28793 7.90323i 0.563032 1.03775i
$$59$$ 2.11446 + 3.66235i 0.275279 + 0.476797i 0.970205 0.242284i $$-0.0778965\pi$$
−0.694927 + 0.719081i $$0.744563\pi$$
$$60$$ −11.2349 2.35091i −1.45042 0.303501i
$$61$$ 6.00599 10.4027i 0.768988 1.33193i −0.169124 0.985595i $$-0.554094\pi$$
0.938112 0.346332i $$-0.112573\pi$$
$$62$$ 6.17593 0.163643i 0.784344 0.0207826i
$$63$$ 0 0
$$64$$ −7.89916 + 1.26620i −0.987395 + 0.158275i
$$65$$ 8.99179 2.43388i 1.11529 0.301885i
$$66$$ −1.56007 + 6.50707i −0.192031 + 0.800965i
$$67$$ −3.19541 0.856208i −0.390382 0.104602i 0.0582888 0.998300i $$-0.481436\pi$$
−0.448670 + 0.893697i $$0.648102\pi$$
$$68$$ −5.84607 + 1.90352i −0.708940 + 0.230836i
$$69$$ 6.49484i 0.781886i
$$70$$ 0 0
$$71$$ 10.5316i 1.24988i 0.780675 + 0.624938i $$0.214876\pi$$
−0.780675 + 0.624938i $$0.785124\pi$$
$$72$$ −4.35983 + 9.16254i −0.513811 + 1.07982i
$$73$$ −1.97704 0.529747i −0.231395 0.0620022i 0.141258 0.989973i $$-0.454885\pi$$
−0.372653 + 0.927971i $$0.621552\pi$$
$$74$$ −5.50776 1.32049i −0.640264 0.153503i
$$75$$ −12.3787 + 3.38446i −1.42937 + 0.390804i
$$76$$ −10.6400 + 0.564249i −1.22049 + 0.0647238i
$$77$$ 0 0
$$78$$ −0.400526 15.1160i −0.0453507 1.71155i
$$79$$ −3.95797 + 6.85541i −0.445307 + 0.771294i −0.998074 0.0620421i $$-0.980239\pi$$
0.552767 + 0.833336i $$0.313572\pi$$
$$80$$ −7.21611 + 5.28467i −0.806785 + 0.590845i
$$81$$ −3.44620 5.96900i −0.382912 0.663222i
$$82$$ 13.2337 + 7.18001i 1.46142 + 0.792900i
$$83$$ 0.227439 + 0.227439i 0.0249647 + 0.0249647i 0.719479 0.694514i $$-0.244381\pi$$
−0.694514 + 0.719479i $$0.744381\pi$$
$$84$$ 0 0
$$85$$ −4.84817 + 4.87290i −0.525858 + 0.528540i
$$86$$ 0.582195 + 1.96322i 0.0627797 + 0.211699i
$$87$$ −15.7624 4.22352i −1.68990 0.452808i
$$88$$ 2.95739 + 4.29444i 0.315259 + 0.457789i
$$89$$ 3.75731 + 2.16929i 0.398274 + 0.229944i 0.685739 0.727847i $$-0.259479\pi$$
−0.287465 + 0.957791i $$0.592812\pi$$
$$90$$ 0.329341 + 11.3398i 0.0347155 + 1.19532i
$$91$$ 0 0
$$92$$ 3.76318 + 3.38415i 0.392338 + 0.352822i
$$93$$ −2.90199 10.8304i −0.300922 1.12306i
$$94$$ −0.268117 + 1.11832i −0.0276542 + 0.115346i
$$95$$ −10.3014 + 5.98253i −1.05691 + 0.613795i
$$96$$ 5.57699 + 13.4051i 0.569199 + 1.36815i
$$97$$ −0.196142 0.196142i −0.0199152 0.0199152i 0.697079 0.716994i $$-0.254483\pi$$
−0.716994 + 0.697079i $$0.754483\pi$$
$$98$$ 0 0
$$99$$ 6.61358 0.664690
$$100$$ −4.48896 + 8.93584i −0.448896 + 0.893584i
$$101$$ −3.67449 6.36440i −0.365625 0.633281i 0.623251 0.782022i $$-0.285811\pi$$
−0.988876 + 0.148741i $$0.952478\pi$$
$$102$$ 5.83304 + 9.51203i 0.577557 + 0.941831i
$$103$$ 13.1752 3.53030i 1.29820 0.347850i 0.457428 0.889247i $$-0.348771\pi$$
0.840768 + 0.541396i $$0.182104\pi$$
$$104$$ −8.96707 7.64416i −0.879294 0.749572i
$$105$$ 0 0
$$106$$ 2.77399 + 2.63078i 0.269434 + 0.255524i
$$107$$ −1.20875 4.51112i −0.116854 0.436107i 0.882565 0.470191i $$-0.155815\pi$$
−0.999419 + 0.0340847i $$0.989148\pi$$
$$108$$ 2.95017 + 0.625163i 0.283881 + 0.0601564i
$$109$$ 8.77373 5.06552i 0.840371 0.485188i −0.0170193 0.999855i $$-0.505418\pi$$
0.857390 + 0.514667i $$0.172084\pi$$
$$110$$ 5.13117 + 2.76706i 0.489238 + 0.263829i
$$111$$ 10.2791i 0.975651i
$$112$$ 0 0
$$113$$ −7.70435 + 7.70435i −0.724764 + 0.724764i −0.969572 0.244807i $$-0.921275\pi$$
0.244807 + 0.969572i $$0.421275\pi$$
$$114$$ 5.49786 + 18.5393i 0.514922 + 1.73637i
$$115$$ 5.46930 + 1.45059i 0.510015 + 0.135268i
$$116$$ −10.6602 + 6.93222i −0.989772 + 0.643640i
$$117$$ −14.4361 + 3.86813i −1.33461 + 0.357609i
$$118$$ −0.158411 5.97849i −0.0145829 0.550365i
$$119$$ 0 0
$$120$$ 12.3800 + 10.4993i 1.13013 + 0.958451i
$$121$$ −3.80073 + 6.58305i −0.345521 + 0.598459i
$$122$$ −14.4815 + 8.88045i −1.31109 + 0.803998i
$$123$$ 7.07216 26.3937i 0.637675 2.37984i
$$124$$ −7.78732 3.96175i −0.699322 0.355775i
$$125$$ 0.0853274 + 11.1800i 0.00763192 + 0.999971i
$$126$$ 0 0
$$127$$ 9.01446 9.01446i 0.799904 0.799904i −0.183176 0.983080i $$-0.558638\pi$$
0.983080 + 0.183176i $$0.0586380\pi$$
$$128$$ 10.6730 + 3.75339i 0.943365 + 0.331756i
$$129$$ 3.21845 1.85817i 0.283369 0.163603i
$$130$$ −12.8186 3.03881i −1.12427 0.266521i
$$131$$ −16.2391 9.37562i −1.41881 0.819152i −0.422618 0.906308i $$-0.638889\pi$$
−0.996195 + 0.0871562i $$0.972222\pi$$
$$132$$ 6.32772 7.03644i 0.550758 0.612443i
$$133$$ 0 0
$$134$$ 3.39460 + 3.21935i 0.293248 + 0.278109i
$$135$$ 3.25452 0.880927i 0.280105 0.0758181i
$$136$$ 8.55069 + 1.57653i 0.733216 + 0.135187i
$$137$$ −4.67059 + 17.4309i −0.399035 + 1.48922i 0.415761 + 0.909474i $$0.363515\pi$$
−0.814797 + 0.579747i $$0.803151\pi$$
$$138$$ 4.38024 8.07337i 0.372870 0.687251i
$$139$$ −2.38747 −0.202503 −0.101251 0.994861i $$-0.532285\pi$$
−0.101251 + 0.994861i $$0.532285\pi$$
$$140$$ 0 0
$$141$$ 2.08712 0.175767
$$142$$ 7.10273 13.0913i 0.596048 1.09860i
$$143$$ −1.98773 + 7.41832i −0.166223 + 0.620351i
$$144$$ 11.5989 8.44910i 0.966571 0.704092i
$$145$$ −7.07707 + 12.3302i −0.587719 + 1.02397i
$$146$$ 2.10028 + 1.99185i 0.173821 + 0.164847i
$$147$$ 0 0
$$148$$ 5.95583 + 5.35596i 0.489566 + 0.440257i
$$149$$ 9.54286 + 5.50957i 0.781781 + 0.451362i 0.837061 0.547109i $$-0.184272\pi$$
−0.0552800 + 0.998471i $$0.517605\pi$$
$$150$$ 17.6698 + 4.14139i 1.44274 + 0.338143i
$$151$$ 14.3323 8.27478i 1.16635 0.673392i 0.213532 0.976936i $$-0.431503\pi$$
0.952817 + 0.303544i $$0.0981699\pi$$
$$152$$ 13.6066 + 6.47443i 1.10364 + 0.525146i
$$153$$ 7.79813 7.79813i 0.630441 0.630441i
$$154$$ 0 0
$$155$$ −9.76840 + 0.0248508i −0.784617 + 0.00199607i
$$156$$ −9.69664 + 19.0600i −0.776353 + 1.52602i
$$157$$ 1.46794 5.47844i 0.117155 0.437227i −0.882284 0.470717i $$-0.843995\pi$$
0.999439 + 0.0334897i $$0.0106621\pi$$
$$158$$ 9.54335 5.85225i 0.759228 0.465580i
$$159$$ 3.46920 6.00883i 0.275126 0.476532i
$$160$$ 12.5340 1.70241i 0.990902 0.134587i
$$161$$ 0 0
$$162$$ 0.258183 + 9.74392i 0.0202848 + 0.765555i
$$163$$ −2.86811 + 0.768508i −0.224648 + 0.0601942i −0.369387 0.929276i $$-0.620432\pi$$
0.144739 + 0.989470i $$0.453766\pi$$
$$164$$ −11.6078 17.8502i −0.906417 1.39386i
$$165$$ 2.71234 10.2266i 0.211155 0.796137i
$$166$$ −0.129328 0.436106i −0.0100378 0.0338484i
$$167$$ 11.1720 11.1720i 0.864517 0.864517i −0.127342 0.991859i $$-0.540645\pi$$
0.991859 + 0.127342i $$0.0406446\pi$$
$$168$$ 0 0
$$169$$ 4.35520i 0.335016i
$$170$$ 9.31286 2.78754i 0.714264 0.213794i
$$171$$ 16.5517 9.55613i 1.26574 0.730776i
$$172$$ 0.600335 2.83301i 0.0457751 0.216015i
$$173$$ 1.79664 + 6.70516i 0.136596 + 0.509784i 0.999986 + 0.00524677i $$0.00167011\pi$$
−0.863390 + 0.504537i $$0.831663\pi$$
$$174$$ 16.7449 + 15.8805i 1.26943 + 1.20389i
$$175$$ 0 0
$$176$$ −0.779913 7.33270i −0.0587881 0.552723i
$$177$$ −10.4841 + 2.80921i −0.788036 + 0.211154i
$$178$$ −3.20750 5.23052i −0.240413 0.392044i
$$179$$ 5.08815 + 8.81294i 0.380307 + 0.658710i 0.991106 0.133075i $$-0.0424852\pi$$
−0.610799 + 0.791785i $$0.709152\pi$$
$$180$$ 7.23841 14.3180i 0.539519 1.06720i
$$181$$ 10.8055 0.803166 0.401583 0.915823i $$-0.368460\pi$$
0.401583 + 0.915823i $$0.368460\pi$$
$$182$$ 0 0
$$183$$ 21.8002 + 21.8002i 1.61151 + 1.61151i
$$184$$ −2.39547 6.74460i −0.176596 0.497219i
$$185$$ 8.65604 + 2.29579i 0.636405 + 0.168790i
$$186$$ −3.69690 + 15.4198i −0.271070 + 1.13063i
$$187$$ −1.46676 5.47401i −0.107260 0.400299i
$$188$$ 1.08750 1.20930i 0.0793139 0.0881971i
$$189$$ 0 0
$$190$$ 16.8399 0.489077i 1.22169 0.0354814i
$$191$$ −11.9741 6.91324i −0.866415 0.500225i −0.000259570 1.00000i $$-0.500083\pi$$
−0.866155 + 0.499775i $$0.833416\pi$$
$$192$$ 2.10820 20.4244i 0.152146 1.47400i
$$193$$ −6.66228 1.78515i −0.479561 0.128498i 0.0109371 0.999940i $$-0.496519\pi$$
−0.490498 + 0.871442i $$0.663185\pi$$
$$194$$ 0.111531 + 0.376094i 0.00800748 + 0.0270020i
$$195$$ 0.0608241 + 23.9088i 0.00435571 + 1.71215i
$$196$$ 0 0
$$197$$ −7.85372 7.85372i −0.559554 0.559554i 0.369626 0.929181i $$-0.379486\pi$$
−0.929181 + 0.369626i $$0.879486\pi$$
$$198$$ −8.22098 4.46032i −0.584239 0.316981i
$$199$$ 8.63793 + 14.9613i 0.612327 + 1.06058i 0.990847 + 0.134988i $$0.0430997\pi$$
−0.378520 + 0.925593i $$0.623567\pi$$
$$200$$ 11.6065 8.08021i 0.820701 0.571357i
$$201$$ 4.24534 7.35315i 0.299443 0.518651i
$$202$$ 0.275285 + 10.3894i 0.0193690 + 0.730994i
$$203$$ 0 0
$$204$$ −0.835649 15.7578i −0.0585071 1.10327i
$$205$$ −20.6466 11.8504i −1.44202 0.827665i
$$206$$ −18.7583 4.49731i −1.30695 0.313342i
$$207$$ −8.76884 2.34960i −0.609477 0.163309i
$$208$$ 5.99111 + 15.5496i 0.415409 + 1.07817i
$$209$$ 9.82130i 0.679353i
$$210$$ 0 0
$$211$$ 18.6740i 1.28557i −0.766045 0.642787i $$-0.777778\pi$$
0.766045 0.642787i $$-0.222222\pi$$
$$212$$ −1.67395 5.14101i −0.114967 0.353086i
$$213$$ −26.1096 6.99603i −1.78900 0.479360i
$$214$$ −1.53985 + 6.42273i −0.105262 + 0.439049i
$$215$$ −0.845941 3.12527i −0.0576927 0.213142i
$$216$$ −3.24558 2.76676i −0.220834 0.188254i
$$217$$ 0 0
$$218$$ −14.3224 + 0.379499i −0.970036 + 0.0257029i
$$219$$ 2.62665 4.54949i 0.177492 0.307426i
$$220$$ −4.51211 6.90013i −0.304207 0.465207i
$$221$$ 6.40324 + 11.0907i 0.430729 + 0.746044i
$$222$$ 6.93243 12.7774i 0.465274 0.857563i
$$223$$ −11.0752 11.0752i −0.741650 0.741650i 0.231245 0.972895i $$-0.425720\pi$$
−0.972895 + 0.231245i $$0.925720\pi$$
$$224$$ 0 0
$$225$$ −0.0912651 17.9372i −0.00608434 1.19581i
$$226$$ 14.7728 4.38090i 0.982672 0.291413i
$$227$$ −2.53591 0.679495i −0.168314 0.0450997i 0.173678 0.984803i $$-0.444435\pi$$
−0.341992 + 0.939703i $$0.611102\pi$$
$$228$$ 5.66917 26.7531i 0.375450 1.77177i
$$229$$ 1.76043 + 1.01639i 0.116333 + 0.0671646i 0.557037 0.830488i $$-0.311938\pi$$
−0.440705 + 0.897652i $$0.645271\pi$$
$$230$$ −5.82028 5.49175i −0.383778 0.362115i
$$231$$ 0 0
$$232$$ 17.9263 1.42764i 1.17692 0.0937293i
$$233$$ 3.60589 + 13.4574i 0.236230 + 0.881621i 0.977591 + 0.210514i $$0.0675139\pi$$
−0.741361 + 0.671106i $$0.765819\pi$$
$$234$$ 20.5534 + 4.92768i 1.34362 + 0.322133i
$$235$$ 0.466148 1.75756i 0.0304081 0.114651i
$$236$$ −3.83509 + 7.53837i −0.249643 + 0.490706i
$$237$$ −14.3664 14.3664i −0.933197 0.933197i
$$238$$ 0 0
$$239$$ −9.72902 −0.629318 −0.314659 0.949205i $$-0.601890\pi$$
−0.314659 + 0.949205i $$0.601890\pi$$
$$240$$ −8.30795 21.4004i −0.536276 1.38139i
$$241$$ 7.97303 + 13.8097i 0.513588 + 0.889560i 0.999876 + 0.0157617i $$0.00501731\pi$$
−0.486288 + 0.873799i $$0.661649\pi$$
$$242$$ 9.16420 5.61975i 0.589097 0.361251i
$$243$$ 21.4567 5.74932i 1.37645 0.368819i
$$244$$ 23.9903 1.27222i 1.53582 0.0814458i
$$245$$ 0 0
$$246$$ −26.5914 + 28.0389i −1.69540 + 1.78770i
$$247$$ 5.74425 + 21.4378i 0.365498 + 1.36406i
$$248$$ 7.00812 + 10.1765i 0.445016 + 0.646211i
$$249$$ −0.714941 + 0.412771i −0.0453075 + 0.0261583i
$$250$$ 7.43394 13.9548i 0.470164 0.882579i
$$251$$ 5.62289i 0.354913i 0.984129 + 0.177457i $$0.0567870\pi$$
−0.984129 + 0.177457i $$0.943213\pi$$
$$252$$ 0 0
$$253$$ −3.29868 + 3.29868i −0.207386 + 0.207386i
$$254$$ −17.2849 + 5.12586i −1.08455 + 0.321625i
$$255$$ −8.86009 15.2564i −0.554840 0.955390i
$$256$$ −10.7356 11.8637i −0.670976 0.741479i
$$257$$ 4.95043 1.32646i 0.308799 0.0827426i −0.101091 0.994877i $$-0.532233\pi$$
0.409891 + 0.912135i $$0.365567\pi$$
$$258$$ −5.25386 + 0.139211i −0.327091 + 0.00866687i
$$259$$ 0 0
$$260$$ 13.8847 + 12.4225i 0.861094 + 0.770411i
$$261$$ 11.4045 19.7533i 0.705924 1.22270i
$$262$$ 13.8628 + 22.6062i 0.856445 + 1.39662i
$$263$$ −2.04237 + 7.62222i −0.125938 + 0.470006i −0.999871 0.0160390i $$-0.994894\pi$$
0.873934 + 0.486045i $$0.161561\pi$$
$$264$$ −12.6111 + 4.47907i −0.776162 + 0.275668i
$$265$$ −4.28521 4.26346i −0.263238 0.261902i
$$266$$ 0 0
$$267$$ −7.87393 + 7.87393i −0.481877 + 0.481877i
$$268$$ −2.04845 6.29117i −0.125129 0.384294i
$$269$$ −3.97953 + 2.29758i −0.242636 + 0.140086i −0.616388 0.787443i $$-0.711405\pi$$
0.373752 + 0.927529i $$0.378071\pi$$
$$270$$ −4.63963 1.09988i −0.282359 0.0669365i
$$271$$ 24.8226 + 14.3314i 1.50787 + 0.870568i 0.999958 + 0.00915707i $$0.00291483\pi$$
0.507909 + 0.861411i $$0.330419\pi$$
$$272$$ −9.56565 7.72644i −0.580002 0.468485i
$$273$$ 0 0
$$274$$ 17.5615 18.5174i 1.06093 1.11868i
$$275$$ −8.00600 4.56811i −0.482780 0.275468i
$$276$$ −10.8897 + 7.08145i −0.655480 + 0.426253i
$$277$$ 1.39102 5.19134i 0.0835781 0.311918i −0.911463 0.411382i $$-0.865046\pi$$
0.995041 + 0.0994644i $$0.0317129\pi$$
$$278$$ 2.96774 + 1.61016i 0.177993 + 0.0965707i
$$279$$ 15.6722 0.938270
$$280$$ 0 0
$$281$$ 24.2851 1.44873 0.724365 0.689417i $$-0.242133\pi$$
0.724365 + 0.689417i $$0.242133\pi$$
$$282$$ −2.59438 1.40759i −0.154493 0.0838208i
$$283$$ 2.63588 9.83724i 0.156687 0.584763i −0.842268 0.539059i $$-0.818780\pi$$
0.998955 0.0457044i $$-0.0145532\pi$$
$$284$$ −17.6580 + 11.4829i −1.04781 + 0.681382i
$$285$$ −7.98851 29.5130i −0.473198 1.74820i
$$286$$ 7.47389 7.88074i 0.441940 0.465998i
$$287$$ 0 0
$$288$$ −20.1161 + 2.68013i −1.18535 + 0.157928i
$$289$$ 6.53852 + 3.77501i 0.384619 + 0.222060i
$$290$$ 17.1128 10.5541i 1.00490 0.619756i
$$291$$ 0.616559 0.355971i 0.0361434 0.0208674i
$$292$$ −1.26740 3.89243i −0.0741691 0.227787i
$$293$$ −19.5889 + 19.5889i −1.14440 + 1.14440i −0.156762 + 0.987636i $$0.550106\pi$$
−0.987636 + 0.156762i $$0.949894\pi$$
$$294$$ 0 0
$$295$$ 0.0240564 + 9.45611i 0.00140062 + 0.550556i
$$296$$ −3.79121 10.6744i −0.220360 0.620438i
$$297$$ −0.719447 + 2.68501i −0.0417466 + 0.155800i
$$298$$ −8.14644 13.2845i −0.471911 0.769551i
$$299$$ 5.27100 9.12965i 0.304830 0.527981i
$$300$$ −19.1714 17.0648i −1.10686 0.985236i
$$301$$ 0 0
$$302$$ −23.3964 + 0.619930i −1.34631 + 0.0356730i
$$303$$ 18.2192 4.88183i 1.04667 0.280454i
$$304$$ −12.5471 17.2245i −0.719624 0.987894i
$$305$$ 23.2269 13.4889i 1.32997 0.772374i
$$306$$ −14.9526 + 4.43422i −0.854784 + 0.253488i
$$307$$ 20.7290 20.7290i 1.18307 1.18307i 0.204121 0.978946i $$-0.434567\pi$$
0.978946 0.204121i $$-0.0654335\pi$$
$$308$$ 0 0
$$309$$ 35.0086i 1.99157i
$$310$$ 12.1593 + 6.55710i 0.690603 + 0.372418i
$$311$$ −3.76125 + 2.17156i −0.213281 + 0.123138i −0.602835 0.797866i $$-0.705962\pi$$
0.389554 + 0.921003i $$0.372629\pi$$
$$312$$ 24.9078 17.1528i 1.41012 0.971088i
$$313$$ 2.03128 + 7.58085i 0.114815 + 0.428495i 0.999273 0.0381246i $$-0.0121384\pi$$
−0.884458 + 0.466620i $$0.845472\pi$$
$$314$$ −5.51948 + 5.81993i −0.311482 + 0.328438i
$$315$$ 0 0
$$316$$ −15.8097 + 0.838401i −0.889364 + 0.0471637i
$$317$$ 2.34276 0.627741i 0.131583 0.0352574i −0.192427 0.981311i $$-0.561636\pi$$
0.324009 + 0.946054i $$0.394969\pi$$
$$318$$ −8.36484 + 5.12956i −0.469077 + 0.287651i
$$319$$ −5.86050 10.1507i −0.328125 0.568329i
$$320$$ −16.7285 6.33700i −0.935151 0.354249i
$$321$$ 11.9867 0.669034
$$322$$ 0 0
$$323$$ −11.5804 11.5804i −0.644349 0.644349i
$$324$$ 6.25054 12.2862i 0.347252 0.682569i
$$325$$ 20.1472 + 5.28871i 1.11757 + 0.293365i
$$326$$ 4.08349 + 0.979016i 0.226163 + 0.0542227i
$$327$$ 6.72992 + 25.1164i 0.372165 + 1.38894i
$$328$$ 2.39055 + 30.0171i 0.131996 + 1.65741i
$$329$$ 0 0
$$330$$ −10.2685 + 10.8828i −0.565264 + 0.599080i
$$331$$ 11.1137 + 6.41652i 0.610866 + 0.352684i 0.773304 0.634035i $$-0.218602\pi$$
−0.162438 + 0.986719i $$0.551936\pi$$
$$332$$ −0.133357 + 0.629320i −0.00731894 + 0.0345384i
$$333$$ −13.8781 3.71862i −0.760515 0.203779i
$$334$$ −21.4219 + 6.35270i −1.17216 + 0.347605i
$$335$$ −5.24391 5.21729i −0.286505 0.285051i
$$336$$ 0 0
$$337$$ 25.1079 + 25.1079i 1.36771 + 1.36771i 0.863691 + 0.504022i $$0.168147\pi$$
0.504022 + 0.863691i $$0.331853\pi$$
$$338$$ −2.93723 + 5.41371i −0.159764 + 0.294467i
$$339$$ −13.9824 24.2182i −0.759418 1.31535i
$$340$$ −13.4563 2.81573i −0.729768 0.152704i
$$341$$ 4.02677 6.97457i 0.218062 0.377694i
$$342$$ −27.0193 + 0.715927i −1.46104 + 0.0387129i
$$343$$ 0 0
$$344$$ −2.65688 + 3.11668i −0.143249 + 0.168040i
$$345$$ −7.22943 + 12.5956i −0.389219 + 0.678126i
$$346$$ 2.28877 9.54650i 0.123045 0.513223i
$$347$$ 4.10753 + 1.10061i 0.220504 + 0.0590838i 0.367379 0.930071i $$-0.380255\pi$$
−0.146876 + 0.989155i $$0.546922\pi$$
$$348$$ −10.1046 31.0332i −0.541664 1.66355i
$$349$$ 4.09263i 0.219074i 0.993983 + 0.109537i $$0.0349368\pi$$
−0.993983 + 0.109537i $$0.965063\pi$$
$$350$$ 0 0
$$351$$ 6.28161i 0.335288i
$$352$$ −3.97584 + 9.64086i −0.211913 + 0.513860i
$$353$$ 19.3004 + 5.17152i 1.02726 + 0.275252i 0.732823 0.680420i $$-0.238202\pi$$
0.294433 + 0.955672i $$0.404869\pi$$
$$354$$ 14.9268 + 3.57871i 0.793352 + 0.190206i
$$355$$ −11.7228 + 20.4243i −0.622182 + 1.08401i
$$356$$ 0.459511 + 8.66497i 0.0243540 + 0.459242i
$$357$$ 0 0
$$358$$ −0.381195 14.3864i −0.0201468 0.760346i
$$359$$ 4.85897 8.41598i 0.256446 0.444178i −0.708841 0.705368i $$-0.750782\pi$$
0.965287 + 0.261190i $$0.0841150\pi$$
$$360$$ −18.6540 + 12.9162i −0.983153 + 0.680746i
$$361$$ −4.69104 8.12512i −0.246897 0.427638i
$$362$$ −13.4317 7.28742i −0.705955 0.383019i
$$363$$ −13.7956 13.7956i −0.724082 0.724082i
$$364$$ 0 0
$$365$$ −3.24447 3.22801i −0.169824 0.168962i
$$366$$ −12.3961 41.8010i −0.647957 2.18497i
$$367$$ 14.6748 + 3.93209i 0.766017 + 0.205254i 0.620611 0.784119i $$-0.286885\pi$$
0.145406 + 0.989372i $$0.453551\pi$$
$$368$$ −1.57101 + 9.99939i −0.0818947 + 0.521254i
$$369$$ 33.0763 + 19.0966i 1.72188 + 0.994129i
$$370$$ −9.21152 8.69157i −0.478884 0.451853i
$$371$$ 0 0
$$372$$ 14.9948 16.6742i 0.777444 0.864519i
$$373$$ 8.35388 + 31.1771i 0.432548 + 1.61429i 0.746868 + 0.664972i $$0.231557\pi$$
−0.314320 + 0.949317i $$0.601777\pi$$
$$374$$ −1.86853 + 7.79365i −0.0966193 + 0.403000i
$$375$$ −27.7737 7.21520i −1.43423 0.372591i
$$376$$ −2.16738 + 0.769784i −0.111774 + 0.0396986i
$$377$$ 18.7291 + 18.7291i 0.964600 + 0.964600i
$$378$$ 0 0
$$379$$ 29.2598 1.50297 0.751487 0.659747i $$-0.229337\pi$$
0.751487 + 0.659747i $$0.229337\pi$$
$$380$$ −21.2626 10.7492i −1.09075 0.551421i
$$381$$ 16.3600 + 28.3364i 0.838150 + 1.45172i
$$382$$ 10.2219 + 16.6690i 0.522998 + 0.852861i
$$383$$ 10.9054 2.92209i 0.557240 0.149312i 0.0308021 0.999526i $$-0.490194\pi$$
0.526438 + 0.850213i $$0.323527\pi$$
$$384$$ −16.3951 + 23.9666i −0.836661 + 1.22304i
$$385$$ 0 0
$$386$$ 7.07757 + 6.71218i 0.360239 + 0.341641i
$$387$$ 1.34444 + 5.01753i 0.0683419 + 0.255055i
$$388$$ 0.115006 0.542720i 0.00583856 0.0275525i
$$389$$ −33.4554 + 19.3155i −1.69625 + 0.979333i −0.747000 + 0.664824i $$0.768506\pi$$
−0.949255 + 0.314508i $$0.898160\pi$$
$$390$$ 16.0489 29.7608i 0.812670 1.50699i
$$391$$ 7.77900i 0.393401i
$$392$$ 0 0
$$393$$ 34.0310 34.0310i 1.71664 1.71664i
$$394$$ 4.46583 + 15.0592i 0.224985 + 0.758672i
$$395$$ −15.3066 + 8.88926i −0.770158 + 0.447267i
$$396$$ 7.21092 + 11.0888i 0.362362 + 0.557231i
$$397$$ −8.28877 + 2.22097i −0.416002 + 0.111467i −0.460748 0.887531i $$-0.652419\pi$$
0.0447462 + 0.998998i $$0.485752\pi$$
$$398$$ −0.647137 24.4232i −0.0324381 1.22422i
$$399$$ 0 0
$$400$$ −19.8768 + 2.21645i −0.993840 + 0.110822i
$$401$$ 1.16330 2.01489i 0.0580922 0.100619i −0.835517 0.549465i $$-0.814832\pi$$
0.893609 + 0.448846i $$0.148165\pi$$
$$402$$ −10.2362 + 6.27716i −0.510538 + 0.313076i
$$403$$ −4.71033 + 17.5792i −0.234638 + 0.875681i
$$404$$ 6.66459 13.1001i 0.331576 0.651755i
$$405$$ −0.0392078 15.4118i −0.00194825 0.765821i
$$406$$ 0 0
$$407$$ −5.22069 + 5.22069i −0.258780 + 0.258780i
$$408$$ −9.58859 + 20.1512i −0.474706 + 0.997634i
$$409$$ −0.162801 + 0.0939930i −0.00804997 + 0.00464765i −0.504020 0.863692i $$-0.668146\pi$$
0.495970 + 0.868340i $$0.334813\pi$$
$$410$$ 17.6725 + 28.6550i 0.872782 + 1.41517i
$$411$$ −40.1112 23.1582i −1.97854 1.14231i
$$412$$ 20.2844 + 18.2413i 0.999339 + 0.898685i
$$413$$ 0 0
$$414$$ 9.31545 + 8.83453i 0.457829 + 0.434193i
$$415$$ 0.187916 + 0.694242i 0.00922443 + 0.0340790i
$$416$$ 3.03971 23.3694i 0.149034 1.14578i
$$417$$ 1.58597 5.91892i 0.0776652 0.289851i
$$418$$ −6.62366 + 12.2083i −0.323974 + 0.597128i
$$419$$ 13.0861 0.639297 0.319648 0.947536i $$-0.396435\pi$$
0.319648 + 0.947536i $$0.396435\pi$$
$$420$$ 0 0
$$421$$ 3.33535 0.162555 0.0812776 0.996692i $$-0.474100\pi$$
0.0812776 + 0.996692i $$0.474100\pi$$
$$422$$ −12.5941 + 23.2127i −0.613072 + 1.12997i
$$423$$ −0.755046 + 2.81787i −0.0367116 + 0.137009i
$$424$$ −1.38640 + 7.51944i −0.0673295 + 0.365177i
$$425$$ −14.8262 + 4.05364i −0.719178 + 0.196630i
$$426$$ 27.7371 + 26.3051i 1.34387 + 1.27449i
$$427$$ 0 0
$$428$$ 6.24571 6.94524i 0.301898 0.335711i
$$429$$ −17.0707 9.85579i −0.824183 0.475842i
$$430$$ −1.05620 + 4.45537i −0.0509343 + 0.214857i
$$431$$ 2.08778 1.20538i 0.100565 0.0580612i −0.448874 0.893595i $$-0.648175\pi$$
0.549439 + 0.835534i $$0.314841\pi$$
$$432$$ 2.16845 + 5.62808i 0.104329 + 0.270781i
$$433$$ −0.313016 + 0.313016i −0.0150426 + 0.0150426i −0.714588 0.699545i $$-0.753386\pi$$
0.699545 + 0.714588i $$0.253386\pi$$
$$434$$ 0 0
$$435$$ −25.8672 25.7360i −1.24024 1.23394i
$$436$$ 18.0593 + 9.18756i 0.864886 + 0.440005i
$$437$$ −3.48921 + 13.0219i −0.166911 + 0.622922i
$$438$$ −6.33330 + 3.88376i −0.302617 + 0.185573i
$$439$$ −11.2300 + 19.4509i −0.535978 + 0.928341i 0.463138 + 0.886286i $$0.346724\pi$$
−0.999115 + 0.0420543i $$0.986610\pi$$
$$440$$ 0.955185 + 11.6202i 0.0455367 + 0.553972i
$$441$$ 0 0
$$442$$ −0.479719 18.1048i −0.0228179 0.861155i
$$443$$ 16.8498 4.51489i 0.800559 0.214509i 0.164730 0.986339i $$-0.447325\pi$$
0.635829 + 0.771830i $$0.280658\pi$$
$$444$$ −17.2346 + 11.2075i −0.817919 + 0.531886i
$$445$$ 4.87203 + 8.38924i 0.230956 + 0.397688i
$$446$$ 6.29765 + 21.2363i 0.298202 + 1.00557i
$$447$$ −19.9983 + 19.9983i −0.945886 + 0.945886i
$$448$$ 0 0
$$449$$ 24.3525i 1.14927i −0.818411 0.574633i $$-0.805145\pi$$
0.818411 0.574633i $$-0.194855\pi$$
$$450$$ −11.9837 + 22.3583i −0.564918 + 1.05398i
$$451$$ 16.9970 9.81325i 0.800360 0.462088i
$$452$$ −21.3178 4.51740i −1.00271 0.212481i
$$453$$ 10.9937 + 41.0289i 0.516528 + 1.92771i
$$454$$ 2.69399 + 2.55491i 0.126435 + 0.119908i
$$455$$ 0 0
$$456$$ −25.0898 + 29.4319i −1.17494 + 1.37827i
$$457$$ 13.4678 3.60868i 0.629996 0.168807i 0.0703280 0.997524i $$-0.477595\pi$$
0.559668 + 0.828717i $$0.310929\pi$$
$$458$$ −1.50283 2.45068i −0.0702224 0.114513i
$$459$$ 2.31762 + 4.01423i 0.108177 + 0.187368i
$$460$$ 3.53113 + 10.7518i 0.164640 + 0.501305i
$$461$$ 15.8798 0.739597 0.369799 0.929112i $$-0.379427\pi$$
0.369799 + 0.929112i $$0.379427\pi$$
$$462$$ 0 0
$$463$$ −21.2388 21.2388i −0.987052 0.987052i 0.0128649 0.999917i $$-0.495905\pi$$
−0.999917 + 0.0128649i $$0.995905\pi$$
$$464$$ −23.2460 10.3152i −1.07917 0.478871i
$$465$$ 6.42742 24.2339i 0.298064 1.12382i
$$466$$ 4.59361 19.1600i 0.212795 0.887568i
$$467$$ 6.12778 + 22.8692i 0.283560 + 1.05826i 0.949885 + 0.312599i $$0.101200\pi$$
−0.666325 + 0.745661i $$0.732134\pi$$
$$468$$ −22.2255 19.9869i −1.02737 0.923896i
$$469$$ 0 0
$$470$$ −1.76477 + 1.87035i −0.0814029 + 0.0862727i
$$471$$ 12.6068 + 7.27851i 0.580889 + 0.335376i
$$472$$ 9.85120 6.78407i 0.453438 0.312262i
$$473$$ 2.57838 + 0.690874i 0.118554 + 0.0317664i
$$474$$ 8.16911 + 27.5470i 0.375220 + 1.26528i
$$475$$ −26.6371 + 0.135530i −1.22219 + 0.00621856i
$$476$$ 0 0
$$477$$ 6.85764 + 6.85764i 0.313990 + 0.313990i
$$478$$ 12.0936 + 6.56143i 0.553149 + 0.300113i
$$479$$ 11.7318 + 20.3200i 0.536038 + 0.928445i 0.999112 + 0.0421254i $$0.0134129\pi$$
−0.463074 + 0.886319i $$0.653254\pi$$
$$480$$ −4.10565 + 32.2047i −0.187397 + 1.46994i
$$481$$ 8.34221 14.4491i 0.380372 0.658823i
$$482$$ −0.597324 22.5432i −0.0272073 1.02682i
$$483$$ 0 0
$$484$$ −15.1816 + 0.805092i −0.690071 + 0.0365951i
$$485$$ −0.162057 0.598709i −0.00735864 0.0271860i
$$486$$ −30.5491 7.32416i −1.38574 0.332231i
$$487$$ 7.94369 + 2.12851i 0.359963 + 0.0964518i 0.434268 0.900784i $$-0.357007\pi$$
−0.0743048 + 0.997236i $$0.523674\pi$$
$$488$$ −30.6790 14.5980i −1.38877 0.660822i
$$489$$ 7.62100i 0.344633i
$$490$$ 0 0
$$491$$ 25.5075i 1.15114i −0.817753 0.575569i $$-0.804781\pi$$
0.817753 0.575569i $$-0.195219\pi$$
$$492$$ 51.9642 16.9199i 2.34273 0.762808i
$$493$$ −18.8789 5.05859i −0.850264 0.227827i
$$494$$ 7.31770 30.5222i 0.329239 1.37326i
$$495$$ 12.8259 + 7.36160i 0.576482 + 0.330880i
$$496$$ −1.84816 17.3763i −0.0829847 0.780219i
$$497$$ 0 0
$$498$$ 1.16708 0.0309240i 0.0522983 0.00138574i
$$499$$ −12.2280 + 21.1796i −0.547402 + 0.948128i 0.451049 + 0.892499i $$0.351050\pi$$
−0.998451 + 0.0556294i $$0.982283\pi$$
$$500$$ −18.6521 + 12.3329i −0.834147 + 0.551542i
$$501$$ 20.2757 + 35.1186i 0.905853 + 1.56898i
$$502$$ 3.79218 6.98950i 0.169253 0.311957i
$$503$$ −18.7502 18.7502i −0.836032 0.836032i 0.152302 0.988334i $$-0.451331\pi$$
−0.988334 + 0.152302i $$0.951331\pi$$
$$504$$ 0 0
$$505$$ −0.0418050 16.4327i −0.00186030 0.731248i
$$506$$ 6.32510 1.87572i 0.281185 0.0833858i
$$507$$ 10.7972 + 2.89311i 0.479522 + 0.128487i
$$508$$ 24.9429 + 5.28557i 1.10666 + 0.234509i
$$509$$ −16.5443 9.55184i −0.733312 0.423378i 0.0863205 0.996267i $$-0.472489\pi$$
−0.819633 + 0.572889i $$0.805822\pi$$
$$510$$ 0.724319 + 24.9397i 0.0320734 + 1.10435i
$$511$$ 0 0
$$512$$ 5.34377 + 21.9874i 0.236163 + 0.971713i
$$513$$ 2.07910 + 7.75929i 0.0917943 + 0.342581i
$$514$$ −7.04820 1.68981i −0.310883 0.0745342i
$$515$$ 29.4807 + 7.81901i 1.29908 + 0.344547i
$$516$$ 6.62467 + 3.37025i 0.291635 + 0.148367i
$$517$$ 1.06003 + 1.06003i 0.0466201 + 0.0466201i
$$518$$ 0 0
$$519$$ −17.8166 −0.782062
$$520$$ −8.88137 24.8058i −0.389474 1.08781i
$$521$$ 5.20016 + 9.00694i 0.227823 + 0.394601i 0.957163 0.289551i $$-0.0935059\pi$$
−0.729340 + 0.684152i $$0.760173\pi$$
$$522$$ −27.4983 + 16.8627i −1.20357 + 0.738062i
$$523$$ 4.07897 1.09296i 0.178361 0.0477917i −0.168533 0.985696i $$-0.553903\pi$$
0.346894 + 0.937904i $$0.387236\pi$$
$$524$$ −1.98600 37.4499i −0.0867588 1.63600i
$$525$$ 0 0
$$526$$ 7.67932 8.09735i 0.334834 0.353061i
$$527$$ −3.47577 12.9718i −0.151407 0.565059i
$$528$$ 18.6970 + 2.93750i 0.813682 + 0.127838i
$$529$$ −14.3730 + 8.29825i −0.624913 + 0.360794i
$$530$$ 2.45135 + 8.18969i 0.106480 + 0.355738i
$$531$$ 15.1712i 0.658372i
$$532$$ 0 0
$$533$$ −31.3614 + 31.3614i −1.35841 + 1.35841i
$$534$$ 15.0980 4.47733i 0.653353 0.193753i
$$535$$ 2.67718 10.0940i 0.115745 0.436402i
$$536$$ −1.69657 + 9.20172i −0.0732806 + 0.397454i
$$537$$ −25.2286 + 6.75999i −1.08870 + 0.291715i
$$538$$ 6.49626 0.172130i 0.280074 0.00742106i
$$539$$ 0 0
$$540$$ 5.02549 + 4.49625i 0.216263 + 0.193488i
$$541$$ 0.191927 0.332427i 0.00825157 0.0142921i −0.861870 0.507129i $$-0.830707\pi$$
0.870122 + 0.492837i $$0.164040\pi$$
$$542$$ −21.1903 34.5553i −0.910202 1.48428i
$$543$$ −7.17796 + 26.7885i −0.308036 + 1.14960i
$$544$$ 6.67967 + 16.0556i 0.286389 + 0.688377i
$$545$$ 22.6536 0.0576308i 0.970374 0.00246863i
$$546$$ 0 0
$$547$$ 0.879876 0.879876i 0.0376208 0.0376208i −0.688046 0.725667i $$-0.741531\pi$$
0.725667 + 0.688046i $$0.241531\pi$$
$$548$$ −34.3182 + 11.1742i −1.46600 + 0.477339i
$$549$$ −37.3195 + 21.5464i −1.59276 + 0.919578i
$$550$$ 6.87100 + 11.0778i 0.292980 + 0.472357i
$$551$$ −29.3340 16.9360i −1.24967 0.721497i
$$552$$ 18.3122 1.45838i 0.779419 0.0620726i
$$553$$ 0 0
$$554$$ −5.23023 + 5.51494i −0.222211 + 0.234308i
$$555$$ −11.4417 + 19.9346i −0.485674 + 0.846177i
$$556$$ −2.60311 4.00299i −0.110396 0.169765i
$$557$$ 10.0638 37.5586i 0.426417 1.59141i −0.334394 0.942434i $$-0.608531\pi$$
0.760810 0.648975i $$-0.224802\pi$$
$$558$$ −19.4812 10.5696i −0.824707 0.447448i
$$559$$ −6.03213 −0.255132
$$560$$ 0 0
$$561$$ 14.5453 0.614102
$$562$$ −30.1875 16.3783i −1.27338 0.690879i
$$563$$ −2.44907 + 9.14007i −0.103216 + 0.385208i −0.998137 0.0610177i $$-0.980565\pi$$
0.894921 + 0.446225i $$0.147232\pi$$
$$564$$ 2.27563 + 3.49939i 0.0958211 + 0.147351i
$$565$$ −23.5170 + 6.36553i −0.989368 + 0.267800i
$$566$$ −9.91093 + 10.4504i −0.416587 + 0.439265i
$$567$$ 0 0
$$568$$ 29.6940 2.36481i 1.24593 0.0992254i
$$569$$ 31.4026 + 18.1303i 1.31647 + 0.760062i 0.983158 0.182756i $$-0.0585017\pi$$
0.333308 + 0.942818i $$0.391835\pi$$
$$570$$ −9.97402 + 42.0736i −0.417766 + 1.76227i
$$571$$ −41.2518 + 23.8167i −1.72633 + 0.996699i −0.822575 + 0.568657i $$0.807463\pi$$
−0.903759 + 0.428042i $$0.859203\pi$$
$$572$$ −14.6053 + 4.75558i −0.610678 + 0.198841i
$$573$$ 25.0932 25.0932i 1.04828 1.04828i
$$574$$ 0 0
$$575$$ 8.99212 + 8.90108i 0.374997 + 0.371201i
$$576$$ 26.8128 + 10.2352i 1.11720 + 0.426465i
$$577$$ 11.7901 44.0011i 0.490827 1.83179i −0.0614241 0.998112i $$-0.519564\pi$$
0.552251 0.833678i $$-0.313769\pi$$
$$578$$ −5.58173 9.10221i −0.232169 0.378602i
$$579$$ 8.85133 15.3310i 0.367849 0.637133i
$$580$$ −28.3899 + 1.57798i −1.17882 + 0.0655219i
$$581$$ 0 0
$$582$$ −1.00648 + 0.0266686i −0.0417201 + 0.00110545i
$$583$$ 4.81383 1.28986i 0.199368 0.0534206i
$$584$$ −1.04969 + 5.69322i −0.0434364 + 0.235587i
$$585$$ −32.3019 8.56725i −1.33552 0.354212i
$$586$$ 37.5611 11.1388i 1.55163 0.460139i
$$587$$ −15.9943 + 15.9943i −0.660155 + 0.660155i −0.955417 0.295261i $$-0.904593\pi$$
0.295261 + 0.955417i $$0.404593\pi$$
$$588$$ 0 0
$$589$$ 23.2735i 0.958968i
$$590$$ 6.34747 11.7706i 0.261321 0.484588i
$$591$$ 24.6877 14.2535i 1.01552 0.586309i
$$592$$ −2.48638 + 15.8256i −0.102189 + 0.650430i
$$593$$ 1.72753 + 6.44723i 0.0709412 + 0.264756i 0.992282 0.123999i $$-0.0395719\pi$$
−0.921341 + 0.388755i $$0.872905\pi$$
$$594$$ 2.70513 2.85238i 0.110993 0.117035i
$$595$$ 0 0
$$596$$ 1.16707 + 22.0074i 0.0478050 + 0.901457i
$$597$$ −42.8295 + 11.4761i −1.75290 + 0.469687i
$$598$$ −12.7093 + 7.79370i −0.519722 + 0.318708i
$$599$$ 16.9948 + 29.4358i 0.694387 + 1.20271i 0.970387 + 0.241555i $$0.0776576\pi$$
−0.276000 + 0.961158i $$0.589009\pi$$
$$600$$ 12.3221 + 34.1418i 0.503046 + 1.39383i
$$601$$ −32.7782 −1.33705 −0.668526 0.743689i $$-0.733074\pi$$
−0.668526 + 0.743689i $$0.733074\pi$$
$$602$$ 0 0
$$603$$ 8.39185 + 8.39185i 0.341743 + 0.341743i
$$604$$ 29.5009 + 15.0084i 1.20037 + 0.610682i
$$605$$ −14.6985 + 8.53610i −0.597578 + 0.347042i
$$606$$ −25.9397 6.21905i −1.05373 0.252632i
$$607$$ −5.43419 20.2807i −0.220567 0.823167i −0.984132 0.177436i $$-0.943220\pi$$
0.763565 0.645731i $$-0.223447\pi$$
$$608$$ 3.98005 + 29.8728i 0.161412 + 1.21150i
$$609$$ 0 0
$$610$$ −37.9692 + 1.10273i −1.53733 + 0.0446483i
$$611$$ −2.93381 1.69384i −0.118689 0.0685254i
$$612$$ 21.5773 + 4.57238i 0.872210 + 0.184828i
$$613$$ 28.2904 + 7.58040i 1.14264 + 0.306169i 0.780012 0.625765i $$-0.215213\pi$$
0.362628 + 0.931934i $$0.381880\pi$$
$$614$$ −39.7471 + 11.7871i −1.60406 + 0.475687i
$$615$$ 43.0941 43.3140i 1.73772 1.74659i
$$616$$ 0 0
$$617$$ −27.0214 27.0214i −1.08784 1.08784i −0.995751 0.0920892i $$-0.970646\pi$$
−0.0920892 0.995751i $$-0.529354\pi$$
$$618$$ 23.6104 43.5173i 0.949751 1.75052i
$$619$$ −6.44385 11.1611i −0.259000 0.448601i 0.706974 0.707239i $$-0.250060\pi$$
−0.965974 + 0.258638i $$0.916726\pi$$
$$620$$ −10.6924 16.3512i −0.429415 0.656681i
$$621$$ 1.90781 3.30442i 0.0765577 0.132602i
$$622$$ 6.13994 0.162689i 0.246189 0.00652323i
$$623$$ 0 0
$$624$$ −42.5297 + 4.52349i −1.70255 + 0.181085i
$$625$$ −12.2790 + 21.7767i −0.491162 + 0.871068i
$$626$$ 2.58769 10.7933i 0.103425 0.431386i
$$627$$ 24.3485 + 6.52416i 0.972386 + 0.260550i
$$628$$ 10.7860 3.51200i 0.430409 0.140144i
$$629$$ 12.3115i 0.490892i
$$630$$ 0 0
$$631$$ 35.1539i 1.39945i −0.714410 0.699727i $$-0.753305\pi$$
0.714410 0.699727i $$-0.246695\pi$$
$$632$$ 20.2176 + 9.62016i 0.804212 + 0.382670i
$$633$$ 46.2958 + 12.4049i 1.84009 + 0.493052i
$$634$$ −3.33552 0.799690i −0.132470 0.0317598i
$$635$$ 27.5160 7.44798i 1.09194 0.295564i
$$636$$ 13.8573 0.734867i 0.549479 0.0291394i
$$637$$ 0 0
$$638$$ 0.439057 + 16.5702i 0.0173824 + 0.656020i
$$639$$ 18.8910 32.7202i 0.747318 1.29439i
$$640$$ 16.5205 + 19.1592i 0.653029 + 0.757333i
$$641$$ −4.98684 8.63746i −0.196968 0.341159i 0.750576 0.660784i $$-0.229776\pi$$
−0.947544 + 0.319625i $$0.896443\pi$$
$$642$$ −14.9000 8.08407i −0.588057 0.319053i
$$643$$ 25.3846 + 25.3846i 1.00107 + 1.00107i 0.999999 + 0.00107009i $$0.000340620\pi$$
0.00107009 + 0.999999i $$0.499659\pi$$
$$644$$ 0 0
$$645$$ 8.30997 0.0211406i 0.327205 0.000832410i
$$646$$ 6.58490 + 22.2049i 0.259080 + 0.873641i
$$647$$ 1.94812 + 0.521998i 0.0765886 + 0.0205218i 0.296910 0.954906i $$-0.404044\pi$$
−0.220321 + 0.975427i $$0.570711\pi$$
$$648$$ −16.0558 + 11.0569i −0.630730 + 0.434355i
$$649$$ −6.75159 3.89803i −0.265023 0.153011i
$$650$$ −21.4771 20.1617i −0.842400 0.790808i
$$651$$ 0 0
$$652$$ −4.41569 3.97094i −0.172932 0.155514i
$$653$$ −3.42196 12.7709i −0.133912 0.499766i 0.866088 0.499891i $$-0.166627\pi$$
−1.00000 0.000125665i $$0.999960\pi$$
$$654$$ 8.57337 35.7596i 0.335245 1.39831i
$$655$$ −21.0568 36.2582i −0.822759 1.41672i
$$656$$ 17.2725 38.9248i 0.674378 1.51976i
$$657$$ 5.19215 + 5.19215i 0.202565 + 0.202565i
$$658$$ 0 0
$$659$$ 43.1794 1.68203 0.841015 0.541011i $$-0.181958\pi$$
0.841015 + 0.541011i $$0.181958\pi$$
$$660$$ 20.1038 6.60256i 0.782541 0.257004i
$$661$$ −8.09021 14.0127i −0.314673 0.545029i 0.664695 0.747115i $$-0.268561\pi$$
−0.979368 + 0.202085i $$0.935228\pi$$
$$662$$ −9.48746 15.4713i −0.368741 0.601310i
$$663$$ −31.7493 + 8.50719i −1.23304 + 0.330392i
$$664$$ 0.590194 0.692334i 0.0229040 0.0268678i
$$665$$ 0 0
$$666$$ 14.7432 + 13.9821i 0.571287 + 0.541794i
$$667$$ 4.16412 + 15.5407i 0.161235 + 0.601738i
$$668$$ 30.9128 + 6.55064i 1.19605 + 0.253452i
$$669$$ 34.8142 20.1000i 1.34600 0.777111i
$$670$$ 2.99977 + 10.0219i 0.115891 + 0.387180i
$$671$$ 22.1443i 0.854870i
$$672$$ 0 0
$$673$$ −9.53669 + 9.53669i −0.367612 + 0.367612i −0.866606 0.498993i $$-0.833703\pi$$
0.498993 + 0.866606i $$0.333703\pi$$
$$674$$ −14.2770 48.1434i −0.549929 1.85441i
$$675$$ 7.29216 + 1.91421i 0.280675 + 0.0736782i
$$676$$ 7.30221 4.74857i 0.280854 0.182637i
$$677$$ 29.5915 7.92901i 1.13729 0.304737i 0.359431 0.933172i $$-0.382971\pi$$
0.777862 + 0.628435i $$0.216304\pi$$
$$678$$ 1.04753 + 39.5342i 0.0402302 + 1.51830i
$$679$$ 0 0
$$680$$ 14.8278 + 12.5752i 0.568619 + 0.482238i
$$681$$ 3.36915 5.83554i 0.129106 0.223618i
$$682$$ −9.70923 + 5.95397i −0.371786 + 0.227989i
$$683$$ 5.39248 20.1250i 0.206338 0.770062i −0.782700 0.622399i $$-0.786158\pi$$
0.989038 0.147663i $$-0.0471752\pi$$
$$684$$ 34.0691 + 17.3324i 1.30266 + 0.662721i
$$685$$ −28.4602 + 28.6054i −1.08741 + 1.09296i
$$686$$ 0 0
$$687$$ −3.68921 + 3.68921i −0.140752 + 0.140752i
$$688$$ 5.40456 2.08233i 0.206047 0.0793879i
$$689$$ −9.75316 + 5.63099i −0.371566 + 0.214524i
$$690$$ 17.4812 10.7813i 0.665499 0.410436i
$$691$$ −5.07142 2.92798i −0.192926 0.111386i 0.400426 0.916329i $$-0.368862\pi$$
−0.593352 + 0.804943i $$0.702196\pi$$
$$692$$ −9.28338 + 10.3231i −0.352901 + 0.392427i
$$693$$ 0 0
$$694$$ −4.36357 4.13830i −0.165639 0.157088i
$$695$$ −4.63010 2.65751i −0.175630 0.100805i
$$696$$ −8.36886 + 45.3904i −0.317221 + 1.72052i
$$697$$ 8.47047 31.6122i 0.320842 1.19740i
$$698$$ 2.76015 5.08733i 0.104473 0.192558i
$$699$$ −35.7582 −1.35250
$$700$$ 0 0
$$701$$ 20.0349 0.756706 0.378353 0.925661i $$-0.376491\pi$$
0.378353 + 0.925661i $$0.376491\pi$$
$$702$$ −4.23643 + 7.80832i −0.159894 + 0.294706i
$$703$$ −5.52223 + 20.6092i −0.208275 + 0.777292i
$$704$$ 11.4441 9.30264i 0.431317 0.350607i
$$705$$ 4.04761 + 2.32318i 0.152442 + 0.0874960i
$$706$$ −20.5035 19.4450i −0.771658 0.731821i
$$707$$ 0 0
$$708$$ −16.1412 14.5154i −0.606622 0.545523i
$$709$$ −42.7844 24.7016i −1.60680 0.927688i −0.990080 0.140508i $$-0.955126\pi$$
−0.616723 0.787180i $$-0.711540\pi$$
$$710$$ 28.3465 17.4823i 1.06383 0.656098i
$$711$$ 24.5937 14.1992i 0.922335 0.532510i
$$712$$ 5.27262 11.0808i 0.197600 0.415272i
$$713$$ −7.81688 + 7.81688i −0.292744 + 0.292744i
$$714$$ 0 0
$$715$$ −12.1122 + 12.1740i −0.452972 + 0.455282i
$$716$$ −9.22863 + 18.1401i −0.344890 + 0.677926i
$$717$$ 6.46287 24.1198i 0.241360 0.900769i
$$718$$ −11.7158 + 7.18446i −0.437230 + 0.268122i
$$719$$ 12.1477 21.0405i 0.453033 0.784677i −0.545539 0.838085i $$-0.683675\pi$$
0.998573 + 0.0534084i $$0.0170085\pi$$
$$720$$ 31.8987 3.47487i 1.18880 0.129501i
$$721$$ 0 0
$$722$$ 0.351443 + 13.2636i 0.0130794 + 0.493620i
$$723$$ −39.5327 + 10.5928i −1.47024 + 0.393949i
$$724$$ 11.7815 + 18.1172i 0.437854 + 0.673320i
$$725$$ −27.4496 + 16.0348i −1.01945 + 0.595517i
$$726$$ 7.84456 + 26.4526i 0.291139 + 0.981748i
$$727$$ −15.7313 + 15.7313i −0.583441 + 0.583441i −0.935847 0.352406i $$-0.885364\pi$$
0.352406 + 0.935847i $$0.385364\pi$$
$$728$$ 0 0
$$729$$ 36.3365i 1.34580i
$$730$$ 1.85600 + 6.20069i 0.0686936 + 0.229498i
$$731$$ 3.85480 2.22557i 0.142575 0.0823157i
$$732$$ −12.7824 + 60.3207i −0.472451 + 2.22952i
$$733$$ −7.41199 27.6619i −0.273768 1.02172i −0.956663 0.291199i $$-0.905946\pi$$
0.682895 0.730517i $$-0.260721\pi$$
$$734$$ −15.5895 14.7847i −0.575420 0.545713i
$$735$$ 0 0
$$736$$ 8.69661 11.3702i 0.320561 0.419110i
$$737$$ 5.89079 1.57843i 0.216990 0.0581423i
$$738$$ −28.2362 46.0452i −1.03939 1.69495i
$$739$$ −4.43514 7.68188i −0.163149 0.282583i 0.772847 0.634592i $$-0.218832\pi$$
−0.935996 + 0.352009i $$0.885498\pi$$
$$740$$ 5.58858 + 17.0164i 0.205440 + 0.625536i
$$741$$ −56.9635 −2.09261
$$742$$ 0 0
$$743$$ −10.5849 10.5849i −0.388323 0.388323i 0.485766 0.874089i $$-0.338541\pi$$
−0.874089 + 0.485766i $$0.838541\pi$$
$$744$$ −29.8846 + 10.6141i −1.09562 + 0.389130i
$$745$$ 12.3740 + 21.3071i 0.453349 + 0.780630i
$$746$$ 10.6422 44.3885i 0.389637 1.62518i
$$747$$ −0.298652 1.11459i −0.0109271 0.0407806i
$$748$$ 7.57884 8.42768i 0.277110 0.308147i
$$749$$ 0 0
$$750$$ 29.6578 + 27.6999i 1.08295 + 1.01146i
$$751$$ −26.2007 15.1270i −0.956078 0.551992i −0.0611139 0.998131i $$-0.519465\pi$$
−0.894964 + 0.446139i $$0.852799\pi$$
$$752$$ 3.21331 + 0.504845i 0.117177 + 0.0184098i
$$753$$ −13.9400 3.73521i −0.508002 0.136119i
$$754$$ −10.6499 35.9124i −0.387846 1.30785i
$$755$$ 37.0058 0.0941429i 1.34678 0.00342621i
$$756$$ 0 0
$$757$$ −18.0236 18.0236i −0.655078 0.655078i 0.299133 0.954211i $$-0.403302\pi$$
−0.954211 + 0.299133i $$0.903302\pi$$
$$758$$ −36.3712 19.7333i −1.32106 0.716747i
$$759$$ −5.98667 10.3692i −0.217302 0.376378i
$$760$$ 19.1809 + 27.7016i 0.695764 + 1.00484i
$$761$$ −12.9621 + 22.4510i −0.469875 + 0.813848i −0.999407 0.0344427i $$-0.989034\pi$$
0.529532 + 0.848290i $$0.322368\pi$$
$$762$$ −1.22566 46.2569i −0.0444010 1.67571i
$$763$$ 0 0
$$764$$ −1.46440 27.6142i −0.0529803 0.999046i
$$765$$ 23.8033 6.44301i 0.860609 0.232948i
$$766$$ −15.5266 3.72251i −0.561000 0.134500i
$$767$$ 17.0172 + 4.55974i 0.614455 + 0.164643i
$$768$$ 36.5434 18.7343i 1.31865 0.676018i
$$769$$ 43.7662i 1.57825i −0.614232 0.789125i $$-0.710534\pi$$
0.614232 0.789125i $$-0.289466\pi$$
$$770$$ 0 0
$$771$$ 13.1540i 0.473731i
$$772$$ −4.27091 13.1168i −0.153714 0.472083i
$$773$$ −9.65890 2.58809i −0.347406 0.0930873i 0.0808964 0.996723i $$-0.474222\pi$$
−0.428303 + 0.903635i $$0.640888\pi$$
$$774$$ 1.71271 7.14373i 0.0615621 0.256776i
$$775$$ −18.9718 10.8251i −0.681488 0.388847i
$$776$$ −0.508979 + 0.597063i −0.0182713 + 0.0214333i
$$777$$ 0 0
$$778$$ 54.6132 1.44708i 1.95798 0.0518802i
$$779$$ 28.3588 49.1189i 1.01606 1.75987i