Properties

Label 980.2.x.k.667.6
Level $980$
Weight $2$
Character 980.667
Analytic conductor $7.825$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 667.6
Character \(\chi\) \(=\) 980.667
Dual form 980.2.x.k.263.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.788610 - 1.17392i) q^{2} +(0.767216 - 2.86329i) q^{3} +(-0.756188 + 1.85153i) q^{4} +(0.517671 - 2.17532i) q^{5} +(-3.96631 + 1.35737i) q^{6} +(2.76990 - 0.572433i) q^{8} +(-5.01173 - 2.89352i) q^{9} +O(q^{10})\) \(q+(-0.788610 - 1.17392i) q^{2} +(0.767216 - 2.86329i) q^{3} +(-0.756188 + 1.85153i) q^{4} +(0.517671 - 2.17532i) q^{5} +(-3.96631 + 1.35737i) q^{6} +(2.76990 - 0.572433i) q^{8} +(-5.01173 - 2.89352i) q^{9} +(-2.96190 + 1.10777i) q^{10} +(0.186127 - 0.107460i) q^{11} +(4.72132 + 3.58571i) q^{12} +(4.29923 - 4.29923i) q^{13} +(-5.83140 - 3.15118i) q^{15} +(-2.85636 - 2.80022i) q^{16} +(0.735462 - 2.74478i) q^{17} +(0.555529 + 8.16524i) q^{18} +(0.438952 - 0.760287i) q^{19} +(3.63622 + 2.60344i) q^{20} +(-0.272931 - 0.133754i) q^{22} +(-0.123270 + 0.0330301i) q^{23} +(0.486067 - 8.37019i) q^{24} +(-4.46403 - 2.25220i) q^{25} +(-8.43738 - 1.65655i) q^{26} +(-5.84185 + 5.84185i) q^{27} +4.03098i q^{29} +(0.899463 + 9.33067i) q^{30} +(-7.44914 + 4.30076i) q^{31} +(-1.03468 + 5.56142i) q^{32} +(-0.164890 - 0.615379i) q^{33} +(-3.80215 + 1.30119i) q^{34} +(9.14726 - 7.09134i) q^{36} +(1.76528 - 0.473005i) q^{37} +(-1.23868 + 0.0842746i) q^{38} +(-9.01151 - 15.6084i) q^{39} +(0.188668 - 6.32174i) q^{40} +2.91481 q^{41} +(2.06108 + 2.06108i) q^{43} +(0.0582196 + 0.425880i) q^{44} +(-8.88876 + 9.40422i) q^{45} +(0.135987 + 0.118661i) q^{46} +(1.78918 + 6.67731i) q^{47} +(-10.2093 + 6.03021i) q^{48} +(0.876477 + 7.01654i) q^{50} +(-7.29484 - 4.21168i) q^{51} +(4.70915 + 11.2112i) q^{52} +(3.78963 + 1.01543i) q^{53} +(11.4648 + 2.25094i) q^{54} +(-0.137408 - 0.460514i) q^{55} +(-1.84015 - 1.84015i) q^{57} +(4.73205 - 3.17887i) q^{58} +(5.24601 + 9.08635i) q^{59} +(10.2442 - 8.41416i) q^{60} +(4.16343 - 7.21127i) q^{61} +(10.9232 + 5.35309i) q^{62} +(7.34464 - 3.17116i) q^{64} +(-7.12662 - 11.5778i) q^{65} +(-0.592373 + 0.678863i) q^{66} +(-0.759268 - 0.203445i) q^{67} +(4.52591 + 3.43730i) q^{68} +0.378298i q^{69} +1.75036i q^{71} +(-15.5383 - 5.14588i) q^{72} +(-5.71993 - 1.53265i) q^{73} +(-1.94739 - 1.69928i) q^{74} +(-9.87357 + 11.0539i) q^{75} +(1.07577 + 1.38765i) q^{76} +(-11.2165 + 22.8877i) q^{78} +(6.20636 - 10.7497i) q^{79} +(-7.57002 + 4.76391i) q^{80} +(3.56437 + 6.17368i) q^{81} +(-2.29865 - 3.42176i) q^{82} +(-5.30716 - 5.30716i) q^{83} +(-5.59005 - 3.02076i) q^{85} +(0.794160 - 4.04494i) q^{86} +(11.5419 + 3.09263i) q^{87} +(0.454037 - 0.404198i) q^{88} +(11.0339 + 6.37043i) q^{89} +(18.0496 + 3.01845i) q^{90} +(0.0320589 - 0.253215i) q^{92} +(6.59923 + 24.6287i) q^{93} +(6.42768 - 7.36615i) q^{94} +(-1.42663 - 1.34844i) q^{95} +(15.1301 + 7.22941i) q^{96} +(-2.58579 - 2.58579i) q^{97} -1.24375 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72q - 16q^{6} + O(q^{10}) \) \( 72q - 16q^{6} + 16q^{10} + 16q^{12} - 8q^{13} + 8q^{16} + 20q^{17} - 28q^{18} + 40q^{20} + 8q^{22} + 20q^{25} + 32q^{26} + 4q^{30} - 20q^{37} + 36q^{40} - 20q^{45} - 16q^{46} - 48q^{48} + 80q^{50} - 16q^{52} + 44q^{53} - 32q^{57} + 4q^{58} - 40q^{60} + 64q^{61} + 80q^{62} - 4q^{65} - 32q^{66} - 80q^{68} - 80q^{72} - 52q^{73} + 16q^{76} - 152q^{78} + 20q^{80} + 36q^{81} - 56q^{82} - 40q^{85} - 56q^{86} + 40q^{88} - 32q^{90} - 112q^{92} - 32q^{93} - 120q^{96} + 40q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.788610 1.17392i −0.557632 0.830089i
\(3\) 0.767216 2.86329i 0.442952 1.65312i −0.278335 0.960484i \(-0.589782\pi\)
0.721287 0.692636i \(-0.243551\pi\)
\(4\) −0.756188 + 1.85153i −0.378094 + 0.925767i
\(5\) 0.517671 2.17532i 0.231509 0.972833i
\(6\) −3.96631 + 1.35737i −1.61924 + 0.554143i
\(7\) 0 0
\(8\) 2.76990 0.572433i 0.979306 0.202386i
\(9\) −5.01173 2.89352i −1.67058 0.964507i
\(10\) −2.96190 + 1.10777i −0.936634 + 0.350309i
\(11\) 0.186127 0.107460i 0.0561193 0.0324005i −0.471678 0.881771i \(-0.656351\pi\)
0.527797 + 0.849370i \(0.323018\pi\)
\(12\) 4.72132 + 3.58571i 1.36293 + 1.03511i
\(13\) 4.29923 4.29923i 1.19239 1.19239i 0.215999 0.976394i \(-0.430699\pi\)
0.976394 0.215999i \(-0.0693008\pi\)
\(14\) 0 0
\(15\) −5.83140 3.15118i −1.50566 0.813631i
\(16\) −2.85636 2.80022i −0.714090 0.700054i
\(17\) 0.735462 2.74478i 0.178376 0.665707i −0.817576 0.575820i \(-0.804683\pi\)
0.995952 0.0898868i \(-0.0286505\pi\)
\(18\) 0.555529 + 8.16524i 0.130939 + 1.92457i
\(19\) 0.438952 0.760287i 0.100702 0.174422i −0.811272 0.584669i \(-0.801224\pi\)
0.911974 + 0.410247i \(0.134558\pi\)
\(20\) 3.63622 + 2.60344i 0.813084 + 0.582146i
\(21\) 0 0
\(22\) −0.272931 0.133754i −0.0581891 0.0285164i
\(23\) −0.123270 + 0.0330301i −0.0257035 + 0.00688724i −0.271648 0.962397i \(-0.587569\pi\)
0.245944 + 0.969284i \(0.420902\pi\)
\(24\) 0.486067 8.37019i 0.0992180 1.70856i
\(25\) −4.46403 2.25220i −0.892807 0.450440i
\(26\) −8.43738 1.65655i −1.65471 0.324876i
\(27\) −5.84185 + 5.84185i −1.12426 + 1.12426i
\(28\) 0 0
\(29\) 4.03098i 0.748534i 0.927321 + 0.374267i \(0.122106\pi\)
−0.927321 + 0.374267i \(0.877894\pi\)
\(30\) 0.899463 + 9.33067i 0.164219 + 1.70354i
\(31\) −7.44914 + 4.30076i −1.33790 + 0.772440i −0.986496 0.163783i \(-0.947630\pi\)
−0.351408 + 0.936222i \(0.614297\pi\)
\(32\) −1.03468 + 5.56142i −0.182908 + 0.983130i
\(33\) −0.164890 0.615379i −0.0287037 0.107124i
\(34\) −3.80215 + 1.30119i −0.652064 + 0.223152i
\(35\) 0 0
\(36\) 9.14726 7.09134i 1.52454 1.18189i
\(37\) 1.76528 0.473005i 0.290210 0.0777615i −0.110777 0.993845i \(-0.535334\pi\)
0.400987 + 0.916084i \(0.368667\pi\)
\(38\) −1.23868 + 0.0842746i −0.200940 + 0.0136711i
\(39\) −9.01151 15.6084i −1.44300 2.49934i
\(40\) 0.188668 6.32174i 0.0298311 0.999555i
\(41\) 2.91481 0.455217 0.227608 0.973753i \(-0.426909\pi\)
0.227608 + 0.973753i \(0.426909\pi\)
\(42\) 0 0
\(43\) 2.06108 + 2.06108i 0.314312 + 0.314312i 0.846578 0.532265i \(-0.178659\pi\)
−0.532265 + 0.846578i \(0.678659\pi\)
\(44\) 0.0582196 + 0.425880i 0.00877694 + 0.0642038i
\(45\) −8.88876 + 9.40422i −1.32506 + 1.40190i
\(46\) 0.135987 + 0.118661i 0.0200501 + 0.0174957i
\(47\) 1.78918 + 6.67731i 0.260979 + 0.973986i 0.964666 + 0.263476i \(0.0848689\pi\)
−0.703687 + 0.710510i \(0.748464\pi\)
\(48\) −10.2093 + 6.03021i −1.47358 + 0.870386i
\(49\) 0 0
\(50\) 0.876477 + 7.01654i 0.123953 + 0.992288i
\(51\) −7.29484 4.21168i −1.02148 0.589753i
\(52\) 4.70915 + 11.2112i 0.653042 + 1.55471i
\(53\) 3.78963 + 1.01543i 0.520546 + 0.139480i 0.509519 0.860459i \(-0.329823\pi\)
0.0110266 + 0.999939i \(0.496490\pi\)
\(54\) 11.4648 + 2.25094i 1.56016 + 0.306314i
\(55\) −0.137408 0.460514i −0.0185281 0.0620957i
\(56\) 0 0
\(57\) −1.84015 1.84015i −0.243734 0.243734i
\(58\) 4.73205 3.17887i 0.621349 0.417406i
\(59\) 5.24601 + 9.08635i 0.682972 + 1.18294i 0.974070 + 0.226249i \(0.0726462\pi\)
−0.291098 + 0.956693i \(0.594021\pi\)
\(60\) 10.2442 8.41416i 1.32252 1.08626i
\(61\) 4.16343 7.21127i 0.533073 0.923309i −0.466181 0.884689i \(-0.654371\pi\)
0.999254 0.0386198i \(-0.0122961\pi\)
\(62\) 10.9232 + 5.35309i 1.38725 + 0.679843i
\(63\) 0 0
\(64\) 7.34464 3.17116i 0.918080 0.396395i
\(65\) −7.12662 11.5778i −0.883948 1.43605i
\(66\) −0.592373 + 0.678863i −0.0729161 + 0.0835622i
\(67\) −0.759268 0.203445i −0.0927593 0.0248548i 0.212141 0.977239i \(-0.431956\pi\)
−0.304900 + 0.952384i \(0.598623\pi\)
\(68\) 4.52591 + 3.43730i 0.548847 + 0.416834i
\(69\) 0.378298i 0.0455418i
\(70\) 0 0
\(71\) 1.75036i 0.207729i 0.994591 + 0.103865i \(0.0331209\pi\)
−0.994591 + 0.103865i \(0.966879\pi\)
\(72\) −15.5383 5.14588i −1.83121 0.606447i
\(73\) −5.71993 1.53265i −0.669467 0.179383i −0.0919523 0.995763i \(-0.529311\pi\)
−0.577515 + 0.816380i \(0.695977\pi\)
\(74\) −1.94739 1.69928i −0.226379 0.197538i
\(75\) −9.87357 + 11.0539i −1.14010 + 1.27639i
\(76\) 1.07577 + 1.38765i 0.123399 + 0.159175i
\(77\) 0 0
\(78\) −11.2165 + 22.8877i −1.27002 + 2.59153i
\(79\) 6.20636 10.7497i 0.698270 1.20944i −0.270795 0.962637i \(-0.587287\pi\)
0.969066 0.246803i \(-0.0793800\pi\)
\(80\) −7.57002 + 4.76391i −0.846354 + 0.532621i
\(81\) 3.56437 + 6.17368i 0.396041 + 0.685964i
\(82\) −2.29865 3.42176i −0.253843 0.377870i
\(83\) −5.30716 5.30716i −0.582537 0.582537i 0.353063 0.935600i \(-0.385140\pi\)
−0.935600 + 0.353063i \(0.885140\pi\)
\(84\) 0 0
\(85\) −5.59005 3.02076i −0.606326 0.327647i
\(86\) 0.794160 4.04494i 0.0856365 0.436177i
\(87\) 11.5419 + 3.09263i 1.23742 + 0.331565i
\(88\) 0.454037 0.404198i 0.0484005 0.0430877i
\(89\) 11.0339 + 6.37043i 1.16959 + 0.675264i 0.953584 0.301127i \(-0.0973628\pi\)
0.216008 + 0.976392i \(0.430696\pi\)
\(90\) 18.0496 + 3.01845i 1.90259 + 0.318173i
\(91\) 0 0
\(92\) 0.0320589 0.253215i 0.00334237 0.0263995i
\(93\) 6.59923 + 24.6287i 0.684308 + 2.55387i
\(94\) 6.42768 7.36615i 0.662964 0.759761i
\(95\) −1.42663 1.34844i −0.146370 0.138347i
\(96\) 15.1301 + 7.22941i 1.54421 + 0.737848i
\(97\) −2.58579 2.58579i −0.262547 0.262547i 0.563541 0.826088i \(-0.309439\pi\)
−0.826088 + 0.563541i \(0.809439\pi\)
\(98\) 0 0
\(99\) −1.24375 −0.125002
\(100\) 7.54567 6.56223i 0.754567 0.656223i
\(101\) 7.59723 + 13.1588i 0.755952 + 1.30935i 0.944900 + 0.327361i \(0.106159\pi\)
−0.188947 + 0.981987i \(0.560508\pi\)
\(102\) 0.808602 + 11.8850i 0.0800635 + 1.17679i
\(103\) −1.48770 + 0.398628i −0.146587 + 0.0392780i −0.331367 0.943502i \(-0.607510\pi\)
0.184779 + 0.982780i \(0.440843\pi\)
\(104\) 9.44740 14.3694i 0.926394 1.40904i
\(105\) 0 0
\(106\) −1.79651 5.24951i −0.174492 0.509877i
\(107\) 3.54506 + 13.2303i 0.342714 + 1.27903i 0.895260 + 0.445544i \(0.146990\pi\)
−0.552546 + 0.833482i \(0.686344\pi\)
\(108\) −6.39885 15.2339i −0.615729 1.46588i
\(109\) 10.4283 6.02078i 0.998850 0.576686i 0.0909422 0.995856i \(-0.471012\pi\)
0.907908 + 0.419170i \(0.137679\pi\)
\(110\) −0.432246 + 0.524472i −0.0412130 + 0.0500065i
\(111\) 5.41740i 0.514197i
\(112\) 0 0
\(113\) −3.14409 + 3.14409i −0.295771 + 0.295771i −0.839355 0.543584i \(-0.817067\pi\)
0.543584 + 0.839355i \(0.317067\pi\)
\(114\) −0.709032 + 3.61135i −0.0664070 + 0.338234i
\(115\) 0.00803777 + 0.285250i 0.000749526 + 0.0265997i
\(116\) −7.46349 3.04818i −0.692968 0.283016i
\(117\) −33.9865 + 9.10666i −3.14205 + 0.841911i
\(118\) 6.52961 13.3240i 0.601100 1.22657i
\(119\) 0 0
\(120\) −17.9562 5.39035i −1.63917 0.492070i
\(121\) −5.47690 + 9.48628i −0.497900 + 0.862389i
\(122\) −11.7488 + 0.799339i −1.06369 + 0.0723688i
\(123\) 2.23629 8.34594i 0.201639 0.752528i
\(124\) −2.33006 17.0445i −0.209246 1.53064i
\(125\) −7.21015 + 8.54481i −0.644896 + 0.764271i
\(126\) 0 0
\(127\) −2.21268 + 2.21268i −0.196344 + 0.196344i −0.798431 0.602087i \(-0.794336\pi\)
0.602087 + 0.798431i \(0.294336\pi\)
\(128\) −9.51475 6.12123i −0.840993 0.541045i
\(129\) 7.48277 4.32018i 0.658821 0.380370i
\(130\) −7.97131 + 17.4965i −0.699130 + 1.53454i
\(131\) −3.21980 1.85895i −0.281316 0.162418i 0.352703 0.935735i \(-0.385263\pi\)
−0.634019 + 0.773318i \(0.718596\pi\)
\(132\) 1.26408 + 0.160042i 0.110024 + 0.0139299i
\(133\) 0 0
\(134\) 0.359937 + 1.05176i 0.0310939 + 0.0908582i
\(135\) 9.68374 + 15.7320i 0.833443 + 1.35400i
\(136\) 0.465949 8.02376i 0.0399548 0.688031i
\(137\) 0.677005 2.52662i 0.0578404 0.215863i −0.930957 0.365130i \(-0.881025\pi\)
0.988797 + 0.149267i \(0.0476912\pi\)
\(138\) 0.444093 0.298330i 0.0378037 0.0253955i
\(139\) −10.9071 −0.925130 −0.462565 0.886585i \(-0.653071\pi\)
−0.462565 + 0.886585i \(0.653071\pi\)
\(140\) 0 0
\(141\) 20.4918 1.72572
\(142\) 2.05478 1.38035i 0.172434 0.115836i
\(143\) 0.338205 1.26220i 0.0282821 0.105550i
\(144\) 6.21281 + 22.2989i 0.517734 + 1.85824i
\(145\) 8.76866 + 2.08672i 0.728198 + 0.173293i
\(146\) 2.71158 + 7.92342i 0.224412 + 0.655747i
\(147\) 0 0
\(148\) −0.459097 + 3.62615i −0.0377376 + 0.298068i
\(149\) −9.73603 5.62110i −0.797606 0.460498i 0.0450271 0.998986i \(-0.485663\pi\)
−0.842634 + 0.538487i \(0.818996\pi\)
\(150\) 20.7628 + 2.87359i 1.69528 + 0.234628i
\(151\) −7.86444 + 4.54054i −0.639999 + 0.369504i −0.784614 0.619984i \(-0.787139\pi\)
0.144615 + 0.989488i \(0.453806\pi\)
\(152\) 0.780637 2.35719i 0.0633180 0.191193i
\(153\) −11.6280 + 11.6280i −0.940069 + 0.940069i
\(154\) 0 0
\(155\) 5.49933 + 18.4306i 0.441717 + 1.48038i
\(156\) 35.7139 4.88224i 2.85940 0.390892i
\(157\) 5.42108 20.2317i 0.432649 1.61467i −0.313981 0.949429i \(-0.601663\pi\)
0.746630 0.665240i \(-0.231671\pi\)
\(158\) −17.5138 + 1.19156i −1.39332 + 0.0947956i
\(159\) 5.81493 10.0717i 0.461154 0.798742i
\(160\) 11.5623 + 5.12975i 0.914076 + 0.405542i
\(161\) 0 0
\(162\) 4.43652 9.05292i 0.348566 0.711265i
\(163\) −15.3601 + 4.11572i −1.20309 + 0.322368i −0.804049 0.594563i \(-0.797325\pi\)
−0.399046 + 0.916931i \(0.630659\pi\)
\(164\) −2.20414 + 5.39687i −0.172115 + 0.421425i
\(165\) −1.42401 + 0.0401256i −0.110859 + 0.00312377i
\(166\) −2.04492 + 10.4155i −0.158716 + 0.808398i
\(167\) 12.0570 12.0570i 0.932995 0.932995i −0.0648970 0.997892i \(-0.520672\pi\)
0.997892 + 0.0648970i \(0.0206719\pi\)
\(168\) 0 0
\(169\) 23.9668i 1.84360i
\(170\) 0.862235 + 8.94448i 0.0661304 + 0.686011i
\(171\) −4.39981 + 2.54023i −0.336462 + 0.194256i
\(172\) −5.37473 + 2.25760i −0.409819 + 0.172140i
\(173\) −0.117498 0.438509i −0.00893321 0.0333392i 0.961315 0.275450i \(-0.0888269\pi\)
−0.970249 + 0.242111i \(0.922160\pi\)
\(174\) −5.47151 15.9881i −0.414794 1.21206i
\(175\) 0 0
\(176\) −0.832556 0.214249i −0.0627563 0.0161497i
\(177\) 30.0417 8.04964i 2.25807 0.605048i
\(178\) −1.22306 17.9767i −0.0916724 1.34741i
\(179\) 2.42760 + 4.20473i 0.181448 + 0.314276i 0.942374 0.334562i \(-0.108588\pi\)
−0.760926 + 0.648839i \(0.775255\pi\)
\(180\) −10.6907 23.5692i −0.796835 1.75674i
\(181\) 6.88269 0.511586 0.255793 0.966732i \(-0.417663\pi\)
0.255793 + 0.966732i \(0.417663\pi\)
\(182\) 0 0
\(183\) −17.4537 17.4537i −1.29022 1.29022i
\(184\) −0.322537 + 0.162054i −0.0237777 + 0.0119467i
\(185\) −0.115104 4.08491i −0.00846264 0.300328i
\(186\) 23.7079 27.1694i 1.73835 1.99216i
\(187\) −0.158066 0.589909i −0.0115589 0.0431384i
\(188\) −13.7162 1.73657i −1.00036 0.126653i
\(189\) 0 0
\(190\) −0.457904 + 2.73815i −0.0332198 + 0.198646i
\(191\) −14.9328 8.62145i −1.08050 0.623826i −0.149468 0.988767i \(-0.547756\pi\)
−0.931031 + 0.364940i \(0.881089\pi\)
\(192\) −3.44502 23.4628i −0.248623 1.69328i
\(193\) 19.5798 + 5.24638i 1.40938 + 0.377643i 0.881705 0.471802i \(-0.156396\pi\)
0.527678 + 0.849445i \(0.323063\pi\)
\(194\) −0.996337 + 5.07470i −0.0715328 + 0.364342i
\(195\) −38.6182 + 11.5229i −2.76551 + 0.825172i
\(196\) 0 0
\(197\) −12.9394 12.9394i −0.921891 0.921891i 0.0752724 0.997163i \(-0.476017\pi\)
−0.997163 + 0.0752724i \(0.976017\pi\)
\(198\) 0.980837 + 1.46007i 0.0697050 + 0.103763i
\(199\) −10.9429 18.9536i −0.775720 1.34359i −0.934389 0.356255i \(-0.884053\pi\)
0.158669 0.987332i \(-0.449280\pi\)
\(200\) −13.6541 3.68299i −0.965494 0.260427i
\(201\) −1.16504 + 2.01792i −0.0821759 + 0.142333i
\(202\) 9.45614 19.2957i 0.665332 1.35764i
\(203\) 0 0
\(204\) 13.3143 10.3218i 0.932190 0.722673i
\(205\) 1.50891 6.34064i 0.105387 0.442850i
\(206\) 1.64117 + 1.43208i 0.114346 + 0.0997778i
\(207\) 0.713368 + 0.191146i 0.0495825 + 0.0132856i
\(208\) −24.3189 + 0.241376i −1.68621 + 0.0167364i
\(209\) 0.188679i 0.0130512i
\(210\) 0 0
\(211\) 3.39701i 0.233860i −0.993140 0.116930i \(-0.962695\pi\)
0.993140 0.116930i \(-0.0373053\pi\)
\(212\) −4.74577 + 6.24877i −0.325941 + 0.429168i
\(213\) 5.01178 + 1.34290i 0.343401 + 0.0920141i
\(214\) 12.7357 14.5952i 0.870597 0.997708i
\(215\) 5.55047 3.41655i 0.378539 0.233007i
\(216\) −12.8372 + 19.5254i −0.873464 + 1.32853i
\(217\) 0 0
\(218\) −15.2918 7.49397i −1.03569 0.507555i
\(219\) −8.77684 + 15.2019i −0.593084 + 1.02725i
\(220\) 0.956563 + 0.0938191i 0.0644915 + 0.00632528i
\(221\) −8.63853 14.9624i −0.581090 1.00648i
\(222\) −6.35961 + 4.27222i −0.426829 + 0.286732i
\(223\) 19.7618 + 19.7618i 1.32335 + 1.32335i 0.911048 + 0.412300i \(0.135275\pi\)
0.412300 + 0.911048i \(0.364725\pi\)
\(224\) 0 0
\(225\) 15.8557 + 24.2042i 1.05705 + 1.61361i
\(226\) 6.17039 + 1.21146i 0.410448 + 0.0805850i
\(227\) 20.1598 + 5.40179i 1.33805 + 0.358530i 0.855711 0.517454i \(-0.173120\pi\)
0.482340 + 0.875984i \(0.339787\pi\)
\(228\) 4.79860 2.01560i 0.317795 0.133486i
\(229\) −2.82162 1.62906i −0.186458 0.107652i 0.403865 0.914818i \(-0.367666\pi\)
−0.590323 + 0.807167i \(0.701000\pi\)
\(230\) 0.328523 0.234387i 0.0216622 0.0154550i
\(231\) 0 0
\(232\) 2.30746 + 11.1654i 0.151492 + 0.733043i
\(233\) 1.78808 + 6.67321i 0.117141 + 0.437176i 0.999438 0.0335166i \(-0.0106707\pi\)
−0.882297 + 0.470693i \(0.844004\pi\)
\(234\) 37.4926 + 32.7159i 2.45097 + 2.13871i
\(235\) 15.4515 0.435392i 1.00794 0.0284018i
\(236\) −20.7907 + 2.84217i −1.35336 + 0.185010i
\(237\) −26.0180 26.0180i −1.69005 1.69005i
\(238\) 0 0
\(239\) −10.2770 −0.664761 −0.332380 0.943145i \(-0.607852\pi\)
−0.332380 + 0.943145i \(0.607852\pi\)
\(240\) 7.83260 + 25.3301i 0.505592 + 1.63505i
\(241\) −2.39425 4.14696i −0.154227 0.267129i 0.778550 0.627582i \(-0.215955\pi\)
−0.932777 + 0.360453i \(0.882622\pi\)
\(242\) 15.4553 1.05151i 0.993504 0.0675939i
\(243\) −3.52868 + 0.945506i −0.226365 + 0.0606542i
\(244\) 10.2036 + 13.1618i 0.653218 + 0.842599i
\(245\) 0 0
\(246\) −11.5611 + 3.95647i −0.737106 + 0.252255i
\(247\) −1.38149 5.15581i −0.0879023 0.328056i
\(248\) −18.1714 + 16.1768i −1.15389 + 1.02723i
\(249\) −19.2677 + 11.1242i −1.22104 + 0.704968i
\(250\) 15.7169 + 1.72564i 0.994027 + 0.109139i
\(251\) 26.2656i 1.65787i −0.559347 0.828934i \(-0.688948\pi\)
0.559347 0.828934i \(-0.311052\pi\)
\(252\) 0 0
\(253\) −0.0193944 + 0.0193944i −0.00121931 + 0.00121931i
\(254\) 4.34246 + 0.852574i 0.272470 + 0.0534952i
\(255\) −12.9381 + 13.6884i −0.810214 + 0.857198i
\(256\) 0.317582 + 15.9968i 0.0198489 + 0.999803i
\(257\) 22.3889 5.99909i 1.39658 0.374213i 0.519466 0.854491i \(-0.326131\pi\)
0.877116 + 0.480278i \(0.159464\pi\)
\(258\) −10.9725 5.37725i −0.683121 0.334773i
\(259\) 0 0
\(260\) 26.8257 4.44020i 1.66366 0.275369i
\(261\) 11.6637 20.2022i 0.721966 1.25048i
\(262\) 0.356902 + 5.24579i 0.0220495 + 0.324086i
\(263\) 1.54287 5.75806i 0.0951373 0.355057i −0.901903 0.431939i \(-0.857830\pi\)
0.997040 + 0.0768816i \(0.0244963\pi\)
\(264\) −0.808992 1.61015i −0.0497900 0.0990977i
\(265\) 4.17066 7.71800i 0.256202 0.474113i
\(266\) 0 0
\(267\) 26.7058 26.7058i 1.63437 1.63437i
\(268\) 0.950835 1.25197i 0.0580815 0.0764761i
\(269\) 0.0578535 0.0334017i 0.00352739 0.00203654i −0.498235 0.867042i \(-0.666018\pi\)
0.501763 + 0.865005i \(0.332685\pi\)
\(270\) 10.8315 23.7744i 0.659184 1.44686i
\(271\) 2.40782 + 1.39016i 0.146265 + 0.0844459i 0.571346 0.820709i \(-0.306421\pi\)
−0.425082 + 0.905155i \(0.639755\pi\)
\(272\) −9.78672 + 5.78063i −0.593407 + 0.350502i
\(273\) 0 0
\(274\) −3.49994 + 1.19776i −0.211439 + 0.0723596i
\(275\) −1.07290 + 0.0605121i −0.0646981 + 0.00364902i
\(276\) −0.700432 0.286065i −0.0421611 0.0172191i
\(277\) 1.48249 5.53275i 0.0890745 0.332430i −0.906980 0.421174i \(-0.861618\pi\)
0.996055 + 0.0887431i \(0.0282850\pi\)
\(278\) 8.60147 + 12.8041i 0.515882 + 0.767940i
\(279\) 49.7774 2.98010
\(280\) 0 0
\(281\) −22.9229 −1.36746 −0.683732 0.729734i \(-0.739644\pi\)
−0.683732 + 0.729734i \(0.739644\pi\)
\(282\) −16.1600 24.0557i −0.962314 1.43250i
\(283\) −0.147161 + 0.549214i −0.00874784 + 0.0326474i −0.970162 0.242458i \(-0.922046\pi\)
0.961414 + 0.275106i \(0.0887129\pi\)
\(284\) −3.24085 1.32360i −0.192309 0.0785411i
\(285\) −4.95551 + 3.05032i −0.293539 + 0.180686i
\(286\) −1.74843 + 0.598356i −0.103387 + 0.0353815i
\(287\) 0 0
\(288\) 21.2776 24.8785i 1.25380 1.46598i
\(289\) 7.72952 + 4.46264i 0.454677 + 0.262508i
\(290\) −4.46541 11.9393i −0.262218 0.701102i
\(291\) −9.38773 + 5.42001i −0.550318 + 0.317726i
\(292\) 7.16310 9.43167i 0.419188 0.551947i
\(293\) −1.43269 + 1.43269i −0.0836989 + 0.0836989i −0.747717 0.664018i \(-0.768850\pi\)
0.664018 + 0.747717i \(0.268850\pi\)
\(294\) 0 0
\(295\) 22.4814 6.70801i 1.30892 0.390555i
\(296\) 4.61887 2.32068i 0.268467 0.134887i
\(297\) −0.459557 + 1.71509i −0.0266662 + 0.0995196i
\(298\) 1.07920 + 15.8622i 0.0625162 + 0.918872i
\(299\) −0.387962 + 0.671970i −0.0224364 + 0.0388610i
\(300\) −13.0004 26.6401i −0.750578 1.53807i
\(301\) 0 0
\(302\) 11.5322 + 5.65153i 0.663604 + 0.325209i
\(303\) 43.5061 11.6574i 2.49936 0.669702i
\(304\) −3.38277 + 0.942493i −0.194015 + 0.0540557i
\(305\) −13.5315 12.7899i −0.774814 0.732345i
\(306\) 22.8204 + 4.48042i 1.30455 + 0.256128i
\(307\) −1.51038 + 1.51038i −0.0862017 + 0.0862017i −0.748893 0.662691i \(-0.769414\pi\)
0.662691 + 0.748893i \(0.269414\pi\)
\(308\) 0 0
\(309\) 4.56555i 0.259725i
\(310\) 17.2993 20.9904i 0.982535 1.19217i
\(311\) 11.0383 6.37294i 0.625922 0.361376i −0.153249 0.988188i \(-0.548974\pi\)
0.779171 + 0.626811i \(0.215640\pi\)
\(312\) −33.8957 38.0751i −1.91897 2.15558i
\(313\) −5.26991 19.6676i −0.297873 1.11168i −0.938909 0.344166i \(-0.888162\pi\)
0.641036 0.767511i \(-0.278505\pi\)
\(314\) −28.0256 + 9.59103i −1.58158 + 0.541253i
\(315\) 0 0
\(316\) 15.2103 + 19.6201i 0.855648 + 1.10372i
\(317\) −9.55038 + 2.55902i −0.536403 + 0.143729i −0.516843 0.856080i \(-0.672893\pi\)
−0.0195596 + 0.999809i \(0.506226\pi\)
\(318\) −16.4092 + 1.11641i −0.920180 + 0.0626052i
\(319\) 0.433170 + 0.750272i 0.0242528 + 0.0420072i
\(320\) −3.09618 17.6186i −0.173082 0.984907i
\(321\) 40.6021 2.26619
\(322\) 0 0
\(323\) −1.76399 1.76399i −0.0981509 0.0981509i
\(324\) −14.1261 + 1.93110i −0.784784 + 0.107283i
\(325\) −28.8746 + 9.50920i −1.60168 + 0.527475i
\(326\) 16.9447 + 14.7859i 0.938478 + 0.818912i
\(327\) −9.23848 34.4785i −0.510889 1.90666i
\(328\) 8.07372 1.66853i 0.445797 0.0921294i
\(329\) 0 0
\(330\) 1.17009 + 1.64003i 0.0644113 + 0.0902806i
\(331\) 25.4182 + 14.6752i 1.39711 + 0.806621i 0.994089 0.108570i \(-0.0346273\pi\)
0.403020 + 0.915191i \(0.367961\pi\)
\(332\) 13.8396 5.81318i 0.759547 0.319040i
\(333\) −10.2157 2.73730i −0.559819 0.150003i
\(334\) −23.6622 4.64569i −1.29474 0.254201i
\(335\) −0.835609 + 1.54633i −0.0456542 + 0.0844852i
\(336\) 0 0
\(337\) 21.9434 + 21.9434i 1.19533 + 1.19533i 0.975549 + 0.219784i \(0.0705353\pi\)
0.219784 + 0.975549i \(0.429465\pi\)
\(338\) −28.1352 + 18.9005i −1.53035 + 1.02805i
\(339\) 6.59025 + 11.4146i 0.357933 + 0.619958i
\(340\) 9.82016 8.06591i 0.532573 0.437435i
\(341\) −0.924322 + 1.60097i −0.0500548 + 0.0866975i
\(342\) 6.45177 + 3.16179i 0.348872 + 0.170970i
\(343\) 0 0
\(344\) 6.88881 + 4.52915i 0.371420 + 0.244195i
\(345\) 0.822920 + 0.195834i 0.0443045 + 0.0105433i
\(346\) −0.422115 + 0.483746i −0.0226930 + 0.0260063i
\(347\) 7.84706 + 2.10261i 0.421252 + 0.112874i 0.463217 0.886245i \(-0.346695\pi\)
−0.0419646 + 0.999119i \(0.513362\pi\)
\(348\) −14.4539 + 19.0315i −0.774811 + 1.02020i
\(349\) 8.46417i 0.453076i −0.974002 0.226538i \(-0.927259\pi\)
0.974002 0.226538i \(-0.0727408\pi\)
\(350\) 0 0
\(351\) 50.2309i 2.68113i
\(352\) 0.405050 + 1.14632i 0.0215892 + 0.0610988i
\(353\) −20.0892 5.38289i −1.06924 0.286502i −0.319060 0.947735i \(-0.603367\pi\)
−0.750181 + 0.661232i \(0.770034\pi\)
\(354\) −33.1408 28.9186i −1.76141 1.53700i
\(355\) 3.80759 + 0.906108i 0.202086 + 0.0480912i
\(356\) −20.1388 + 15.6124i −1.06735 + 0.827457i
\(357\) 0 0
\(358\) 3.02160 6.16571i 0.159696 0.325868i
\(359\) 11.7824 20.4077i 0.621851 1.07708i −0.367289 0.930107i \(-0.619714\pi\)
0.989141 0.146972i \(-0.0469526\pi\)
\(360\) −19.2376 + 31.1369i −1.01391 + 1.64106i
\(361\) 9.11464 + 15.7870i 0.479718 + 0.830896i
\(362\) −5.42776 8.07974i −0.285277 0.424662i
\(363\) 22.9600 + 22.9600i 1.20509 + 1.20509i
\(364\) 0 0
\(365\) −6.29504 + 11.6493i −0.329498 + 0.609751i
\(366\) −6.72513 + 34.2535i −0.351528 + 1.79046i
\(367\) −5.15227 1.38055i −0.268946 0.0720639i 0.121826 0.992552i \(-0.461125\pi\)
−0.390772 + 0.920488i \(0.627792\pi\)
\(368\) 0.444594 + 0.250836i 0.0231761 + 0.0130758i
\(369\) −14.6082 8.43407i −0.760474 0.439060i
\(370\) −4.70459 + 3.35652i −0.244580 + 0.174497i
\(371\) 0 0
\(372\) −50.5911 6.40519i −2.62302 0.332094i
\(373\) −8.34406 31.1404i −0.432039 1.61239i −0.748055 0.663637i \(-0.769012\pi\)
0.316016 0.948754i \(-0.397655\pi\)
\(374\) −0.567856 + 0.650765i −0.0293631 + 0.0336503i
\(375\) 18.9345 + 27.2005i 0.977774 + 1.40463i
\(376\) 8.77815 + 17.4713i 0.452699 + 0.901012i
\(377\) 17.3301 + 17.3301i 0.892546 + 0.892546i
\(378\) 0 0
\(379\) −3.18566 −0.163637 −0.0818183 0.996647i \(-0.526073\pi\)
−0.0818183 + 0.996647i \(0.526073\pi\)
\(380\) 3.57548 1.62179i 0.183418 0.0831961i
\(381\) 4.63794 + 8.03316i 0.237609 + 0.411551i
\(382\) 1.65524 + 24.3289i 0.0846893 + 1.24478i
\(383\) 27.2291 7.29602i 1.39134 0.372809i 0.516114 0.856520i \(-0.327378\pi\)
0.875228 + 0.483711i \(0.160711\pi\)
\(384\) −24.8267 + 22.5472i −1.26693 + 1.15061i
\(385\) 0 0
\(386\) −9.28195 27.1225i −0.472439 1.38050i
\(387\) −4.36579 16.2934i −0.221926 0.828238i
\(388\) 6.74302 2.83234i 0.342325 0.143790i
\(389\) −14.1562 + 8.17306i −0.717745 + 0.414391i −0.813922 0.580974i \(-0.802672\pi\)
0.0961769 + 0.995364i \(0.469339\pi\)
\(390\) 43.9817 + 36.2477i 2.22710 + 1.83547i
\(391\) 0.362641i 0.0183395i
\(392\) 0 0
\(393\) −7.79301 + 7.79301i −0.393105 + 0.393105i
\(394\) −4.98569 + 25.3939i −0.251175 + 1.27933i
\(395\) −20.1713 19.0656i −1.01493 0.959297i
\(396\) 0.940512 2.30285i 0.0472625 0.115723i
\(397\) 14.6722 3.93142i 0.736379 0.197312i 0.128911 0.991656i \(-0.458852\pi\)
0.607468 + 0.794344i \(0.292185\pi\)
\(398\) −13.6204 + 27.7931i −0.682730 + 1.39314i
\(399\) 0 0
\(400\) 6.44425 + 18.9333i 0.322212 + 0.946667i
\(401\) −11.8802 + 20.5772i −0.593271 + 1.02758i 0.400517 + 0.916289i \(0.368830\pi\)
−0.993788 + 0.111287i \(0.964503\pi\)
\(402\) 3.28764 0.223677i 0.163973 0.0111560i
\(403\) −13.5356 + 50.5156i −0.674256 + 2.51636i
\(404\) −30.1089 + 4.11601i −1.49797 + 0.204779i
\(405\) 15.2749 4.55772i 0.759015 0.226475i
\(406\) 0 0
\(407\) 0.277736 0.277736i 0.0137669 0.0137669i
\(408\) −22.6169 7.49010i −1.11970 0.370815i
\(409\) 19.5448 11.2842i 0.966427 0.557967i 0.0682817 0.997666i \(-0.478248\pi\)
0.898145 + 0.439699i \(0.144915\pi\)
\(410\) −8.63337 + 3.22895i −0.426372 + 0.159467i
\(411\) −6.71502 3.87692i −0.331228 0.191234i
\(412\) 0.386907 3.05596i 0.0190615 0.150557i
\(413\) 0 0
\(414\) −0.338178 0.988179i −0.0166206 0.0485663i
\(415\) −14.2921 + 8.79742i −0.701574 + 0.431848i
\(416\) 19.4615 + 28.3582i 0.954179 + 1.39037i
\(417\) −8.36812 + 31.2302i −0.409789 + 1.52935i
\(418\) −0.221495 + 0.148794i −0.0108337 + 0.00727778i
\(419\) 12.4351 0.607495 0.303748 0.952753i \(-0.401762\pi\)
0.303748 + 0.952753i \(0.401762\pi\)
\(420\) 0 0
\(421\) −31.2799 −1.52449 −0.762244 0.647289i \(-0.775902\pi\)
−0.762244 + 0.647289i \(0.775902\pi\)
\(422\) −3.98783 + 2.67892i −0.194124 + 0.130408i
\(423\) 10.3541 38.6419i 0.503432 1.87883i
\(424\) 11.0781 + 0.643321i 0.538002 + 0.0312424i
\(425\) −9.46492 + 10.5964i −0.459116 + 0.514000i
\(426\) −2.37588 6.94246i −0.115112 0.336364i
\(427\) 0 0
\(428\) −27.1772 3.44083i −1.31366 0.166319i
\(429\) −3.35456 1.93676i −0.161960 0.0935075i
\(430\) −8.38793 3.82150i −0.404502 0.184289i
\(431\) 16.5660 9.56440i 0.797957 0.460701i −0.0447992 0.998996i \(-0.514265\pi\)
0.842756 + 0.538295i \(0.180931\pi\)
\(432\) 33.0449 0.327984i 1.58987 0.0157801i
\(433\) 4.87478 4.87478i 0.234267 0.234267i −0.580204 0.814471i \(-0.697027\pi\)
0.814471 + 0.580204i \(0.197027\pi\)
\(434\) 0 0
\(435\) 12.7023 23.5063i 0.609030 1.12704i
\(436\) 3.26193 + 23.8612i 0.156218 + 1.14274i
\(437\) −0.0289972 + 0.108219i −0.00138712 + 0.00517682i
\(438\) 24.7674 1.68507i 1.18343 0.0805158i
\(439\) −16.3920 + 28.3918i −0.782349 + 1.35507i 0.148222 + 0.988954i \(0.452645\pi\)
−0.930570 + 0.366113i \(0.880688\pi\)
\(440\) −0.644219 1.19692i −0.0307120 0.0570608i
\(441\) 0 0
\(442\) −10.7522 + 21.9404i −0.511431 + 1.04360i
\(443\) −11.6298 + 3.11619i −0.552547 + 0.148055i −0.524280 0.851546i \(-0.675666\pi\)
−0.0282670 + 0.999600i \(0.508999\pi\)
\(444\) 10.0305 + 4.09657i 0.476027 + 0.194415i
\(445\) 19.5697 20.7045i 0.927691 0.981488i
\(446\) 7.61447 38.7832i 0.360555 1.83644i
\(447\) −23.5645 + 23.5645i −1.11456 + 1.11456i
\(448\) 0 0
\(449\) 5.52889i 0.260925i −0.991453 0.130462i \(-0.958354\pi\)
0.991453 0.130462i \(-0.0416462\pi\)
\(450\) 15.9098 37.7011i 0.749997 1.77725i
\(451\) 0.542523 0.313226i 0.0255464 0.0147492i
\(452\) −3.44387 8.19892i −0.161986 0.385645i
\(453\) 6.96714 + 26.0017i 0.327345 + 1.22167i
\(454\) −9.55691 27.9259i −0.448528 1.31063i
\(455\) 0 0
\(456\) −6.15038 4.04366i −0.288018 0.189362i
\(457\) −26.0905 + 6.99093i −1.22046 + 0.327022i −0.810859 0.585242i \(-0.801000\pi\)
−0.409603 + 0.912264i \(0.634333\pi\)
\(458\) 0.312765 + 4.59706i 0.0146145 + 0.214806i
\(459\) 11.7381 + 20.3310i 0.547889 + 0.948972i
\(460\) −0.534228 0.200820i −0.0249085 0.00936330i
\(461\) −8.24886 −0.384188 −0.192094 0.981377i \(-0.561528\pi\)
−0.192094 + 0.981377i \(0.561528\pi\)
\(462\) 0 0
\(463\) −15.4884 15.4884i −0.719806 0.719806i 0.248759 0.968565i \(-0.419977\pi\)
−0.968565 + 0.248759i \(0.919977\pi\)
\(464\) 11.2876 11.5139i 0.524014 0.534520i
\(465\) 56.9914 1.60590i 2.64291 0.0744719i
\(466\) 6.42373 7.36163i 0.297573 0.341021i
\(467\) 10.1688 + 37.9505i 0.470556 + 1.75614i 0.637779 + 0.770220i \(0.279853\pi\)
−0.167223 + 0.985919i \(0.553480\pi\)
\(468\) 8.83889 69.8135i 0.408578 3.22713i
\(469\) 0 0
\(470\) −12.6963 17.7955i −0.585637 0.820845i
\(471\) −53.7702 31.0442i −2.47760 1.43044i
\(472\) 19.7322 + 22.1652i 0.908249 + 1.02024i
\(473\) 0.605106 + 0.162138i 0.0278228 + 0.00745510i
\(474\) −10.0250 + 51.0611i −0.460466 + 2.34532i
\(475\) −3.67181 + 2.40534i −0.168474 + 0.110365i
\(476\) 0 0
\(477\) −16.0544 16.0544i −0.735082 0.735082i
\(478\) 8.10451 + 12.0643i 0.370692 + 0.551810i
\(479\) −1.93358 3.34906i −0.0883475 0.153022i 0.818465 0.574556i \(-0.194825\pi\)
−0.906813 + 0.421534i \(0.861492\pi\)
\(480\) 23.5587 29.1704i 1.07530 1.33144i
\(481\) 5.55578 9.62290i 0.253322 0.438767i
\(482\) −2.98008 + 6.08099i −0.135739 + 0.276982i
\(483\) 0 0
\(484\) −13.4226 17.3141i −0.610118 0.787004i
\(485\) −6.96351 + 4.28633i −0.316197 + 0.194632i
\(486\) 3.89270 + 3.39676i 0.176576 + 0.154080i
\(487\) −0.429962 0.115208i −0.0194834 0.00522057i 0.249064 0.968487i \(-0.419877\pi\)
−0.268548 + 0.963266i \(0.586544\pi\)
\(488\) 7.40430 22.3578i 0.335177 1.01209i
\(489\) 47.1380i 2.13165i
\(490\) 0 0
\(491\) 40.4240i 1.82431i 0.409844 + 0.912156i \(0.365583\pi\)
−0.409844 + 0.912156i \(0.634417\pi\)
\(492\) 13.7617 + 10.4517i 0.620427 + 0.471198i
\(493\) 11.0641 + 2.96463i 0.498304 + 0.133520i
\(494\) −4.96306 + 5.68769i −0.223298 + 0.255901i
\(495\) −0.643855 + 2.70556i −0.0289391 + 0.121606i
\(496\) 33.3205 + 8.57467i 1.49613 + 0.385014i
\(497\) 0 0
\(498\) 28.2536 + 13.8461i 1.26608 + 0.620459i
\(499\) 15.8937 27.5287i 0.711501 1.23236i −0.252793 0.967520i \(-0.581349\pi\)
0.964294 0.264835i \(-0.0853174\pi\)
\(500\) −10.3688 19.8113i −0.463706 0.885989i
\(501\) −25.2723 43.7728i −1.12908 1.95563i
\(502\) −30.8337 + 20.7133i −1.37618 + 0.924479i
\(503\) −6.28613 6.28613i −0.280285 0.280285i 0.552938 0.833222i \(-0.313507\pi\)
−0.833222 + 0.552938i \(0.813507\pi\)
\(504\) 0 0
\(505\) 32.5574 9.71448i 1.44879 0.432289i
\(506\) 0.0380621 + 0.00747289i 0.00169207 + 0.000332210i
\(507\) −68.6239 18.3877i −3.04769 0.816627i
\(508\) −2.42365 5.77006i −0.107532 0.256005i
\(509\) 2.67962 + 1.54708i 0.118772 + 0.0685730i 0.558209 0.829700i \(-0.311489\pi\)
−0.439437 + 0.898273i \(0.644822\pi\)
\(510\) 26.2722 + 4.39352i 1.16335 + 0.194548i
\(511\) 0 0
\(512\) 18.5286 12.9881i 0.818857 0.573998i
\(513\) 1.87719 + 7.00577i 0.0828800 + 0.309312i
\(514\) −24.6986 21.5519i −1.08941 0.950614i
\(515\) 0.0970049 + 3.44258i 0.00427455 + 0.151698i
\(516\) 2.34058 + 17.1215i 0.103038 + 0.753731i
\(517\) 1.05056 + 1.05056i 0.0462035 + 0.0462035i
\(518\) 0 0
\(519\) −1.34572 −0.0590707
\(520\) −26.3675 27.9898i −1.15629 1.22743i
\(521\) −2.55693 4.42873i −0.112021 0.194026i 0.804564 0.593866i \(-0.202399\pi\)
−0.916585 + 0.399840i \(0.869066\pi\)
\(522\) −32.9139 + 2.23932i −1.44060 + 0.0980125i
\(523\) 24.4856 6.56089i 1.07068 0.286888i 0.319907 0.947449i \(-0.396348\pi\)
0.750772 + 0.660561i \(0.229682\pi\)
\(524\) 5.87669 4.55586i 0.256725 0.199024i
\(525\) 0 0
\(526\) −7.97623 + 2.72966i −0.347780 + 0.119019i
\(527\) 6.32609 + 23.6093i 0.275569 + 1.02844i
\(528\) −1.25221 + 2.21947i −0.0544954 + 0.0965902i
\(529\) −19.9045 + 11.4919i −0.865412 + 0.499646i
\(530\) −12.3494 + 1.19046i −0.536422 + 0.0517103i
\(531\) 60.7177i 2.63493i
\(532\) 0 0
\(533\) 12.5314 12.5314i 0.542797 0.542797i
\(534\) −52.4110 10.2901i −2.26804 0.445295i
\(535\) 30.6154 0.862680i 1.32362 0.0372969i
\(536\) −2.21955 0.128892i −0.0958700 0.00556728i
\(537\) 13.9019 3.72499i 0.599909 0.160745i
\(538\) −0.0848349 0.0415746i −0.00365749 0.00179241i
\(539\) 0 0
\(540\) −36.4511 + 6.03339i −1.56861 + 0.259636i
\(541\) −0.501976 + 0.869449i −0.0215817 + 0.0373805i −0.876615 0.481193i \(-0.840204\pi\)
0.855033 + 0.518574i \(0.173537\pi\)
\(542\) −0.266897 3.92288i −0.0114642 0.168502i
\(543\) 5.28051 19.7071i 0.226608 0.845713i
\(544\) 14.5039 + 6.93019i 0.621850 + 0.297129i
\(545\) −7.69870 25.8017i −0.329776 1.10522i
\(546\) 0 0
\(547\) −11.1953 + 11.1953i −0.478676 + 0.478676i −0.904708 0.426032i \(-0.859911\pi\)
0.426032 + 0.904708i \(0.359911\pi\)
\(548\) 4.16617 + 3.16409i 0.177970 + 0.135163i
\(549\) −41.7320 + 24.0940i −1.78108 + 1.02831i
\(550\) 0.917134 + 1.21178i 0.0391067 + 0.0516704i
\(551\) 3.06470 + 1.76940i 0.130561 + 0.0753792i
\(552\) 0.216550 + 1.04785i 0.00921700 + 0.0445993i
\(553\) 0 0
\(554\) −7.66412 + 2.62285i −0.325617 + 0.111434i
\(555\) −11.7846 2.80443i −0.500227 0.119041i
\(556\) 8.24783 20.1949i 0.349786 0.856455i
\(557\) −2.73237 + 10.1973i −0.115774 + 0.432075i −0.999344 0.0362252i \(-0.988467\pi\)
0.883570 + 0.468300i \(0.155133\pi\)
\(558\) −39.2550 58.4348i −1.66180 2.47374i
\(559\) 17.7221 0.749567
\(560\) 0 0
\(561\) −1.81035 −0.0764331
\(562\) 18.0772 + 26.9097i 0.762541 + 1.13512i
\(563\) 1.92836 7.19675i 0.0812708 0.303307i −0.913311 0.407263i \(-0.866483\pi\)
0.994582 + 0.103956i \(0.0331501\pi\)
\(564\) −15.4956 + 37.9412i −0.652483 + 1.59761i
\(565\) 5.21180 + 8.46701i 0.219262 + 0.356210i
\(566\) 0.760788 0.260360i 0.0319783 0.0109437i
\(567\) 0 0
\(568\) 1.00196 + 4.84831i 0.0420414 + 0.203430i
\(569\) 23.6353 + 13.6458i 0.990841 + 0.572063i 0.905526 0.424291i \(-0.139477\pi\)
0.0853157 + 0.996354i \(0.472810\pi\)
\(570\) 7.48881 + 3.41186i 0.313672 + 0.142907i
\(571\) −5.57769 + 3.22028i −0.233419 + 0.134765i −0.612148 0.790743i \(-0.709694\pi\)
0.378729 + 0.925507i \(0.376361\pi\)
\(572\) 2.08126 + 1.58066i 0.0870217 + 0.0660906i
\(573\) −36.1424 + 36.1424i −1.50987 + 1.50987i
\(574\) 0 0
\(575\) 0.624671 + 0.130181i 0.0260506 + 0.00542892i
\(576\) −45.9852 5.35889i −1.91605 0.223287i
\(577\) −3.83327 + 14.3060i −0.159581 + 0.595565i 0.839088 + 0.543995i \(0.183089\pi\)
−0.998669 + 0.0515697i \(0.983578\pi\)
\(578\) −0.856784 12.5931i −0.0356375 0.523805i
\(579\) 30.0438 52.0374i 1.24858 2.16260i
\(580\) −10.4944 + 14.6575i −0.435756 + 0.608621i
\(581\) 0 0
\(582\) 13.7659 + 6.74619i 0.570616 + 0.279639i
\(583\) 0.814469 0.218236i 0.0337318 0.00903842i
\(584\) −16.7209 0.971005i −0.691918 0.0401805i
\(585\) 2.21608 + 78.6458i 0.0916235 + 3.25160i
\(586\) 2.81171 + 0.552035i 0.116151 + 0.0228043i
\(587\) −15.0807 + 15.0807i −0.622447 + 0.622447i −0.946156 0.323710i \(-0.895070\pi\)
0.323710 + 0.946156i \(0.395070\pi\)
\(588\) 0 0
\(589\) 7.55131i 0.311146i
\(590\) −25.6038 21.1014i −1.05409 0.868733i
\(591\) −46.9764 + 27.1218i −1.93235 + 1.11564i
\(592\) −6.36679 3.59209i −0.261673 0.147634i
\(593\) 9.26689 + 34.5845i 0.380546 + 1.42022i 0.845070 + 0.534655i \(0.179558\pi\)
−0.464525 + 0.885560i \(0.653775\pi\)
\(594\) 2.37579 0.813053i 0.0974800 0.0333600i
\(595\) 0 0
\(596\) 17.7699 13.7760i 0.727884 0.564286i
\(597\) −62.6653 + 16.7911i −2.56472 + 0.687214i
\(598\) 1.09479 0.0744850i 0.0447693 0.00304592i
\(599\) −11.1770 19.3591i −0.456680 0.790992i 0.542103 0.840312i \(-0.317628\pi\)
−0.998783 + 0.0493194i \(0.984295\pi\)
\(600\) −21.0211 + 36.2701i −0.858185 + 1.48072i
\(601\) −43.6119 −1.77897 −0.889483 0.456969i \(-0.848935\pi\)
−0.889483 + 0.456969i \(0.848935\pi\)
\(602\) 0 0
\(603\) 3.21657 + 3.21657i 0.130989 + 0.130989i
\(604\) −2.45997 17.9948i −0.100095 0.732197i
\(605\) 17.8005 + 16.8248i 0.723691 + 0.684025i
\(606\) −47.9943 41.8796i −1.94963 1.70124i
\(607\) −6.17935 23.0617i −0.250812 0.936044i −0.970373 0.241614i \(-0.922323\pi\)
0.719560 0.694430i \(-0.244343\pi\)
\(608\) 3.77410 + 3.22785i 0.153060 + 0.130907i
\(609\) 0 0
\(610\) −4.34319 + 25.9712i −0.175851 + 1.05154i
\(611\) 36.3994 + 21.0152i 1.47256 + 0.850184i
\(612\) −12.7367 30.3226i −0.514851 1.22572i
\(613\) 28.4137 + 7.61342i 1.14762 + 0.307503i 0.782010 0.623266i \(-0.214194\pi\)
0.365608 + 0.930769i \(0.380861\pi\)
\(614\) 2.96416 + 0.581966i 0.119624 + 0.0234863i
\(615\) −16.9974 9.18509i −0.685403 0.370379i
\(616\) 0 0
\(617\) 12.8248 + 12.8248i 0.516307 + 0.516307i 0.916452 0.400145i \(-0.131040\pi\)
−0.400145 + 0.916452i \(0.631040\pi\)
\(618\) 5.35960 3.60044i 0.215595 0.144831i
\(619\) 7.38068 + 12.7837i 0.296655 + 0.513821i 0.975368 0.220582i \(-0.0707956\pi\)
−0.678714 + 0.734403i \(0.737462\pi\)
\(620\) −38.2835 3.75482i −1.53750 0.150797i
\(621\) 0.527167 0.913080i 0.0211545 0.0366406i
\(622\) −16.1862 7.93229i −0.649008 0.318056i
\(623\) 0 0
\(624\) −17.9667 + 69.8173i −0.719245 + 2.79493i
\(625\) 14.8552 + 20.1078i 0.594208 + 0.804311i
\(626\) −18.9323 + 21.6965i −0.756687 + 0.867167i
\(627\) −0.540244 0.144758i −0.0215752 0.00578107i
\(628\) 33.3604 + 25.3363i 1.33123 + 1.01103i
\(629\) 5.19318i 0.207066i
\(630\) 0 0
\(631\) 31.4840i 1.25336i −0.779278 0.626678i \(-0.784414\pi\)
0.779278 0.626678i \(-0.215586\pi\)
\(632\) 11.0375 33.3284i 0.439047 1.32573i
\(633\) −9.72662 2.60624i −0.386598 0.103589i
\(634\) 10.5356 + 9.19334i 0.418423 + 0.365114i
\(635\) 3.66785 + 5.95873i 0.145554 + 0.236465i
\(636\) 14.2510 + 18.3827i 0.565089 + 0.728920i
\(637\) 0 0
\(638\) 0.539159 1.10018i 0.0213455 0.0435565i
\(639\) 5.06470 8.77231i 0.200356 0.347027i
\(640\) −18.2411 + 17.5289i −0.721044 + 0.692889i
\(641\) 11.4235 + 19.7861i 0.451201 + 0.781504i 0.998461 0.0554593i \(-0.0176623\pi\)
−0.547260 + 0.836963i \(0.684329\pi\)
\(642\) −32.0193 47.6638i −1.26370 1.88114i
\(643\) 13.3643 + 13.3643i 0.527038 + 0.527038i 0.919688 0.392650i \(-0.128442\pi\)
−0.392650 + 0.919688i \(0.628442\pi\)
\(644\) 0 0
\(645\) −5.52416 18.5138i −0.217514 0.728982i
\(646\) −0.679686 + 3.46188i −0.0267419 + 0.136206i
\(647\) 22.6155 + 6.05981i 0.889108 + 0.238236i 0.674333 0.738428i \(-0.264431\pi\)
0.214775 + 0.976663i \(0.431098\pi\)
\(648\) 13.4070 + 15.0601i 0.526675 + 0.591615i
\(649\) 1.95284 + 1.12747i 0.0766557 + 0.0442572i
\(650\) 33.9339 + 26.3975i 1.33100 + 1.03540i
\(651\) 0 0
\(652\) 3.99471 31.5520i 0.156445 1.23567i
\(653\) 5.71494 + 21.3285i 0.223643 + 0.834647i 0.982944 + 0.183907i \(0.0588746\pi\)
−0.759301 + 0.650740i \(0.774459\pi\)
\(654\) −33.1895 + 38.0353i −1.29781 + 1.48730i
\(655\) −5.71062 + 6.04178i −0.223132 + 0.236072i
\(656\) −8.32575 8.16210i −0.325066 0.318676i
\(657\) 24.2320 + 24.2320i 0.945379 + 0.945379i
\(658\) 0 0
\(659\) 23.8406 0.928696 0.464348 0.885653i \(-0.346289\pi\)
0.464348 + 0.885653i \(0.346289\pi\)
\(660\) 1.00252 2.66694i 0.0390231 0.103810i
\(661\) −11.0124 19.0740i −0.428331 0.741891i 0.568394 0.822756i \(-0.307565\pi\)
−0.996725 + 0.0808656i \(0.974232\pi\)
\(662\) −2.81750 41.4120i −0.109505 1.60952i
\(663\) −49.4692 + 13.2552i −1.92122 + 0.514791i
\(664\) −17.7383 11.6623i −0.688379 0.452585i
\(665\) 0 0
\(666\) 4.84286 + 14.1512i 0.187657 + 0.548346i
\(667\) −0.133143 0.496898i −0.00515533 0.0192400i
\(668\) 13.2065 + 31.4412i 0.510976 + 1.21650i
\(669\) 71.7453 41.4222i 2.77383 1.60147i
\(670\) 2.47424 0.238514i 0.0955884 0.00921458i
\(671\) 1.78961i 0.0690872i
\(672\) 0 0
\(673\) 15.2135 15.2135i 0.586437 0.586437i −0.350227 0.936665i \(-0.613896\pi\)
0.936665 + 0.350227i \(0.113896\pi\)
\(674\) 8.45506 43.0646i 0.325677 1.65879i
\(675\) 39.2352 12.9212i 1.51016 0.497338i
\(676\) 44.3754 + 18.1234i 1.70674 + 0.697054i
\(677\) 11.4768 3.07519i 0.441088 0.118189i −0.0314382 0.999506i \(-0.510009\pi\)
0.472527 + 0.881316i \(0.343342\pi\)
\(678\) 8.20277 16.7381i 0.315026 0.642825i
\(679\) 0 0
\(680\) −17.2130 5.16725i −0.660090 0.198155i
\(681\) 30.9338 53.5789i 1.18539 2.05315i
\(682\) 2.60835 0.177461i 0.0998787 0.00679533i
\(683\) 9.28473 34.6511i 0.355270 1.32589i −0.524873 0.851180i \(-0.675887\pi\)
0.880144 0.474707i \(-0.157446\pi\)
\(684\) −1.37624 10.0673i −0.0526220 0.384933i
\(685\) −5.14573 2.78066i −0.196608 0.106243i
\(686\) 0 0
\(687\) −6.82927 + 6.82927i −0.260553 + 0.260553i
\(688\) −0.115717 11.6587i −0.00441168 0.444482i
\(689\) 20.6581 11.9269i 0.787009 0.454380i
\(690\) −0.419069 1.12048i −0.0159537 0.0426560i
\(691\) −37.9496 21.9102i −1.44367 0.833505i −0.445580 0.895242i \(-0.647003\pi\)
−0.998092 + 0.0617372i \(0.980336\pi\)
\(692\) 0.900764 + 0.114043i 0.0342419 + 0.00433527i
\(693\) 0 0
\(694\) −3.71997 10.8700i −0.141208 0.412619i
\(695\) −5.64630 + 23.7265i −0.214176 + 0.899997i
\(696\) 33.7400 + 1.95932i 1.27891 + 0.0742680i
\(697\) 2.14373 8.00051i 0.0811996 0.303041i
\(698\) −9.93628 + 6.67493i −0.376094 + 0.252650i
\(699\) 20.4792 0.774593
\(700\) 0 0
\(701\) 38.4455 1.45207 0.726033 0.687660i \(-0.241362\pi\)
0.726033 + 0.687660i \(0.241362\pi\)
\(702\) 58.9672 39.6126i 2.22557 1.49508i
\(703\) 0.415253 1.54974i 0.0156616 0.0584497i
\(704\) 1.02626 1.37949i 0.0386786 0.0519916i
\(705\) 10.6080 44.5761i 0.399520 1.67883i
\(706\) 9.52347 + 27.8282i 0.358420 + 1.04733i
\(707\) 0 0
\(708\) −7.81296 + 61.7102i −0.293629 + 2.31921i
\(709\) 33.8118 + 19.5213i 1.26983 + 0.733137i 0.974956 0.222400i \(-0.0713890\pi\)
0.294874 + 0.955536i \(0.404722\pi\)
\(710\) −1.93900 5.18438i −0.0727694 0.194566i
\(711\) −62.2092 + 35.9165i −2.33303 + 1.34697i
\(712\) 34.2094 + 11.3293i 1.28205 + 0.424582i
\(713\) 0.776200 0.776200i 0.0290689 0.0290689i
\(714\) 0 0
\(715\) −2.57061 1.38911i −0.0961352 0.0519496i
\(716\) −9.62093 + 1.31522i −0.359551 + 0.0491522i
\(717\) −7.88464 + 29.4259i −0.294457 + 1.09893i
\(718\) −33.2488 + 2.26211i −1.24083 + 0.0844212i
\(719\) −2.32924 + 4.03436i −0.0868659 + 0.150456i −0.906185 0.422882i \(-0.861018\pi\)
0.819319 + 0.573338i \(0.194352\pi\)
\(720\) 51.7233 1.97139i 1.92762 0.0734692i
\(721\) 0 0
\(722\) 11.3448 23.1497i 0.422211 0.861542i
\(723\) −13.7108 + 3.67381i −0.509912 + 0.136630i
\(724\) −5.20460 + 12.7435i −0.193428 + 0.473610i
\(725\) 9.07856 17.9944i 0.337169 0.668296i
\(726\) 8.84676 45.0597i 0.328334 1.67232i
\(727\) −8.55868 + 8.55868i −0.317424 + 0.317424i −0.847777 0.530353i \(-0.822059\pi\)
0.530353 + 0.847777i \(0.322059\pi\)
\(728\) 0 0
\(729\) 32.2153i 1.19316i
\(730\) 18.6397 1.79684i 0.689885 0.0665040i
\(731\) 7.17306 4.14137i 0.265305 0.153174i
\(732\) 45.5144 19.1179i 1.68226 0.706617i
\(733\) −0.287351 1.07241i −0.0106135 0.0396103i 0.960416 0.278570i \(-0.0898603\pi\)
−0.971030 + 0.238959i \(0.923194\pi\)
\(734\) 2.44248 + 7.13708i 0.0901535 + 0.263434i
\(735\) 0 0
\(736\) −0.0561491 0.719731i −0.00206968 0.0265297i
\(737\) −0.163182 + 0.0437245i −0.00601089 + 0.00161061i
\(738\) 1.61926 + 23.8001i 0.0596058 + 0.876095i
\(739\) 2.43294 + 4.21398i 0.0894972 + 0.155014i 0.907299 0.420487i \(-0.138141\pi\)
−0.817802 + 0.575500i \(0.804807\pi\)
\(740\) 7.65039 + 2.87584i 0.281234 + 0.105718i
\(741\) −15.8225 −0.581253
\(742\) 0 0
\(743\) 24.8474 + 24.8474i 0.911564 + 0.911564i 0.996395 0.0848314i \(-0.0270352\pi\)
−0.0848314 + 0.996395i \(0.527035\pi\)
\(744\) 32.3774 + 64.4412i 1.18701 + 2.36253i
\(745\) −17.2677 + 18.2691i −0.632641 + 0.669328i
\(746\) −29.9763 + 34.3529i −1.09751 + 1.25775i
\(747\) 11.2417 + 41.9545i 0.411311 + 1.53503i
\(748\) 1.21176 + 0.153418i 0.0443065 + 0.00560952i
\(749\) 0 0
\(750\) 16.9993 43.6782i 0.620726 1.59490i
\(751\) −17.3437 10.0134i −0.632882 0.365394i 0.148986 0.988839i \(-0.452399\pi\)
−0.781867 + 0.623445i \(0.785733\pi\)
\(752\) 13.5874 24.0829i 0.495480 0.878212i
\(753\) −75.2059 20.1514i −2.74065 0.734356i
\(754\) 6.67750 34.0109i 0.243180 1.23860i
\(755\) 5.80593 + 19.4582i 0.211299 + 0.708156i
\(756\) 0 0
\(757\) 10.7543 + 10.7543i 0.390871 + 0.390871i 0.874998 0.484127i \(-0.160863\pi\)
−0.484127 + 0.874998i \(0.660863\pi\)
\(758\) 2.51225 + 3.73972i 0.0912489 + 0.135833i
\(759\) 0.0406520 + 0.0704114i 0.00147557 + 0.00255577i
\(760\) −4.72352 2.91838i −0.171340 0.105861i
\(761\) −10.3017 + 17.8431i −0.373437 + 0.646812i −0.990092 0.140422i \(-0.955154\pi\)
0.616655 + 0.787234i \(0.288488\pi\)
\(762\) 5.77277 11.7796i 0.209125 0.426730i
\(763\) 0 0
\(764\) 27.2549 21.1291i 0.986048 0.764426i
\(765\) 19.2752 + 31.3141i 0.696895 + 1.13216i
\(766\) −30.0381 26.2111i −1.08532 0.947047i
\(767\) 61.6181 + 16.5105i 2.22490 + 0.596161i
\(768\) 46.0473 + 11.3637i 1.66159 + 0.410052i
\(769\) 9.33534i 0.336641i 0.985732 + 0.168320i \(0.0538343\pi\)
−0.985732 + 0.168320i \(0.946166\pi\)
\(770\) 0 0
\(771\) 68.7086i 2.47448i
\(772\) −24.5198 + 32.2854i −0.882488 + 1.16198i
\(773\) 14.1711 + 3.79713i 0.509698 + 0.136573i 0.504497 0.863413i \(-0.331678\pi\)
0.00520083 + 0.999986i \(0.498345\pi\)
\(774\) −15.6842 + 17.9742i −0.563758 + 0.646070i
\(775\) 42.9394 2.42181i 1.54243 0.0869940i
\(776\) −8.64256 5.68218i −0.310250 0.203978i
\(777\) 0 0
\(778\) 20.7582 + 10.1729i 0.744218 + 0.364715i
\(779\) 1.27946 2.21609i 0.0458414 0.0793997i