Properties

Label 980.2.x.j.667.10
Level $980$
Weight $2$
Character 980.667
Analytic conductor $7.825$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(67,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,4,0,0,0,0,0,16,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 667.10
Character \(\chi\) \(=\) 980.667
Dual form 980.2.x.j.263.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.479962 - 1.33028i) q^{2} +(0.298008 - 1.11218i) q^{3} +(-1.53927 - 1.27696i) q^{4} +(-0.308165 + 2.21473i) q^{5} +(-1.33648 - 0.930237i) q^{6} +(-2.43751 + 1.43477i) q^{8} +(1.44994 + 0.837123i) q^{9} +(2.79830 + 1.47293i) q^{10} +(-1.59056 + 0.918308i) q^{11} +(-1.87893 + 1.33140i) q^{12} +(-2.24767 + 2.24767i) q^{13} +(2.37135 + 1.00274i) q^{15} +(0.738725 + 3.93119i) q^{16} +(-1.27350 + 4.75278i) q^{17} +(1.80952 - 1.52703i) q^{18} +(-3.96687 + 6.87082i) q^{19} +(3.30248 - 3.01556i) q^{20} +(0.458198 + 2.55663i) q^{22} +(-5.12402 + 1.37298i) q^{23} +(0.869322 + 3.13852i) q^{24} +(-4.81007 - 1.36501i) q^{25} +(1.91123 + 4.06882i) q^{26} +(3.80564 - 3.80564i) q^{27} -5.07030i q^{29} +(2.47208 - 2.67327i) q^{30} +(3.36913 - 1.94517i) q^{31} +(5.58414 + 0.904114i) q^{32} +(0.547326 + 2.04265i) q^{33} +(5.71128 + 3.97527i) q^{34} +(-1.16288 - 3.14008i) q^{36} +(-0.389468 + 0.104358i) q^{37} +(7.23615 + 8.57477i) q^{38} +(1.82999 + 3.16964i) q^{39} +(-2.42647 - 5.84057i) q^{40} +1.61265 q^{41} +(-5.11964 - 5.11964i) q^{43} +(3.62095 + 0.617556i) q^{44} +(-2.30082 + 2.95325i) q^{45} +(-0.632894 + 7.47534i) q^{46} +(2.87295 + 10.7220i) q^{47} +(4.59234 + 0.349931i) q^{48} +(-4.12448 + 5.74357i) q^{50} +(4.90644 + 2.83273i) q^{51} +(6.32997 - 0.589584i) q^{52} +(3.65309 + 0.978842i) q^{53} +(-3.23600 - 6.88912i) q^{54} +(-1.54365 - 3.80564i) q^{55} +(6.45944 + 6.45944i) q^{57} +(-6.74491 - 2.43355i) q^{58} +(-2.83588 - 4.91188i) q^{59} +(-2.36968 - 4.57162i) q^{60} +(1.16755 - 2.02226i) q^{61} +(-0.970559 - 5.41548i) q^{62} +(3.88289 - 6.99451i) q^{64} +(-4.28533 - 5.67063i) q^{65} +(2.97998 + 0.252298i) q^{66} +(5.24841 + 1.40631i) q^{67} +(8.02940 - 5.68961i) q^{68} +6.10799i q^{69} +4.56057i q^{71} +(-4.73531 + 0.0398294i) q^{72} +(-4.59251 - 1.23056i) q^{73} +(-0.0481052 + 0.568188i) q^{74} +(-2.95157 + 4.94288i) q^{75} +(14.8799 - 5.51052i) q^{76} +(5.09482 - 0.913089i) q^{78} +(5.67209 - 9.82435i) q^{79} +(-8.93419 + 0.424620i) q^{80} +(-0.587082 - 1.01686i) q^{81} +(0.774011 - 2.14527i) q^{82} +(-0.898867 - 0.898867i) q^{83} +(-10.1337 - 4.28511i) q^{85} +(-9.26778 + 4.35331i) q^{86} +(-5.63909 - 1.51099i) q^{87} +(2.55944 - 4.52046i) q^{88} +(13.2459 + 7.64755i) q^{89} +(2.82434 + 4.47818i) q^{90} +(9.64050 + 4.42980i) q^{92} +(-1.15935 - 4.32676i) q^{93} +(15.6421 + 1.32433i) q^{94} +(-13.9946 - 10.9029i) q^{95} +(2.66965 - 5.94113i) q^{96} +(8.82518 + 8.82518i) q^{97} -3.07495 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 4 q^{2} + 16 q^{8} - 8 q^{16} + 40 q^{18} - 72 q^{22} - 32 q^{25} + 36 q^{30} - 16 q^{32} - 176 q^{36} + 48 q^{37} + 56 q^{50} - 16 q^{53} - 32 q^{57} - 36 q^{58} + 80 q^{60} - 64 q^{65} - 56 q^{72}+ \cdots - 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.479962 1.33028i 0.339384 0.940648i
\(3\) 0.298008 1.11218i 0.172055 0.642118i −0.824980 0.565162i \(-0.808813\pi\)
0.997035 0.0769553i \(-0.0245199\pi\)
\(4\) −1.53927 1.27696i −0.769637 0.638482i
\(5\) −0.308165 + 2.21473i −0.137816 + 0.990458i
\(6\) −1.33648 0.930237i −0.545614 0.379768i
\(7\) 0 0
\(8\) −2.43751 + 1.43477i −0.861789 + 0.507266i
\(9\) 1.44994 + 0.837123i 0.483313 + 0.279041i
\(10\) 2.79830 + 1.47293i 0.884900 + 0.465782i
\(11\) −1.59056 + 0.918308i −0.479571 + 0.276880i −0.720237 0.693728i \(-0.755967\pi\)
0.240667 + 0.970608i \(0.422634\pi\)
\(12\) −1.87893 + 1.33140i −0.542400 + 0.384343i
\(13\) −2.24767 + 2.24767i −0.623391 + 0.623391i −0.946397 0.323006i \(-0.895307\pi\)
0.323006 + 0.946397i \(0.395307\pi\)
\(14\) 0 0
\(15\) 2.37135 + 1.00274i 0.612279 + 0.258907i
\(16\) 0.738725 + 3.93119i 0.184681 + 0.982798i
\(17\) −1.27350 + 4.75278i −0.308870 + 1.15272i 0.620692 + 0.784054i \(0.286852\pi\)
−0.929562 + 0.368665i \(0.879815\pi\)
\(18\) 1.80952 1.52703i 0.426508 0.359925i
\(19\) −3.96687 + 6.87082i −0.910063 + 1.57628i −0.0960899 + 0.995373i \(0.530634\pi\)
−0.813973 + 0.580903i \(0.802700\pi\)
\(20\) 3.30248 3.01556i 0.738458 0.674300i
\(21\) 0 0
\(22\) 0.458198 + 2.55663i 0.0976881 + 0.545076i
\(23\) −5.12402 + 1.37298i −1.06843 + 0.286285i −0.749848 0.661610i \(-0.769874\pi\)
−0.318583 + 0.947895i \(0.603207\pi\)
\(24\) 0.869322 + 3.13852i 0.177450 + 0.640648i
\(25\) −4.81007 1.36501i −0.962014 0.273001i
\(26\) 1.91123 + 4.06882i 0.374822 + 0.797960i
\(27\) 3.80564 3.80564i 0.732396 0.732396i
\(28\) 0 0
\(29\) 5.07030i 0.941532i −0.882258 0.470766i \(-0.843978\pi\)
0.882258 0.470766i \(-0.156022\pi\)
\(30\) 2.47208 2.67327i 0.451338 0.488070i
\(31\) 3.36913 1.94517i 0.605114 0.349363i −0.165937 0.986136i \(-0.553065\pi\)
0.771051 + 0.636774i \(0.219731\pi\)
\(32\) 5.58414 + 0.904114i 0.987145 + 0.159826i
\(33\) 0.547326 + 2.04265i 0.0952772 + 0.355579i
\(34\) 5.71128 + 3.97527i 0.979477 + 0.681753i
\(35\) 0 0
\(36\) −1.16288 3.14008i −0.193813 0.523347i
\(37\) −0.389468 + 0.104358i −0.0640281 + 0.0171563i −0.290691 0.956817i \(-0.593885\pi\)
0.226663 + 0.973973i \(0.427218\pi\)
\(38\) 7.23615 + 8.57477i 1.17386 + 1.39101i
\(39\) 1.82999 + 3.16964i 0.293033 + 0.507548i
\(40\) −2.42647 5.84057i −0.383658 0.923475i
\(41\) 1.61265 0.251854 0.125927 0.992040i \(-0.459809\pi\)
0.125927 + 0.992040i \(0.459809\pi\)
\(42\) 0 0
\(43\) −5.11964 5.11964i −0.780738 0.780738i 0.199217 0.979955i \(-0.436160\pi\)
−0.979955 + 0.199217i \(0.936160\pi\)
\(44\) 3.62095 + 0.617556i 0.545878 + 0.0931001i
\(45\) −2.30082 + 2.95325i −0.342986 + 0.440245i
\(46\) −0.632894 + 7.47534i −0.0933151 + 1.10218i
\(47\) 2.87295 + 10.7220i 0.419063 + 1.56396i 0.776556 + 0.630049i \(0.216965\pi\)
−0.357492 + 0.933916i \(0.616368\pi\)
\(48\) 4.59234 + 0.349931i 0.662848 + 0.0505082i
\(49\) 0 0
\(50\) −4.12448 + 5.74357i −0.583290 + 0.812264i
\(51\) 4.90644 + 2.83273i 0.687039 + 0.396662i
\(52\) 6.32997 0.589584i 0.877809 0.0817606i
\(53\) 3.65309 + 0.978842i 0.501790 + 0.134454i 0.500831 0.865545i \(-0.333028\pi\)
0.000959479 1.00000i \(0.499695\pi\)
\(54\) −3.23600 6.88912i −0.440363 0.937491i
\(55\) −1.54365 3.80564i −0.208146 0.513153i
\(56\) 0 0
\(57\) 6.45944 + 6.45944i 0.855573 + 0.855573i
\(58\) −6.74491 2.43355i −0.885650 0.319541i
\(59\) −2.83588 4.91188i −0.369200 0.639473i 0.620241 0.784411i \(-0.287035\pi\)
−0.989441 + 0.144939i \(0.953701\pi\)
\(60\) −2.36968 4.57162i −0.305925 0.590193i
\(61\) 1.16755 2.02226i 0.149489 0.258923i −0.781549 0.623843i \(-0.785570\pi\)
0.931039 + 0.364920i \(0.118904\pi\)
\(62\) −0.970559 5.41548i −0.123261 0.687767i
\(63\) 0 0
\(64\) 3.88289 6.99451i 0.485362 0.874313i
\(65\) −4.28533 5.67063i −0.531530 0.703356i
\(66\) 2.97998 + 0.252298i 0.366810 + 0.0310557i
\(67\) 5.24841 + 1.40631i 0.641195 + 0.171808i 0.564745 0.825266i \(-0.308975\pi\)
0.0764503 + 0.997073i \(0.475641\pi\)
\(68\) 8.02940 5.68961i 0.973708 0.689967i
\(69\) 6.10799i 0.735315i
\(70\) 0 0
\(71\) 4.56057i 0.541240i 0.962686 + 0.270620i \(0.0872287\pi\)
−0.962686 + 0.270620i \(0.912771\pi\)
\(72\) −4.73531 + 0.0398294i −0.558062 + 0.00469394i
\(73\) −4.59251 1.23056i −0.537512 0.144026i −0.0201571 0.999797i \(-0.506417\pi\)
−0.517355 + 0.855771i \(0.673083\pi\)
\(74\) −0.0481052 + 0.568188i −0.00559211 + 0.0660505i
\(75\) −2.95157 + 4.94288i −0.340818 + 0.570755i
\(76\) 14.8799 5.51052i 1.70684 0.632100i
\(77\) 0 0
\(78\) 5.09482 0.913089i 0.576875 0.103387i
\(79\) 5.67209 9.82435i 0.638160 1.10533i −0.347676 0.937615i \(-0.613029\pi\)
0.985836 0.167711i \(-0.0536375\pi\)
\(80\) −8.93419 + 0.424620i −0.998872 + 0.0474740i
\(81\) −0.587082 1.01686i −0.0652313 0.112984i
\(82\) 0.774011 2.14527i 0.0854753 0.236906i
\(83\) −0.898867 0.898867i −0.0986635 0.0986635i 0.656052 0.754716i \(-0.272225\pi\)
−0.754716 + 0.656052i \(0.772225\pi\)
\(84\) 0 0
\(85\) −10.1337 4.28511i −1.09915 0.464785i
\(86\) −9.26778 + 4.35331i −0.999370 + 0.469429i
\(87\) −5.63909 1.51099i −0.604574 0.161995i
\(88\) 2.55944 4.52046i 0.272837 0.481882i
\(89\) 13.2459 + 7.64755i 1.40407 + 0.810639i 0.994807 0.101779i \(-0.0324534\pi\)
0.409260 + 0.912418i \(0.365787\pi\)
\(90\) 2.82434 + 4.47818i 0.297711 + 0.472042i
\(91\) 0 0
\(92\) 9.64050 + 4.42980i 1.00509 + 0.461839i
\(93\) −1.15935 4.32676i −0.120219 0.448664i
\(94\) 15.6421 + 1.32433i 1.61336 + 0.136594i
\(95\) −13.9946 10.9029i −1.43581 1.11861i
\(96\) 2.66965 5.94113i 0.272470 0.606365i
\(97\) 8.82518 + 8.82518i 0.896061 + 0.896061i 0.995085 0.0990238i \(-0.0315720\pi\)
−0.0990238 + 0.995085i \(0.531572\pi\)
\(98\) 0 0
\(99\) −3.07495 −0.309044
\(100\) 5.66095 + 8.24340i 0.566095 + 0.824340i
\(101\) −6.80706 11.7902i −0.677328 1.17317i −0.975783 0.218743i \(-0.929804\pi\)
0.298454 0.954424i \(-0.403529\pi\)
\(102\) 6.12322 5.16732i 0.606289 0.511641i
\(103\) −18.2607 + 4.89293i −1.79928 + 0.482115i −0.993865 0.110601i \(-0.964722\pi\)
−0.805412 + 0.592716i \(0.798056\pi\)
\(104\) 2.25383 8.70359i 0.221006 0.853457i
\(105\) 0 0
\(106\) 3.05547 4.38981i 0.296774 0.426376i
\(107\) −1.33965 4.99963i −0.129508 0.483332i 0.870452 0.492254i \(-0.163827\pi\)
−0.999960 + 0.00892166i \(0.997160\pi\)
\(108\) −10.7176 + 0.998255i −1.03130 + 0.0960571i
\(109\) 7.67494 4.43113i 0.735125 0.424425i −0.0851688 0.996367i \(-0.527143\pi\)
0.820294 + 0.571942i \(0.193810\pi\)
\(110\) −5.80345 + 0.226920i −0.553337 + 0.0216360i
\(111\) 0.464258i 0.0440654i
\(112\) 0 0
\(113\) −9.25139 + 9.25139i −0.870297 + 0.870297i −0.992505 0.122207i \(-0.961003\pi\)
0.122207 + 0.992505i \(0.461003\pi\)
\(114\) 11.6931 5.49256i 1.09516 0.514425i
\(115\) −1.46173 11.7714i −0.136307 1.09769i
\(116\) −6.47459 + 7.80458i −0.601151 + 0.724637i
\(117\) −5.14056 + 1.37741i −0.475245 + 0.127341i
\(118\) −7.89528 + 1.41499i −0.726819 + 0.130260i
\(119\) 0 0
\(120\) −7.21887 + 0.958132i −0.658990 + 0.0874651i
\(121\) −3.81342 + 6.60504i −0.346675 + 0.600458i
\(122\) −2.12978 2.52377i −0.192821 0.228491i
\(123\) 0.480583 1.79356i 0.0433327 0.161720i
\(124\) −7.66992 1.30811i −0.688780 0.117472i
\(125\) 4.50542 10.2324i 0.402977 0.915210i
\(126\) 0 0
\(127\) 7.20294 7.20294i 0.639157 0.639157i −0.311190 0.950348i \(-0.600728\pi\)
0.950348 + 0.311190i \(0.100728\pi\)
\(128\) −7.44099 8.52242i −0.657697 0.753283i
\(129\) −7.21966 + 4.16827i −0.635656 + 0.366996i
\(130\) −9.60031 + 2.97899i −0.842003 + 0.261274i
\(131\) −2.54112 1.46712i −0.222019 0.128183i 0.384866 0.922972i \(-0.374248\pi\)
−0.606885 + 0.794790i \(0.707581\pi\)
\(132\) 1.76590 3.84311i 0.153702 0.334500i
\(133\) 0 0
\(134\) 4.38981 6.30686i 0.379222 0.544830i
\(135\) 7.25571 + 9.60124i 0.624472 + 0.826343i
\(136\) −3.71495 13.4121i −0.318554 1.15008i
\(137\) −3.19819 + 11.9358i −0.273240 + 1.01975i 0.683771 + 0.729696i \(0.260339\pi\)
−0.957012 + 0.290050i \(0.906328\pi\)
\(138\) 8.12532 + 2.93160i 0.691673 + 0.249554i
\(139\) −13.2830 −1.12665 −0.563326 0.826235i \(-0.690479\pi\)
−0.563326 + 0.826235i \(0.690479\pi\)
\(140\) 0 0
\(141\) 12.7810 1.07635
\(142\) 6.06682 + 2.18890i 0.509116 + 0.183688i
\(143\) 1.51099 5.63909i 0.126355 0.471565i
\(144\) −2.21979 + 6.31840i −0.184982 + 0.526533i
\(145\) 11.2294 + 1.56249i 0.932547 + 0.129758i
\(146\) −3.84121 + 5.51868i −0.317901 + 0.456729i
\(147\) 0 0
\(148\) 0.732758 + 0.336702i 0.0602324 + 0.0276767i
\(149\) 19.2841 + 11.1337i 1.57982 + 0.912107i 0.994884 + 0.101024i \(0.0322120\pi\)
0.584932 + 0.811083i \(0.301121\pi\)
\(150\) 5.15876 + 6.29880i 0.421211 + 0.514295i
\(151\) 15.3338 8.85297i 1.24785 0.720444i 0.277166 0.960822i \(-0.410605\pi\)
0.970679 + 0.240378i \(0.0772713\pi\)
\(152\) −0.188739 22.4392i −0.0153088 1.82006i
\(153\) −5.82517 + 5.82517i −0.470937 + 0.470937i
\(154\) 0 0
\(155\) 3.26978 + 8.06115i 0.262635 + 0.647487i
\(156\) 1.23066 7.21577i 0.0985314 0.577724i
\(157\) 0.322272 1.20274i 0.0257201 0.0959889i −0.951873 0.306494i \(-0.900844\pi\)
0.977593 + 0.210505i \(0.0675108\pi\)
\(158\) −10.3467 12.2608i −0.823141 0.975414i
\(159\) 2.17730 3.77119i 0.172671 0.299075i
\(160\) −3.72321 + 12.0887i −0.294345 + 0.955699i
\(161\) 0 0
\(162\) −1.63448 + 0.292930i −0.128417 + 0.0230147i
\(163\) −21.9570 + 5.88335i −1.71980 + 0.460820i −0.977794 0.209570i \(-0.932794\pi\)
−0.742009 + 0.670390i \(0.766127\pi\)
\(164\) −2.48231 2.05930i −0.193836 0.160804i
\(165\) −4.69258 + 0.582707i −0.365317 + 0.0453637i
\(166\) −1.62716 + 0.764320i −0.126292 + 0.0593228i
\(167\) −9.64678 + 9.64678i −0.746491 + 0.746491i −0.973818 0.227328i \(-0.927001\pi\)
0.227328 + 0.973818i \(0.427001\pi\)
\(168\) 0 0
\(169\) 2.89597i 0.222767i
\(170\) −10.5642 + 11.4239i −0.810234 + 0.876174i
\(171\) −11.5034 + 6.64152i −0.879691 + 0.507890i
\(172\) 1.34293 + 14.4181i 0.102397 + 1.09937i
\(173\) 1.10903 + 4.13894i 0.0843176 + 0.314678i 0.995184 0.0980235i \(-0.0312520\pi\)
−0.910866 + 0.412701i \(0.864585\pi\)
\(174\) −4.71658 + 6.77634i −0.357563 + 0.513713i
\(175\) 0 0
\(176\) −4.78503 5.57441i −0.360685 0.420187i
\(177\) −6.30801 + 1.69023i −0.474139 + 0.127045i
\(178\) 16.5309 13.9502i 1.23904 1.04562i
\(179\) 11.7768 + 20.3979i 0.880236 + 1.52461i 0.851078 + 0.525039i \(0.175949\pi\)
0.0291582 + 0.999575i \(0.490717\pi\)
\(180\) 7.31279 1.60780i 0.545064 0.119838i
\(181\) −12.4326 −0.924106 −0.462053 0.886852i \(-0.652887\pi\)
−0.462053 + 0.886852i \(0.652887\pi\)
\(182\) 0 0
\(183\) −1.90117 1.90117i −0.140539 0.140539i
\(184\) 10.5199 10.6984i 0.775540 0.788697i
\(185\) −0.111104 0.894726i −0.00816850 0.0657816i
\(186\) −6.31223 0.534420i −0.462835 0.0391856i
\(187\) −2.33894 8.72903i −0.171040 0.638330i
\(188\) 9.26935 20.1727i 0.676037 1.47125i
\(189\) 0 0
\(190\) −21.2207 + 13.3837i −1.53951 + 0.970955i
\(191\) 11.3842 + 6.57268i 0.823733 + 0.475582i 0.851702 0.524026i \(-0.175571\pi\)
−0.0279691 + 0.999609i \(0.508904\pi\)
\(192\) −6.62202 6.40290i −0.477903 0.462089i
\(193\) 15.1129 + 4.04948i 1.08785 + 0.291488i 0.757807 0.652479i \(-0.226271\pi\)
0.330041 + 0.943967i \(0.392938\pi\)
\(194\) 15.9757 7.50418i 1.14699 0.538769i
\(195\) −7.58383 + 3.07616i −0.543089 + 0.220289i
\(196\) 0 0
\(197\) −7.35541 7.35541i −0.524051 0.524051i 0.394741 0.918792i \(-0.370834\pi\)
−0.918792 + 0.394741i \(0.870834\pi\)
\(198\) −1.47586 + 4.09053i −0.104885 + 0.290701i
\(199\) −3.80564 6.59157i −0.269775 0.467264i 0.699029 0.715094i \(-0.253616\pi\)
−0.968804 + 0.247830i \(0.920283\pi\)
\(200\) 13.6830 3.57411i 0.967537 0.252728i
\(201\) 3.12813 5.41809i 0.220641 0.382162i
\(202\) −18.9513 + 3.39644i −1.33341 + 0.238973i
\(203\) 0 0
\(204\) −3.93505 10.6257i −0.275509 0.743947i
\(205\) −0.496963 + 3.57159i −0.0347094 + 0.249451i
\(206\) −2.25547 + 26.6402i −0.157146 + 1.85611i
\(207\) −8.57886 2.29870i −0.596272 0.159771i
\(208\) −10.4964 7.17561i −0.727796 0.497539i
\(209\) 14.5712i 1.00791i
\(210\) 0 0
\(211\) 19.7336i 1.35852i 0.733899 + 0.679259i \(0.237699\pi\)
−0.733899 + 0.679259i \(0.762301\pi\)
\(212\) −4.37315 6.17157i −0.300349 0.423865i
\(213\) 5.07218 + 1.35909i 0.347540 + 0.0931230i
\(214\) −7.29387 0.617530i −0.498598 0.0422135i
\(215\) 12.9163 9.76094i 0.880886 0.665690i
\(216\) −3.81608 + 14.7365i −0.259651 + 1.00269i
\(217\) 0 0
\(218\) −2.21095 12.3366i −0.149744 0.835537i
\(219\) −2.73721 + 4.74098i −0.184963 + 0.320366i
\(220\) −2.48357 + 7.82911i −0.167442 + 0.527839i
\(221\) −7.82026 13.5451i −0.526048 0.911141i
\(222\) 0.617592 + 0.222826i 0.0414500 + 0.0149551i
\(223\) −0.871411 0.871411i −0.0583540 0.0583540i 0.677328 0.735682i \(-0.263138\pi\)
−0.735682 + 0.677328i \(0.763138\pi\)
\(224\) 0 0
\(225\) −5.83163 6.00579i −0.388775 0.400386i
\(226\) 7.86659 + 16.7472i 0.523278 + 1.11401i
\(227\) 11.9499 + 3.20196i 0.793141 + 0.212522i 0.632570 0.774503i \(-0.282000\pi\)
0.160571 + 0.987024i \(0.448667\pi\)
\(228\) −1.69437 18.1913i −0.112212 1.20475i
\(229\) −14.0935 8.13689i −0.931326 0.537701i −0.0440950 0.999027i \(-0.514040\pi\)
−0.887231 + 0.461326i \(0.847374\pi\)
\(230\) −16.3608 3.70533i −1.07880 0.244322i
\(231\) 0 0
\(232\) 7.27470 + 12.3589i 0.477607 + 0.811402i
\(233\) −1.56599 5.84434i −0.102591 0.382875i 0.895470 0.445123i \(-0.146840\pi\)
−0.998061 + 0.0622473i \(0.980173\pi\)
\(234\) −0.634937 + 7.49947i −0.0415071 + 0.490256i
\(235\) −24.6317 + 3.05867i −1.60679 + 0.199526i
\(236\) −1.90711 + 11.1820i −0.124142 + 0.727889i
\(237\) −9.23612 9.23612i −0.599951 0.599951i
\(238\) 0 0
\(239\) −1.65449 −0.107020 −0.0535102 0.998567i \(-0.517041\pi\)
−0.0535102 + 0.998567i \(0.517041\pi\)
\(240\) −2.19020 + 10.0630i −0.141377 + 0.649562i
\(241\) 12.9251 + 22.3870i 0.832581 + 1.44207i 0.895985 + 0.444085i \(0.146471\pi\)
−0.0634039 + 0.997988i \(0.520196\pi\)
\(242\) 6.95624 + 8.24307i 0.447164 + 0.529885i
\(243\) 14.2899 3.82898i 0.916700 0.245629i
\(244\) −4.37953 + 1.62189i −0.280370 + 0.103831i
\(245\) 0 0
\(246\) −2.15527 1.50015i −0.137415 0.0956460i
\(247\) −6.52712 24.3595i −0.415311 1.54996i
\(248\) −5.42142 + 9.57528i −0.344261 + 0.608031i
\(249\) −1.26757 + 0.731833i −0.0803291 + 0.0463780i
\(250\) −11.4494 10.9046i −0.724127 0.689667i
\(251\) 19.7964i 1.24954i 0.780809 + 0.624769i \(0.214807\pi\)
−0.780809 + 0.624769i \(0.785193\pi\)
\(252\) 0 0
\(253\) 6.88922 6.88922i 0.433121 0.433121i
\(254\) −6.12477 13.0390i −0.384302 0.818142i
\(255\) −7.78573 + 9.99349i −0.487562 + 0.625817i
\(256\) −14.9086 + 5.80814i −0.931786 + 0.363009i
\(257\) 11.9768 3.20918i 0.747094 0.200183i 0.134865 0.990864i \(-0.456940\pi\)
0.612229 + 0.790681i \(0.290273\pi\)
\(258\) 2.07980 + 11.6048i 0.129482 + 0.722481i
\(259\) 0 0
\(260\) −0.644905 + 14.2009i −0.0399953 + 0.880700i
\(261\) 4.24447 7.35163i 0.262726 0.455055i
\(262\) −3.17131 + 2.67623i −0.195924 + 0.165338i
\(263\) 0.738908 2.75764i 0.0455630 0.170044i −0.939395 0.342836i \(-0.888612\pi\)
0.984958 + 0.172793i \(0.0552791\pi\)
\(264\) −4.26483 4.19369i −0.262482 0.258104i
\(265\) −3.29363 + 7.78896i −0.202326 + 0.478472i
\(266\) 0 0
\(267\) 12.4529 12.4529i 0.762102 0.762102i
\(268\) −6.28293 8.86672i −0.383791 0.541621i
\(269\) 18.3499 10.5943i 1.11881 0.645946i 0.177713 0.984082i \(-0.443130\pi\)
0.941097 + 0.338137i \(0.109797\pi\)
\(270\) 16.2548 5.04387i 0.989234 0.306960i
\(271\) −11.3233 6.53753i −0.687843 0.397127i 0.114960 0.993370i \(-0.463326\pi\)
−0.802804 + 0.596244i \(0.796659\pi\)
\(272\) −19.6249 1.49539i −1.18993 0.0906715i
\(273\) 0 0
\(274\) 14.3429 + 9.98322i 0.866488 + 0.603108i
\(275\) 8.90418 2.24601i 0.536942 0.135439i
\(276\) 7.79968 9.40186i 0.469486 0.565926i
\(277\) −1.81778 + 6.78406i −0.109220 + 0.407615i −0.998790 0.0491848i \(-0.984338\pi\)
0.889570 + 0.456800i \(0.151004\pi\)
\(278\) −6.37535 + 17.6701i −0.382368 + 1.05978i
\(279\) 6.51338 0.389946
\(280\) 0 0
\(281\) 20.2107 1.20567 0.602836 0.797865i \(-0.294037\pi\)
0.602836 + 0.797865i \(0.294037\pi\)
\(282\) 6.13437 17.0022i 0.365297 1.01247i
\(283\) −1.77800 + 6.63558i −0.105691 + 0.394444i −0.998423 0.0561446i \(-0.982119\pi\)
0.892732 + 0.450589i \(0.148786\pi\)
\(284\) 5.82368 7.01996i 0.345572 0.416558i
\(285\) −16.2965 + 12.3153i −0.965321 + 0.729498i
\(286\) −6.77634 4.71658i −0.400693 0.278897i
\(287\) 0 0
\(288\) 7.33980 + 5.98552i 0.432502 + 0.352700i
\(289\) −6.24469 3.60537i −0.367335 0.212081i
\(290\) 7.46821 14.1882i 0.438548 0.833161i
\(291\) 12.4452 7.18522i 0.729549 0.421205i
\(292\) 5.49774 + 7.75863i 0.321731 + 0.454039i
\(293\) 3.07808 3.07808i 0.179823 0.179823i −0.611456 0.791279i \(-0.709416\pi\)
0.791279 + 0.611456i \(0.209416\pi\)
\(294\) 0 0
\(295\) 11.7524 4.76703i 0.684252 0.277547i
\(296\) 0.799603 0.813168i 0.0464760 0.0472644i
\(297\) −2.55834 + 9.54784i −0.148450 + 0.554022i
\(298\) 24.0665 20.3095i 1.39414 1.17650i
\(299\) 8.43109 14.6031i 0.487583 0.844518i
\(300\) 10.8552 3.83940i 0.626723 0.221668i
\(301\) 0 0
\(302\) −4.41726 24.6473i −0.254185 1.41829i
\(303\) −15.1414 + 4.05712i −0.869849 + 0.233075i
\(304\) −29.9410 10.5189i −1.71723 0.603300i
\(305\) 4.11896 + 3.20900i 0.235851 + 0.183747i
\(306\) 4.95323 + 10.5449i 0.283157 + 0.602814i
\(307\) 8.11427 8.11427i 0.463106 0.463106i −0.436566 0.899672i \(-0.643806\pi\)
0.899672 + 0.436566i \(0.143806\pi\)
\(308\) 0 0
\(309\) 21.7673i 1.23830i
\(310\) 12.2929 0.480664i 0.698192 0.0272999i
\(311\) 9.27501 5.35493i 0.525938 0.303650i −0.213423 0.976960i \(-0.568461\pi\)
0.739361 + 0.673310i \(0.235128\pi\)
\(312\) −9.00830 5.10041i −0.509995 0.288754i
\(313\) −4.58621 17.1160i −0.259228 0.967451i −0.965689 0.259700i \(-0.916376\pi\)
0.706462 0.707751i \(-0.250290\pi\)
\(314\) −1.44530 1.00598i −0.0815627 0.0567707i
\(315\) 0 0
\(316\) −21.2762 + 7.87930i −1.19688 + 0.443245i
\(317\) −1.69997 + 0.455506i −0.0954800 + 0.0255838i −0.306243 0.951953i \(-0.599072\pi\)
0.210763 + 0.977537i \(0.432405\pi\)
\(318\) −3.97171 4.70644i −0.222722 0.263924i
\(319\) 4.65610 + 8.06460i 0.260691 + 0.451531i
\(320\) 14.2944 + 10.7550i 0.799080 + 0.601224i
\(321\) −5.95971 −0.332639
\(322\) 0 0
\(323\) −27.6037 27.6037i −1.53591 1.53591i
\(324\) −0.394809 + 2.31490i −0.0219338 + 0.128606i
\(325\) 13.8795 7.74336i 0.769897 0.429524i
\(326\) −2.71202 + 32.0326i −0.150205 + 1.77412i
\(327\) −2.64102 9.85642i −0.146049 0.545062i
\(328\) −3.93085 + 2.31378i −0.217045 + 0.127757i
\(329\) 0 0
\(330\) −1.47710 + 6.52211i −0.0813116 + 0.359030i
\(331\) 21.3433 + 12.3226i 1.17314 + 0.677310i 0.954417 0.298478i \(-0.0964788\pi\)
0.218719 + 0.975788i \(0.429812\pi\)
\(332\) 0.235781 + 2.53142i 0.0129402 + 0.138930i
\(333\) −0.652065 0.174720i −0.0357329 0.00957461i
\(334\) 8.20281 + 17.4630i 0.448838 + 0.955532i
\(335\) −4.73197 + 11.1904i −0.258535 + 0.611399i
\(336\) 0 0
\(337\) −10.1880 10.1880i −0.554976 0.554976i 0.372897 0.927873i \(-0.378365\pi\)
−0.927873 + 0.372897i \(0.878365\pi\)
\(338\) 3.85245 + 1.38996i 0.209546 + 0.0756037i
\(339\) 7.53223 + 13.0462i 0.409094 + 0.708572i
\(340\) 10.1266 + 19.5363i 0.549191 + 1.05951i
\(341\) −3.57253 + 6.18780i −0.193463 + 0.335088i
\(342\) 3.31384 + 18.4904i 0.179192 + 0.999849i
\(343\) 0 0
\(344\) 19.8247 + 5.13368i 1.06887 + 0.276790i
\(345\) −13.5276 1.88227i −0.728299 0.101338i
\(346\) 6.03822 + 0.511222i 0.324617 + 0.0274834i
\(347\) 2.02424 + 0.542394i 0.108667 + 0.0291172i 0.312743 0.949838i \(-0.398752\pi\)
−0.204076 + 0.978955i \(0.565419\pi\)
\(348\) 6.75062 + 9.52675i 0.361871 + 0.510687i
\(349\) 12.1094i 0.648203i −0.946022 0.324102i \(-0.894938\pi\)
0.946022 0.324102i \(-0.105062\pi\)
\(350\) 0 0
\(351\) 17.1076i 0.913139i
\(352\) −9.71213 + 3.68991i −0.517658 + 0.196673i
\(353\) −15.2177 4.07757i −0.809956 0.217027i −0.170005 0.985443i \(-0.554378\pi\)
−0.639951 + 0.768416i \(0.721045\pi\)
\(354\) −0.779135 + 9.20265i −0.0414106 + 0.489115i
\(355\) −10.1004 1.40541i −0.536076 0.0745913i
\(356\) −10.6235 28.6863i −0.563044 1.52037i
\(357\) 0 0
\(358\) 32.7873 5.87612i 1.73286 0.310562i
\(359\) −0.0778098 + 0.134770i −0.00410664 + 0.00711291i −0.868071 0.496439i \(-0.834641\pi\)
0.863965 + 0.503552i \(0.167974\pi\)
\(360\) 1.37105 10.4997i 0.0722605 0.553384i
\(361\) −21.9722 38.0569i −1.15643 2.00299i
\(362\) −5.96716 + 16.5388i −0.313627 + 0.869258i
\(363\) 6.20957 + 6.20957i 0.325918 + 0.325918i
\(364\) 0 0
\(365\) 4.14061 9.79195i 0.216729 0.512534i
\(366\) −3.44158 + 1.61660i −0.179894 + 0.0845009i
\(367\) −4.12393 1.10500i −0.215267 0.0576807i 0.149573 0.988751i \(-0.452210\pi\)
−0.364841 + 0.931070i \(0.618877\pi\)
\(368\) −9.18267 19.1292i −0.478680 0.997181i
\(369\) 2.33825 + 1.34999i 0.121724 + 0.0702776i
\(370\) −1.24356 0.281636i −0.0646496 0.0146415i
\(371\) 0 0
\(372\) −3.74056 + 8.14051i −0.193939 + 0.422066i
\(373\) −0.912560 3.40572i −0.0472506 0.176342i 0.938268 0.345909i \(-0.112430\pi\)
−0.985519 + 0.169568i \(0.945763\pi\)
\(374\) −12.7346 1.07817i −0.658492 0.0557507i
\(375\) −10.0376 8.06016i −0.518339 0.416225i
\(376\) −22.3864 22.0130i −1.15449 1.13523i
\(377\) 11.3964 + 11.3964i 0.586942 + 0.586942i
\(378\) 0 0
\(379\) −22.4354 −1.15243 −0.576214 0.817299i \(-0.695470\pi\)
−0.576214 + 0.817299i \(0.695470\pi\)
\(380\) 7.61886 + 34.6531i 0.390839 + 1.77767i
\(381\) −5.86444 10.1575i −0.300444 0.520384i
\(382\) 14.2075 11.9895i 0.726918 0.613437i
\(383\) 29.8482 7.99781i 1.52517 0.408669i 0.603733 0.797187i \(-0.293679\pi\)
0.921441 + 0.388518i \(0.127013\pi\)
\(384\) −11.6959 + 5.73598i −0.596856 + 0.292713i
\(385\) 0 0
\(386\) 12.6405 18.1607i 0.643386 0.924355i
\(387\) −3.13740 11.7089i −0.159483 0.595199i
\(388\) −2.31493 24.8538i −0.117523 1.26176i
\(389\) 5.32729 3.07571i 0.270104 0.155945i −0.358831 0.933403i \(-0.616824\pi\)
0.628935 + 0.777458i \(0.283491\pi\)
\(390\) 0.452202 + 11.5650i 0.0228982 + 0.585618i
\(391\) 26.1018i 1.32003i
\(392\) 0 0
\(393\) −2.38897 + 2.38897i −0.120508 + 0.120508i
\(394\) −13.3151 + 6.25442i −0.670803 + 0.315093i
\(395\) 20.0104 + 15.5897i 1.00683 + 0.784402i
\(396\) 4.73318 + 3.92659i 0.237851 + 0.197319i
\(397\) −33.6444 + 9.01500i −1.68857 + 0.452450i −0.970019 0.243028i \(-0.921859\pi\)
−0.718547 + 0.695478i \(0.755193\pi\)
\(398\) −10.5952 + 1.89886i −0.531088 + 0.0951812i
\(399\) 0 0
\(400\) 1.81278 19.9177i 0.0906392 0.995884i
\(401\) 9.01829 15.6201i 0.450352 0.780032i −0.548056 0.836442i \(-0.684632\pi\)
0.998408 + 0.0564094i \(0.0179652\pi\)
\(402\) −5.70617 6.76176i −0.284598 0.337246i
\(403\) −3.20060 + 11.9448i −0.159433 + 0.595012i
\(404\) −4.57771 + 26.8407i −0.227749 + 1.33537i
\(405\) 2.43298 0.986869i 0.120896 0.0490379i
\(406\) 0 0
\(407\) 0.523638 0.523638i 0.0259558 0.0259558i
\(408\) −16.0238 + 0.134778i −0.793296 + 0.00667252i
\(409\) −10.4110 + 6.01082i −0.514793 + 0.297216i −0.734802 0.678282i \(-0.762725\pi\)
0.220009 + 0.975498i \(0.429391\pi\)
\(410\) 4.51268 + 2.37533i 0.222865 + 0.117309i
\(411\) 12.3217 + 7.11394i 0.607785 + 0.350905i
\(412\) 34.3562 + 15.7867i 1.69261 + 0.777753i
\(413\) 0 0
\(414\) −7.17543 + 10.3090i −0.352653 + 0.506658i
\(415\) 2.26775 1.71375i 0.111319 0.0841247i
\(416\) −14.5834 + 10.5191i −0.715012 + 0.515743i
\(417\) −3.95845 + 14.7731i −0.193846 + 0.723444i
\(418\) −19.3838 6.99364i −0.948092 0.342070i
\(419\) 17.7521 0.867247 0.433624 0.901094i \(-0.357235\pi\)
0.433624 + 0.901094i \(0.357235\pi\)
\(420\) 0 0
\(421\) −15.9892 −0.779265 −0.389632 0.920970i \(-0.627398\pi\)
−0.389632 + 0.920970i \(0.627398\pi\)
\(422\) 26.2512 + 9.47137i 1.27789 + 0.461059i
\(423\) −4.81003 + 17.9513i −0.233872 + 0.872820i
\(424\) −10.3088 + 2.85539i −0.500642 + 0.138670i
\(425\) 12.6132 21.1229i 0.611831 1.02461i
\(426\) 4.24241 6.09509i 0.205546 0.295308i
\(427\) 0 0
\(428\) −4.32226 + 9.40647i −0.208924 + 0.454679i
\(429\) −5.82140 3.36099i −0.281060 0.162270i
\(430\) −6.78541 21.8672i −0.327221 1.05453i
\(431\) 3.12747 1.80565i 0.150645 0.0869750i −0.422783 0.906231i \(-0.638947\pi\)
0.573428 + 0.819256i \(0.305613\pi\)
\(432\) 17.7720 + 12.1494i 0.855058 + 0.584538i
\(433\) 15.7262 15.7262i 0.755753 0.755753i −0.219793 0.975546i \(-0.570538\pi\)
0.975546 + 0.219793i \(0.0705383\pi\)
\(434\) 0 0
\(435\) 5.08421 12.0234i 0.243769 0.576480i
\(436\) −17.4722 2.97990i −0.836767 0.142711i
\(437\) 10.8928 40.6526i 0.521075 1.94468i
\(438\) 4.99306 + 5.91673i 0.238578 + 0.282712i
\(439\) 0.322459 0.558515i 0.0153901 0.0266565i −0.858228 0.513269i \(-0.828434\pi\)
0.873618 + 0.486613i \(0.161768\pi\)
\(440\) 9.22287 + 7.06151i 0.439683 + 0.336644i
\(441\) 0 0
\(442\) −21.7721 + 3.90199i −1.03560 + 0.185599i
\(443\) −1.72706 + 0.462763i −0.0820549 + 0.0219865i −0.299613 0.954061i \(-0.596858\pi\)
0.217558 + 0.976047i \(0.430191\pi\)
\(444\) 0.592841 0.714620i 0.0281350 0.0339144i
\(445\) −21.0192 + 26.9795i −0.996406 + 1.27895i
\(446\) −1.57746 + 0.740974i −0.0746950 + 0.0350861i
\(447\) 18.1295 18.1295i 0.857495 0.857495i
\(448\) 0 0
\(449\) 9.76729i 0.460947i 0.973079 + 0.230473i \(0.0740275\pi\)
−0.973079 + 0.230473i \(0.925973\pi\)
\(450\) −10.7883 + 4.87513i −0.508567 + 0.229816i
\(451\) −2.56501 + 1.48091i −0.120782 + 0.0697334i
\(452\) 26.0541 2.42672i 1.22548 0.114143i
\(453\) −5.27651 19.6922i −0.247912 0.925220i
\(454\) 9.99498 14.3598i 0.469088 0.673940i
\(455\) 0 0
\(456\) −25.0127 6.47715i −1.17133 0.303321i
\(457\) 26.2642 7.03747i 1.22859 0.329199i 0.414558 0.910023i \(-0.363936\pi\)
0.814029 + 0.580824i \(0.197270\pi\)
\(458\) −17.5887 + 14.8429i −0.821865 + 0.693562i
\(459\) 13.2409 + 22.9339i 0.618032 + 1.07046i
\(460\) −12.7817 + 19.9860i −0.595949 + 0.931853i
\(461\) 22.8494 1.06420 0.532101 0.846681i \(-0.321403\pi\)
0.532101 + 0.846681i \(0.321403\pi\)
\(462\) 0 0
\(463\) 0.390203 + 0.390203i 0.0181343 + 0.0181343i 0.716116 0.697982i \(-0.245918\pi\)
−0.697982 + 0.716116i \(0.745918\pi\)
\(464\) 19.9323 3.74556i 0.925336 0.173883i
\(465\) 9.93988 1.23430i 0.460951 0.0572391i
\(466\) −8.52620 0.721864i −0.394969 0.0334397i
\(467\) 3.14593 + 11.7408i 0.145576 + 0.543299i 0.999729 + 0.0232762i \(0.00740972\pi\)
−0.854153 + 0.520022i \(0.825924\pi\)
\(468\) 9.67162 + 4.44410i 0.447071 + 0.205429i
\(469\) 0 0
\(470\) −7.75340 + 34.2350i −0.357637 + 1.57914i
\(471\) −1.24162 0.716850i −0.0572109 0.0330307i
\(472\) 13.9599 + 7.90393i 0.642555 + 0.363808i
\(473\) 12.8445 + 3.44167i 0.590590 + 0.158248i
\(474\) −16.7196 + 7.85361i −0.767956 + 0.360728i
\(475\) 28.4596 27.6343i 1.30582 1.26795i
\(476\) 0 0
\(477\) 4.47734 + 4.47734i 0.205004 + 0.205004i
\(478\) −0.794094 + 2.20094i −0.0363210 + 0.100668i
\(479\) 18.5696 + 32.1635i 0.848466 + 1.46959i 0.882577 + 0.470169i \(0.155807\pi\)
−0.0341102 + 0.999418i \(0.510860\pi\)
\(480\) 12.3353 + 7.74342i 0.563028 + 0.353437i
\(481\) 0.640833 1.10996i 0.0292195 0.0506096i
\(482\) 35.9845 6.44911i 1.63905 0.293749i
\(483\) 0 0
\(484\) 14.3043 5.29736i 0.650195 0.240789i
\(485\) −22.2650 + 16.8258i −1.01100 + 0.764020i
\(486\) 1.76502 20.8473i 0.0800631 0.945654i
\(487\) −13.3781 3.58465i −0.606220 0.162436i −0.0573644 0.998353i \(-0.518270\pi\)
−0.548856 + 0.835917i \(0.684936\pi\)
\(488\) 0.0555508 + 6.60443i 0.00251466 + 0.298968i
\(489\) 26.1734i 1.18360i
\(490\) 0 0
\(491\) 24.4541i 1.10360i 0.833977 + 0.551799i \(0.186059\pi\)
−0.833977 + 0.551799i \(0.813941\pi\)
\(492\) −3.03006 + 2.14709i −0.136606 + 0.0967984i
\(493\) 24.0980 + 6.45705i 1.08532 + 0.290811i
\(494\) −35.5377 3.00877i −1.59892 0.135371i
\(495\) 0.947591 6.81018i 0.0425910 0.306095i
\(496\) 10.1357 + 11.8078i 0.455106 + 0.530184i
\(497\) 0 0
\(498\) 0.365154 + 2.03747i 0.0163630 + 0.0913014i
\(499\) 0.190365 0.329722i 0.00852191 0.0147604i −0.861733 0.507362i \(-0.830621\pi\)
0.870255 + 0.492602i \(0.163954\pi\)
\(500\) −20.0014 + 9.99715i −0.894491 + 0.447086i
\(501\) 7.85415 + 13.6038i 0.350897 + 0.607772i
\(502\) 26.3347 + 9.50153i 1.17538 + 0.424074i
\(503\) 20.9903 + 20.9903i 0.935911 + 0.935911i 0.998066 0.0621557i \(-0.0197975\pi\)
−0.0621557 + 0.998066i \(0.519798\pi\)
\(504\) 0 0
\(505\) 28.2098 11.4425i 1.25532 0.509184i
\(506\) −5.85801 12.4711i −0.260420 0.554409i
\(507\) 3.22085 + 0.863023i 0.143043 + 0.0383282i
\(508\) −20.2852 + 1.88940i −0.900009 + 0.0838284i
\(509\) −30.3506 17.5230i −1.34527 0.776691i −0.357693 0.933839i \(-0.616437\pi\)
−0.987575 + 0.157148i \(0.949770\pi\)
\(510\) 9.55725 + 15.1537i 0.423202 + 0.671016i
\(511\) 0 0
\(512\) 0.570893 + 22.6202i 0.0252301 + 0.999682i
\(513\) 11.0514 + 41.2444i 0.487931 + 1.82099i
\(514\) 1.47932 17.4728i 0.0652500 0.770691i
\(515\) −5.20923 41.9503i −0.229546 1.84855i
\(516\) 16.4358 + 2.80314i 0.723544 + 0.123401i
\(517\) −14.4157 14.4157i −0.634001 0.634001i
\(518\) 0 0
\(519\) 4.93374 0.216567
\(520\) 18.5816 + 7.67378i 0.814855 + 0.336517i
\(521\) −0.375226 0.649910i −0.0164389 0.0284731i 0.857689 0.514169i \(-0.171900\pi\)
−0.874128 + 0.485696i \(0.838566\pi\)
\(522\) −7.74252 9.17482i −0.338881 0.401571i
\(523\) −3.16813 + 0.848897i −0.138533 + 0.0371197i −0.327419 0.944879i \(-0.606179\pi\)
0.188886 + 0.981999i \(0.439512\pi\)
\(524\) 2.03802 + 5.50321i 0.0890314 + 0.240409i
\(525\) 0 0
\(526\) −3.31378 2.30652i −0.144488 0.100569i
\(527\) 4.95436 + 18.4899i 0.215815 + 0.805434i
\(528\) −7.62572 + 3.66060i −0.331867 + 0.159307i
\(529\) 4.45189 2.57030i 0.193561 0.111752i
\(530\) 8.78066 + 8.11984i 0.381408 + 0.352703i
\(531\) 9.49591i 0.412087i
\(532\) 0 0
\(533\) −3.62471 + 3.62471i −0.157003 + 0.157003i
\(534\) −10.5888 22.5426i −0.458224 0.975515i
\(535\) 11.4857 1.42624i 0.496568 0.0616619i
\(536\) −14.8108 + 4.10235i −0.639727 + 0.177195i
\(537\) 26.1958 7.01913i 1.13043 0.302898i
\(538\) −5.28612 29.4952i −0.227901 1.27163i
\(539\) 0 0
\(540\) 1.09192 24.0442i 0.0469888 1.03470i
\(541\) 5.10537 8.84276i 0.219497 0.380180i −0.735157 0.677897i \(-0.762892\pi\)
0.954654 + 0.297717i \(0.0962250\pi\)
\(542\) −14.1315 + 11.9254i −0.606999 + 0.512240i
\(543\) −3.70501 + 13.8273i −0.158997 + 0.593385i
\(544\) −11.4085 + 25.3888i −0.489134 + 1.08854i
\(545\) 7.44861 + 18.3634i 0.319063 + 0.786603i
\(546\) 0 0
\(547\) 2.16488 2.16488i 0.0925637 0.0925637i −0.659309 0.751872i \(-0.729151\pi\)
0.751872 + 0.659309i \(0.229151\pi\)
\(548\) 20.1645 14.2885i 0.861385 0.610375i
\(549\) 3.38575 1.95477i 0.144500 0.0834274i
\(550\) 1.28586 12.9230i 0.0548290 0.551039i
\(551\) 34.8372 + 20.1132i 1.48411 + 0.856853i
\(552\) −8.76353 14.8883i −0.373001 0.633687i
\(553\) 0 0
\(554\) 8.15221 + 5.67425i 0.346354 + 0.241076i
\(555\) −1.02821 0.143068i −0.0436449 0.00607290i
\(556\) 20.4462 + 16.9620i 0.867113 + 0.719348i
\(557\) 7.69590 28.7215i 0.326086 1.21697i −0.587130 0.809493i \(-0.699742\pi\)
0.913216 0.407476i \(-0.133591\pi\)
\(558\) 3.12617 8.66460i 0.132342 0.366802i
\(559\) 23.0145 0.973410
\(560\) 0 0
\(561\) −10.4053 −0.439311
\(562\) 9.70038 26.8859i 0.409186 1.13411i
\(563\) 0.153105 0.571395i 0.00645259 0.0240814i −0.962624 0.270840i \(-0.912699\pi\)
0.969077 + 0.246758i \(0.0793654\pi\)
\(564\) −19.6734 16.3208i −0.828399 0.687231i
\(565\) −17.6384 23.3403i −0.742052 0.981933i
\(566\) 7.97378 + 5.55005i 0.335163 + 0.233286i
\(567\) 0 0
\(568\) −6.54335 11.1164i −0.274553 0.466435i
\(569\) 2.88252 + 1.66422i 0.120842 + 0.0697679i 0.559202 0.829031i \(-0.311107\pi\)
−0.438361 + 0.898799i \(0.644441\pi\)
\(570\) 8.56113 + 27.5897i 0.358586 + 1.15561i
\(571\) 23.9165 13.8082i 1.00087 0.577855i 0.0923679 0.995725i \(-0.470556\pi\)
0.908507 + 0.417870i \(0.137223\pi\)
\(572\) −9.52675 + 6.75062i −0.398333 + 0.282258i
\(573\) 10.7026 10.7026i 0.447107 0.447107i
\(574\) 0 0
\(575\) 26.5210 + 0.390203i 1.10600 + 0.0162726i
\(576\) 11.4852 6.89115i 0.478551 0.287131i
\(577\) −5.40191 + 20.1602i −0.224885 + 0.839281i 0.757566 + 0.652759i \(0.226388\pi\)
−0.982451 + 0.186522i \(0.940278\pi\)
\(578\) −7.79335 + 6.57672i −0.324161 + 0.273556i
\(579\) 9.00750 15.6015i 0.374339 0.648374i
\(580\) −15.2898 16.7446i −0.634875 0.695281i
\(581\) 0 0
\(582\) −3.58513 20.0041i −0.148608 0.829199i
\(583\) −6.70932 + 1.79776i −0.277871 + 0.0744554i
\(584\) 12.9598 3.58967i 0.536282 0.148542i
\(585\) −1.46645 11.8094i −0.0606302 0.488259i
\(586\) −2.61733 5.57205i −0.108121 0.230179i
\(587\) −14.6462 + 14.6462i −0.604512 + 0.604512i −0.941507 0.336995i \(-0.890590\pi\)
0.336995 + 0.941507i \(0.390590\pi\)
\(588\) 0 0
\(589\) 30.8649i 1.27177i
\(590\) −0.700764 17.9220i −0.0288500 0.737835i
\(591\) −10.3725 + 5.98858i −0.426668 + 0.246337i
\(592\) −0.697960 1.45398i −0.0286860 0.0597583i
\(593\) 4.35728 + 16.2616i 0.178932 + 0.667783i 0.995848 + 0.0910271i \(0.0290150\pi\)
−0.816916 + 0.576756i \(0.804318\pi\)
\(594\) 11.4734 + 7.98589i 0.470758 + 0.327665i
\(595\) 0 0
\(596\) −15.4662 41.7629i −0.633520 1.71067i
\(597\) −8.46512 + 2.26822i −0.346454 + 0.0928322i
\(598\) −15.3795 18.2246i −0.628916 0.745260i
\(599\) 2.35363 + 4.07660i 0.0961666 + 0.166565i 0.910095 0.414400i \(-0.136008\pi\)
−0.813928 + 0.580965i \(0.802675\pi\)
\(600\) 0.102601 16.2831i 0.00418867 0.664756i
\(601\) 8.52304 0.347662 0.173831 0.984775i \(-0.444385\pi\)
0.173831 + 0.984775i \(0.444385\pi\)
\(602\) 0 0
\(603\) 6.43262 + 6.43262i 0.261957 + 0.261957i
\(604\) −34.9078 5.95356i −1.42038 0.242247i
\(605\) −13.4532 10.4811i −0.546951 0.426119i
\(606\) −1.87019 + 22.0895i −0.0759712 + 0.897324i
\(607\) −4.06498 15.1707i −0.164993 0.615761i −0.998041 0.0625608i \(-0.980073\pi\)
0.833049 0.553200i \(-0.186593\pi\)
\(608\) −28.3636 + 34.7811i −1.15029 + 1.41056i
\(609\) 0 0
\(610\) 6.24580 3.93915i 0.252885 0.159492i
\(611\) −30.5569 17.6421i −1.23620 0.713721i
\(612\) 16.4051 1.52799i 0.663135 0.0617655i
\(613\) 33.9787 + 9.10458i 1.37239 + 0.367730i 0.868351 0.495951i \(-0.165180\pi\)
0.504038 + 0.863681i \(0.331847\pi\)
\(614\) −6.89969 14.6888i −0.278449 0.592790i
\(615\) 3.82416 + 1.61707i 0.154205 + 0.0652068i
\(616\) 0 0
\(617\) −24.4754 24.4754i −0.985343 0.985343i 0.0145509 0.999894i \(-0.495368\pi\)
−0.999894 + 0.0145509i \(0.995368\pi\)
\(618\) 28.9565 + 10.4475i 1.16480 + 0.420259i
\(619\) −9.34362 16.1836i −0.375552 0.650475i 0.614858 0.788638i \(-0.289213\pi\)
−0.990409 + 0.138163i \(0.955880\pi\)
\(620\) 5.26072 16.5837i 0.211276 0.666018i
\(621\) −14.2751 + 24.7252i −0.572841 + 0.992189i
\(622\) −2.67189 14.9085i −0.107133 0.597776i
\(623\) 0 0
\(624\) −11.1086 + 9.53553i −0.444700 + 0.381727i
\(625\) 21.2735 + 13.1315i 0.850941 + 0.525262i
\(626\) −24.9702 2.11408i −0.998008 0.0844956i
\(627\) −16.2058 4.34234i −0.647199 0.173416i
\(628\) −2.03192 + 1.43981i −0.0810823 + 0.0574547i
\(629\) 1.98396i 0.0791055i
\(630\) 0 0
\(631\) 8.42486i 0.335388i 0.985839 + 0.167694i \(0.0536321\pi\)
−0.985839 + 0.167694i \(0.946368\pi\)
\(632\) 0.269872 + 32.0851i 0.0107349 + 1.27627i
\(633\) 21.9473 + 5.88077i 0.872328 + 0.233740i
\(634\) −0.209972 + 2.48006i −0.00833907 + 0.0984958i
\(635\) 13.7329 + 18.1723i 0.544973 + 0.721144i
\(636\) −8.16713 + 3.02456i −0.323848 + 0.119932i
\(637\) 0 0
\(638\) 12.9629 2.32320i 0.513206 0.0919764i
\(639\) −3.81776 + 6.61255i −0.151028 + 0.261588i
\(640\) 21.1679 13.8535i 0.836736 0.547607i
\(641\) 0.919839 + 1.59321i 0.0363315 + 0.0629280i 0.883619 0.468206i \(-0.155099\pi\)
−0.847288 + 0.531134i \(0.821766\pi\)
\(642\) −2.86043 + 7.92807i −0.112892 + 0.312896i
\(643\) −23.6593 23.6593i −0.933032 0.933032i 0.0648624 0.997894i \(-0.479339\pi\)
−0.997894 + 0.0648624i \(0.979339\pi\)
\(644\) 0 0
\(645\) −7.00676 17.2741i −0.275891 0.680168i
\(646\) −49.9693 + 23.4718i −1.96602 + 0.923487i
\(647\) 26.3555 + 7.06194i 1.03614 + 0.277633i 0.736514 0.676423i \(-0.236471\pi\)
0.299628 + 0.954056i \(0.403137\pi\)
\(648\) 2.88997 + 1.63627i 0.113529 + 0.0642787i
\(649\) 9.02124 + 5.20841i 0.354115 + 0.204448i
\(650\) −3.63917 22.1801i −0.142740 0.869976i
\(651\) 0 0
\(652\) 41.3106 + 18.9822i 1.61785 + 0.743400i
\(653\) −0.130030 0.485279i −0.00508847 0.0189904i 0.963335 0.268302i \(-0.0864624\pi\)
−0.968423 + 0.249311i \(0.919796\pi\)
\(654\) −14.3794 1.21742i −0.562278 0.0476048i
\(655\) 4.03235 5.17578i 0.157557 0.202235i
\(656\) 1.19131 + 6.33965i 0.0465127 + 0.247522i
\(657\) −5.62873 5.62873i −0.219598 0.219598i
\(658\) 0 0
\(659\) 34.0104 1.32486 0.662428 0.749126i \(-0.269526\pi\)
0.662428 + 0.749126i \(0.269526\pi\)
\(660\) 7.96726 + 5.09531i 0.310125 + 0.198335i
\(661\) 4.28987 + 7.43027i 0.166856 + 0.289004i 0.937313 0.348489i \(-0.113305\pi\)
−0.770457 + 0.637493i \(0.779972\pi\)
\(662\) 26.6364 22.4782i 1.03525 0.873639i
\(663\) −17.3951 + 4.66100i −0.675569 + 0.181018i
\(664\) 3.48066 + 0.901332i 0.135076 + 0.0349785i
\(665\) 0 0
\(666\) −0.545393 + 0.783568i −0.0211335 + 0.0303626i
\(667\) 6.96140 + 25.9803i 0.269547 + 1.00596i
\(668\) 27.1676 2.53044i 1.05115 0.0979057i
\(669\) −1.22885 + 0.709479i −0.0475102 + 0.0274300i
\(670\) 12.6152 + 11.6658i 0.487368 + 0.450689i
\(671\) 4.28868i 0.165563i
\(672\) 0 0
\(673\) −8.24869 + 8.24869i −0.317964 + 0.317964i −0.847985 0.530021i \(-0.822184\pi\)
0.530021 + 0.847985i \(0.322184\pi\)
\(674\) −18.4427 + 8.66302i −0.710387 + 0.333687i
\(675\) −23.5001 + 13.1107i −0.904520 + 0.504630i
\(676\) 3.69806 4.45770i 0.142233 0.171450i
\(677\) −18.8259 + 5.04438i −0.723538 + 0.193871i −0.601750 0.798685i \(-0.705530\pi\)
−0.121788 + 0.992556i \(0.538863\pi\)
\(678\) 20.9702 3.75827i 0.805357 0.144335i
\(679\) 0 0
\(680\) 30.8491 4.09447i 1.18301 0.157016i
\(681\) 7.12232 12.3362i 0.272928 0.472725i
\(682\) 6.51681 + 7.72236i 0.249541 + 0.295704i
\(683\) −9.56315 + 35.6902i −0.365924 + 1.36565i 0.500241 + 0.865886i \(0.333245\pi\)
−0.866164 + 0.499759i \(0.833422\pi\)
\(684\) 26.1879 + 4.46638i 1.00132 + 0.170776i
\(685\) −25.4491 10.7613i −0.972359 0.411170i
\(686\) 0 0
\(687\) −13.2497 + 13.2497i −0.505507 + 0.505507i
\(688\) 16.3443 23.9083i 0.623121 0.911496i
\(689\) −10.4110 + 6.01082i −0.396629 + 0.228994i
\(690\) −8.99665 + 17.0920i −0.342497 + 0.650680i
\(691\) −35.2631 20.3592i −1.34147 0.774499i −0.354449 0.935076i \(-0.615331\pi\)
−0.987023 + 0.160576i \(0.948665\pi\)
\(692\) 3.57818 7.78714i 0.136022 0.296023i
\(693\) 0 0
\(694\) 1.69309 2.43247i 0.0642689 0.0923354i
\(695\) 4.09337 29.4184i 0.155270 1.11590i
\(696\) 15.9133 4.40773i 0.603190 0.167074i
\(697\) −2.05372 + 7.66458i −0.0777902 + 0.290317i
\(698\) −16.1089 5.81207i −0.609731 0.219990i
\(699\) −6.96664 −0.263502
\(700\) 0 0
\(701\) 17.3238 0.654312 0.327156 0.944970i \(-0.393910\pi\)
0.327156 + 0.944970i \(0.393910\pi\)
\(702\) 22.7579 + 8.21102i 0.858942 + 0.309905i
\(703\) 0.827947 3.08994i 0.0312266 0.116539i
\(704\) 0.247151 + 14.6908i 0.00931485 + 0.553682i
\(705\) −3.93865 + 28.3064i −0.148338 + 1.06608i
\(706\) −12.7282 + 18.2867i −0.479032 + 0.688228i
\(707\) 0 0
\(708\) 11.8681 + 5.45339i 0.446031 + 0.204951i
\(709\) −36.5248 21.0876i −1.37172 0.791963i −0.380575 0.924750i \(-0.624274\pi\)
−0.991145 + 0.132788i \(0.957607\pi\)
\(710\) −6.71741 + 12.7618i −0.252100 + 0.478943i
\(711\) 16.4484 9.49647i 0.616862 0.356146i
\(712\) −43.2595 + 0.363862i −1.62122 + 0.0136363i
\(713\) −14.5928 + 14.5928i −0.546505 + 0.546505i
\(714\) 0 0
\(715\) 12.0234 + 5.08421i 0.449651 + 0.190139i
\(716\) 7.91979 46.4365i 0.295977 1.73541i
\(717\) −0.493053 + 1.84010i −0.0184134 + 0.0687197i
\(718\) 0.141936 + 0.168193i 0.00529702 + 0.00627692i
\(719\) −18.5696 + 32.1635i −0.692529 + 1.19950i 0.278478 + 0.960443i \(0.410170\pi\)
−0.971007 + 0.239053i \(0.923163\pi\)
\(720\) −13.3095 6.86334i −0.496015 0.255782i
\(721\) 0 0
\(722\) −61.1720 + 10.9632i −2.27659 + 0.408008i
\(723\) 28.7502 7.70358i 1.06923 0.286499i
\(724\) 19.1371 + 15.8760i 0.711226 + 0.590025i
\(725\) −6.92099 + 24.3885i −0.257039 + 0.905766i
\(726\) 11.2408 5.28009i 0.417185 0.195963i
\(727\) −13.9553 + 13.9553i −0.517573 + 0.517573i −0.916836 0.399264i \(-0.869266\pi\)
0.399264 + 0.916836i \(0.369266\pi\)
\(728\) 0 0
\(729\) 20.5565i 0.761353i
\(730\) −11.0387 10.2079i −0.408560 0.377812i
\(731\) 30.8524 17.8127i 1.14112 0.658825i
\(732\) 0.498696 + 5.35416i 0.0184323 + 0.197895i
\(733\) 8.95786 + 33.4312i 0.330866 + 1.23481i 0.908282 + 0.418359i \(0.137394\pi\)
−0.577416 + 0.816450i \(0.695939\pi\)
\(734\) −3.44929 + 4.95561i −0.127316 + 0.182915i
\(735\) 0 0
\(736\) −29.8545 + 3.03419i −1.10045 + 0.111842i
\(737\) −9.63930 + 2.58284i −0.355068 + 0.0951403i
\(738\) 2.91813 2.46257i 0.107418 0.0906486i
\(739\) −10.0489 17.4052i −0.369656 0.640262i 0.619856 0.784716i \(-0.287191\pi\)
−0.989512 + 0.144453i \(0.953858\pi\)
\(740\) −0.971514 + 1.51910i −0.0357136 + 0.0558434i
\(741\) −29.0373 −1.06671
\(742\) 0 0
\(743\) −24.1904 24.1904i −0.887460 0.887460i 0.106819 0.994279i \(-0.465934\pi\)
−0.994279 + 0.106819i \(0.965934\pi\)
\(744\) 9.03381 + 8.88311i 0.331196 + 0.325671i
\(745\) −30.6008 + 39.2781i −1.12113 + 1.43904i
\(746\) −4.96855 0.420658i −0.181911 0.0154014i
\(747\) −0.550841 2.05577i −0.0201542 0.0752165i
\(748\) −7.54640 + 16.4231i −0.275924 + 0.600488i
\(749\) 0 0
\(750\) −15.5399 + 9.48420i −0.567437 + 0.346314i
\(751\) 34.6221 + 19.9891i 1.26338 + 0.729411i 0.973726 0.227721i \(-0.0731274\pi\)
0.289651 + 0.957132i \(0.406461\pi\)
\(752\) −40.0279 + 19.2147i −1.45967 + 0.700690i
\(753\) 22.0172 + 5.89949i 0.802351 + 0.214989i
\(754\) 20.6301 9.69050i 0.751305 0.352907i
\(755\) 14.8816 + 36.6884i 0.541597 + 1.33523i
\(756\) 0 0
\(757\) 17.5230 + 17.5230i 0.636884 + 0.636884i 0.949785 0.312902i \(-0.101301\pi\)
−0.312902 + 0.949785i \(0.601301\pi\)
\(758\) −10.7681 + 29.8453i −0.391116 + 1.08403i
\(759\) −5.60901 9.71509i −0.203594 0.352636i
\(760\) 49.7550 + 6.49698i 1.80480 + 0.235670i
\(761\) 17.5004 30.3116i 0.634390 1.09880i −0.352254 0.935904i \(-0.614585\pi\)
0.986644 0.162891i \(-0.0520819\pi\)
\(762\) −16.3270 + 2.92611i −0.591465 + 0.106002i
\(763\) 0 0
\(764\) −9.13034 24.6544i −0.330324 0.891964i
\(765\) −11.1061 14.6963i −0.401541 0.531345i
\(766\) 3.68671 43.5451i 0.133206 1.57335i
\(767\) 17.4144 + 4.66617i 0.628797 + 0.168486i
\(768\) 2.01683 + 18.3119i 0.0727761 + 0.660774i
\(769\) 3.82958i 0.138098i 0.997613 + 0.0690490i \(0.0219965\pi\)
−0.997613 + 0.0690490i \(0.978004\pi\)
\(770\) 0 0
\(771\) 14.2768i 0.514165i
\(772\) −18.0918 25.5318i −0.651138 0.918911i
\(773\) −29.4658 7.89534i −1.05981 0.283976i −0.313511 0.949585i \(-0.601505\pi\)
−0.746301 + 0.665609i \(0.768172\pi\)
\(774\) −17.0820 1.44623i −0.613999 0.0519837i
\(775\) −18.8609 + 4.75751i −0.677504 + 0.170895i
\(776\) −34.1735 8.84938i −1.22676 0.317674i
\(777\) 0 0
\(778\) −1.53465 8.56300i −0.0550200 0.306998i
\(779\) −6.39719 + 11.0803i −0.229203 + 0.396991i
\(780\) 15.6017 + 4.94922i 0.558632 + 0.177211i
\(781\) −4.18801 7.25384i −0.149859 0.259563i
\(782\) −34.7226 12.5279i −1.24168 0.447996i
\(783\) −19.2958 19.2958i −0.689574 0.689574i
\(784\) 0 0
\(785\) 2.56443 + 1.08439i 0.0915283 + 0.0387035i
\(786\) 2.03138 + 4.32461i 0.0724569 + 0.154254i
\(787\) −24.7805 6.63993i −0.883331 0.236688i −0.211487 0.977381i \(-0.567831\pi\)
−0.671844 + 0.740693i \(0.734497\pi\)
\(788\) 1.92939 + 20.7146i 0.0687318 + 0.737927i
\(789\) −2.84680 1.64360i −0.101349 0.0585137i
\(790\) 30.3428 19.1369i 1.07955 0.680859i
\(791\) 0 0
\(792\) 7.49520 4.41183i 0.266331 0.156767i
\(793\) 1.92110 + 7.16963i 0.0682201 + 0.254601i
\(794\) −4.15560 + 49.0833i −0.147477 + 1.74190i
\(795\) 7.68121 + 5.98428i 0.272424 + 0.212240i
\(796\) −2.55927 + 15.0059i −0.0907109 + 0.531870i
\(797\) −1.67208 1.67208i −0.0592281 0.0592281i 0.676872 0.736100i \(-0.263335\pi\)
−0.736100 + 0.676872i \(0.763335\pi\)
\(798\) 0 0
\(799\) −54.6180 −1.93225
\(800\) −25.6260 11.9712i −0.906014 0.423247i
\(801\) 12.8039 + 22.1770i 0.452403 + 0.783585i
\(802\) −16.4507 19.4939i −0.580893 0.688353i
\(803\) 8.43467 2.26006i 0.297653 0.0797558i
\(804\) −11.7338 + 4.34540i −0.413818 + 0.153250i
\(805\) 0 0
\(806\) 14.3537 + 9.99072i 0.505588 + 0.351908i
\(807\) −6.31437 23.5655i −0.222276 0.829546i
\(808\) 33.5084 + 18.9721i 1.17882 + 0.667437i
\(809\) 2.42574 1.40050i 0.0852846 0.0492391i −0.456751 0.889594i \(-0.650987\pi\)
0.542036 + 0.840355i \(0.317654\pi\)
\(810\) −0.145072 3.71020i −0.00509730 0.130363i
\(811\) 0.896541i 0.0314818i 0.999876 + 0.0157409i \(0.00501069\pi\)
−0.999876 + 0.0157409i \(0.994989\pi\)
\(812\) 0 0
\(813\) −10.6454 + 10.6454i −0.373349 + 0.373349i
\(814\) −0.445257 0.947910i −0.0156063 0.0332242i
\(815\) −6.26367 50.4418i −0.219407 1.76690i
\(816\) −7.51151 + 21.3808i −0.262956 + 0.748476i
\(817\) 55.4851 14.8672i 1.94118 0.520137i
\(818\) 2.99915 + 16.7345i 0.104863 + 0.585109i
\(819\) 0 0
\(820\) 5.32576 4.86305i 0.185983 0.169825i
\(821\) −4.15294 + 7.19310i −0.144939 + 0.251041i −0.929350 0.369200i \(-0.879632\pi\)
0.784411 + 0.620241i \(0.212965\pi\)
\(822\) 15.3775 12.9769i 0.536350 0.452620i
\(823\) −3.81103 + 14.2230i −0.132844 + 0.495781i −0.999997 0.00226005i \(-0.999281\pi\)
0.867153 + 0.498041i \(0.165947\pi\)
\(824\) 37.4903 38.1263i 1.30604 1.32819i
\(825\) 0.155551 10.5724i 0.00541560 0.368083i
\(826\) 0 0
\(827\) −18.6287 + 18.6287i −0.647784 + 0.647784i −0.952457 0.304673i \(-0.901453\pi\)
0.304673 + 0.952457i \(0.401453\pi\)
\(828\) 10.2699 + 14.4932i 0.356902 + 0.503674i
\(829\) 38.7234 22.3570i 1.34492 0.776490i 0.357396 0.933953i \(-0.383665\pi\)
0.987525 + 0.157463i \(0.0503315\pi\)
\(830\) −1.19133 3.83927i −0.0413516 0.133263i
\(831\) 7.00339 + 4.04341i 0.242945 + 0.140264i
\(832\) 6.99387 + 24.4488i 0.242469 + 0.847609i
\(833\) 0 0
\(834\) 17.7525 + 12.3564i 0.614717 + 0.427866i
\(835\) −18.3922 24.3378i −0.636489 0.842246i
\(836\) −18.6069 + 22.4291i −0.643535 + 0.775727i
\(837\) 5.41909 20.2243i 0.187311 0.699055i
\(838\) 8.52034 23.6152i 0.294330 0.815774i
\(839\) −30.2098 −1.04296 −0.521480 0.853264i \(-0.674620\pi\)
−0.521480 + 0.853264i \(0.674620\pi\)
\(840\) 0 0
\(841\) 3.29203 0.113518
\(842\) −7.67419 + 21.2700i −0.264470 + 0.733014i
\(843\) 6.02296 22.4780i 0.207442 0.774183i
\(844\) 25.1991 30.3754i 0.867389 1.04556i
\(845\) −6.41381 0.892438i −0.220642 0.0307008i
\(846\) 21.5715 + 15.0146i 0.741644 + 0.516212i
\(847\) 0 0
\(848\) −1.14939 + 15.0841i −0.0394702 + 0.517990i
\(849\) 6.85010 + 3.95491i 0.235095 + 0.135732i
\(850\) −22.0454 26.9172i −0.756151 0.923254i
\(851\) 1.85236 1.06946i 0.0634981 0.0366606i
\(852\) −6.07196 8.56899i −0.208022 0.293569i
\(853\) −27.6893 + 27.6893i −0.948062 + 0.948062i −0.998716 0.0506542i \(-0.983869\pi\)
0.0506542 + 0.998716i \(0.483869\pi\)
\(854\) 0 0
\(855\) −11.1642 27.5237i −0.381808 0.941292i
\(856\) 10.4387 + 10.2646i 0.356787 + 0.350835i
\(857\) −1.90672 + 7.11598i −0.0651324 + 0.243077i −0.990815 0.135223i \(-0.956825\pi\)
0.925683 + 0.378301i \(0.123491\pi\)
\(858\) −7.26509 + 6.13093i −0.248026 + 0.209307i
\(859\) −2.48596 + 4.30581i −0.0848199 + 0.146912i −0.905314 0.424742i \(-0.860365\pi\)
0.820495 + 0.571654i \(0.193698\pi\)
\(860\) −32.3461 1.46894i −1.10299 0.0500903i
\(861\) 0 0
\(862\) −0.900944 5.02705i −0.0306863 0.171222i
\(863\) 11.4731 3.07421i 0.390549 0.104647i −0.0582005 0.998305i \(-0.518536\pi\)
0.448749 + 0.893658i \(0.351870\pi\)
\(864\) 24.6920 17.8105i 0.840038 0.605925i
\(865\) −9.50840 + 1.18072i −0.323295 + 0.0401456i
\(866\) −13.3722 28.4682i −0.454407 0.967388i
\(867\) −5.87079 + 5.87079i −0.199382 + 0.199382i
\(868\) 0 0
\(869\) 20.8349i 0.706775i
\(870\) −13.5543 12.5342i −0.459533 0.424949i
\(871\) −14.9576 + 8.63577i −0.506819 + 0.292612i
\(872\) −12.3501 + 21.8126i −0.418227 + 0.738669i
\(873\) 5.40822 + 20.1837i 0.183040 + 0.683116i
\(874\) −48.8511 34.0022i −1.65241 1.15014i
\(875\) 0 0
\(876\) 10.2674 3.80235i 0.346902 0.128469i
\(877\) 18.4355 4.93977i 0.622521 0.166804i 0.0662475 0.997803i \(-0.478897\pi\)
0.556274 + 0.830999i \(0.312231\pi\)
\(878\) −0.588211 0.697025i −0.0198512 0.0235235i
\(879\) −2.50608 4.34067i −0.0845281 0.146407i
\(880\) 13.8204 8.87971i 0.465885 0.299335i
\(881\) 47.6130 1.60412 0.802062 0.597241i \(-0.203736\pi\)
0.802062 + 0.597241i \(0.203736\pi\)
\(882\) 0 0
\(883\) 23.0077 + 23.0077i 0.774271 + 0.774271i 0.978850 0.204579i \(-0.0655827\pi\)
−0.204579 + 0.978850i \(0.565583\pi\)
\(884\) −5.25907 + 30.8358i −0.176882 + 1.03712i
\(885\) −1.79949 14.4914i −0.0604892 0.487124i
\(886\) −0.213318 + 2.51957i −0.00716654 + 0.0846466i
\(887\) −5.86578 21.8914i −0.196954 0.735041i −0.991752 0.128168i \(-0.959090\pi\)
0.794799 0.606873i \(-0.207576\pi\)
\(888\) −0.666102 1.13163i −0.0223529 0.0379751i
\(889\) 0 0
\(890\) 25.8018 + 40.9105i 0.864878 + 1.37132i
\(891\) 1.86757 + 1.07824i 0.0625660 + 0.0361225i
\(892\) 0.228579 + 2.45410i 0.00765340 + 0.0821694i
\(893\) −85.0656 22.7933i −2.84661 0.762748i
\(894\) −15.4158 32.8187i −0.515581 1.09762i
\(895\) −48.8051 + 19.7964i −1.63138 + 0.661721i
\(896\) 0 0
\(897\) −13.7287 13.7287i −0.458389 0.458389i
\(898\) 12.9932 + 4.68792i 0.433589 + 0.156438i
\(899\) −9.86259 17.0825i −0.328936 0.569734i
\(900\) 1.30729 + 16.6913i 0.0435763 + 0.556378i
\(901\) −9.30444 + 16.1158i −0.309976 + 0.536894i
\(902\) 0.738913 + 4.12296i 0.0246031 + 0.137279i
\(903\) 0 0
\(904\) 9.27676 35.8239i 0.308540 1.19149i
\(905\) 3.83129 27.5348i 0.127356 0.915288i
\(906\) −28.7286 2.43228i −0.954443 0.0808072i
\(907\) −39.2529 10.5178i −1.30337 0.349237i −0.460647 0.887584i \(-0.652382\pi\)
−0.842724 + 0.538347i \(0.819049\pi\)
\(908\) −14.3053 20.1883i −0.474739 0.669971i
\(909\) 22.7934i 0.756009i
\(910\) 0 0
\(911\) 7.34646i 0.243399i −0.992567 0.121700i \(-0.961166\pi\)
0.992567 0.121700i \(-0.0388344\pi\)
\(912\) −20.6216 + 30.1651i −0.682848 + 0.998865i
\(913\) 2.25513 + 0.604261i 0.0746341 + 0.0199981i
\(914\) 3.24403 38.3164i 0.107303 1.26739i
\(915\) 4.79647 3.62472i 0.158566 0.119829i
\(916\) 11.3032 + 30.5218i 0.373470 + 1.00847i
\(917\) 0 0
\(918\) 36.8635 6.60666i 1.21668 0.218052i
\(919\) −24.9086 + 43.1429i −0.821657 + 1.42315i 0.0827899 + 0.996567i \(0.473617\pi\)
−0.904447 + 0.426585i \(0.859716\pi\)
\(920\) 20.4522 + 26.5957i 0.674289 + 0.876834i
\(921\) −6.60642 11.4427i −0.217689 0.377048i
\(922\) 10.9668 30.3960i 0.361174 1.00104i
\(923\) −10.2506 10.2506i −0.337404 0.337404i
\(924\) 0 0
\(925\) 2.01582 + 0.0296587i 0.0662796 + 0.000975171i
\(926\) 0.706360 0.331795i 0.0232124 0.0109035i
\(927\) −30.5728 8.19197i −1.00414 0.269060i
\(928\) 4.58413 28.3133i 0.150482 0.929428i
\(929\) 34.1784 + 19.7329i 1.12136 + 0.647416i 0.941747 0.336322i \(-0.109183\pi\)
0.179610 + 0.983738i \(0.442516\pi\)
\(930\) 3.12881 13.8152i 0.102598 0.453018i
\(931\) 0 0
\(932\) −5.05253 + 10.9957i −0.165501 + 0.360178i
\(933\) −3.19162 11.9113i −0.104489 0.389958i
\(934\) 17.1284 + 1.45016i 0.560459 + 0.0474508i
\(935\) 20.0532 2.49013i 0.655811 0.0814361i
\(936\) 10.5539 10.7329i 0.344965 0.350817i
\(937\) −23.2697 23.2697i −0.760188 0.760188i 0.216168 0.976356i \(-0.430644\pi\)
−0.976356 + 0.216168i \(0.930644\pi\)
\(938\) 0 0
\(939\) −20.4028 −0.665819
\(940\) 41.8207 + 26.7457i 1.36404 + 0.872347i
\(941\) −15.7701 27.3146i −0.514091 0.890431i −0.999866 0.0163476i \(-0.994796\pi\)
0.485776 0.874083i \(-0.338537\pi\)
\(942\) −1.54954 + 1.30764i −0.0504867 + 0.0426052i
\(943\) −8.26326 + 2.21413i −0.269089 + 0.0721021i
\(944\) 17.2146 14.7769i 0.560288 0.480947i
\(945\) 0 0
\(946\) 10.7432 15.4348i 0.349293 0.501830i
\(947\) −0.789132 2.94508i −0.0256433 0.0957023i 0.951918 0.306352i \(-0.0991086\pi\)
−0.977562 + 0.210650i \(0.932442\pi\)
\(948\) 2.42272 + 26.0111i 0.0786863 + 0.844802i
\(949\) 13.0883 7.55654i 0.424865 0.245296i
\(950\) −23.1018 51.1226i −0.749521 1.65864i
\(951\) 2.02642i 0.0657112i
\(952\) 0 0
\(953\) −13.5860 + 13.5860i −0.440095 + 0.440095i −0.892044 0.451949i \(-0.850729\pi\)
0.451949 + 0.892044i \(0.350729\pi\)
\(954\) 8.10506 3.80715i 0.262411 0.123261i
\(955\) −18.0649 + 23.1875i −0.584568 + 0.750330i
\(956\) 2.54672 + 2.11273i 0.0823668 + 0.0683306i
\(957\) 10.3568 2.77511i 0.334789 0.0897065i
\(958\) 51.6990 9.26546i 1.67032 0.299353i
\(959\) 0 0
\(960\) 16.2214 12.6928i 0.523543 0.409660i
\(961\) −7.93264 + 13.7397i −0.255892 + 0.443217i
\(962\) −1.16897 1.38522i −0.0376892 0.0446614i
\(963\) 2.24290 8.37060i 0.0722763 0.269739i
\(964\) 8.69207 50.9646i 0.279953 1.64146i
\(965\) −13.6258 + 32.2230i −0.438629 + 1.03730i
\(966\) 0 0
\(967\) 31.0170 31.0170i 0.997439 0.997439i −0.00255725 0.999997i \(-0.500814\pi\)
0.999997 + 0.00255725i \(0.000813998\pi\)
\(968\) −0.181438 21.5712i −0.00583165 0.693325i
\(969\) −38.9264 + 22.4742i −1.25050 + 0.721975i
\(970\) 11.6966 + 37.6944i 0.375555 + 1.21029i
\(971\) −16.3303 9.42832i −0.524065 0.302569i 0.214531 0.976717i \(-0.431178\pi\)
−0.738596 + 0.674148i \(0.764511\pi\)
\(972\) −26.8856 12.3539i −0.862355 0.396251i
\(973\) 0 0
\(974\) −11.1896 + 16.0761i −0.358537 + 0.515111i
\(975\) −4.47581 17.7441i −0.143341 0.568266i
\(976\) 8.81238 + 3.09597i 0.282077 + 0.0990997i
\(977\) −6.44200 + 24.0419i −0.206098 + 0.769168i 0.783014 + 0.622004i \(0.213681\pi\)
−0.989112 + 0.147164i \(0.952985\pi\)
\(978\) 34.8179 + 12.5622i 1.11335 + 0.401696i
\(979\) −28.0912 −0.897799
\(980\) 0 0
\(981\) 14.8376 0.473728
\(982\) 32.5307 + 11.7370i 1.03810 + 0.374544i
\(983\) 3.87495 14.4615i 0.123592 0.461251i −0.876194 0.481959i \(-0.839925\pi\)
0.999786 + 0.0207081i \(0.00659205\pi\)
\(984\) 1.40191 + 5.06134i 0.0446914 + 0.161350i
\(985\) 18.5569 14.0236i 0.591273 0.446828i
\(986\) 20.1558 28.9579i 0.641892 0.922208i
\(987\) 0 0
\(988\) −21.0592 + 45.8309i −0.669984 + 1.45808i
\(989\) 33.2623 + 19.2040i 1.05768 + 0.610651i
\(990\) −8.60461 4.52918i −0.273473 0.143947i
\(991\) −6.50073 + 3.75320i −0.206503 + 0.119224i −0.599685 0.800236i \(-0.704707\pi\)
0.393182 + 0.919460i \(0.371374\pi\)
\(992\) 20.5723 7.81601i 0.653173 0.248159i
\(993\) 20.0654 20.0654i 0.636757 0.636757i
\(994\) 0 0
\(995\) 15.7713 6.39719i 0.499984 0.202804i
\(996\) 2.88566 + 0.492153i 0.0914358 + 0.0155945i
\(997\) 4.16779 15.5544i 0.131995 0.492613i −0.867997 0.496570i \(-0.834593\pi\)
0.999992 + 0.00395652i \(0.00125940\pi\)
\(998\) −0.347254 0.411492i −0.0109921 0.0130256i
\(999\) −1.08503 + 1.87932i −0.0343288 + 0.0594592i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.j.667.10 64
4.3 odd 2 inner 980.2.x.j.667.11 64
5.3 odd 4 inner 980.2.x.j.863.2 64
7.2 even 3 980.2.k.i.687.2 yes 32
7.3 odd 6 inner 980.2.x.j.67.12 64
7.4 even 3 inner 980.2.x.j.67.11 64
7.5 odd 6 980.2.k.i.687.1 32
7.6 odd 2 inner 980.2.x.j.667.9 64
20.3 even 4 inner 980.2.x.j.863.11 64
28.3 even 6 inner 980.2.x.j.67.1 64
28.11 odd 6 inner 980.2.x.j.67.2 64
28.19 even 6 980.2.k.i.687.10 yes 32
28.23 odd 6 980.2.k.i.687.9 yes 32
28.27 even 2 inner 980.2.x.j.667.12 64
35.3 even 12 inner 980.2.x.j.263.12 64
35.13 even 4 inner 980.2.x.j.863.1 64
35.18 odd 12 inner 980.2.x.j.263.11 64
35.23 odd 12 980.2.k.i.883.9 yes 32
35.33 even 12 980.2.k.i.883.10 yes 32
140.3 odd 12 inner 980.2.x.j.263.9 64
140.23 even 12 980.2.k.i.883.2 yes 32
140.83 odd 4 inner 980.2.x.j.863.12 64
140.103 odd 12 980.2.k.i.883.1 yes 32
140.123 even 12 inner 980.2.x.j.263.10 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.k.i.687.1 32 7.5 odd 6
980.2.k.i.687.2 yes 32 7.2 even 3
980.2.k.i.687.9 yes 32 28.23 odd 6
980.2.k.i.687.10 yes 32 28.19 even 6
980.2.k.i.883.1 yes 32 140.103 odd 12
980.2.k.i.883.2 yes 32 140.23 even 12
980.2.k.i.883.9 yes 32 35.23 odd 12
980.2.k.i.883.10 yes 32 35.33 even 12
980.2.x.j.67.1 64 28.3 even 6 inner
980.2.x.j.67.2 64 28.11 odd 6 inner
980.2.x.j.67.11 64 7.4 even 3 inner
980.2.x.j.67.12 64 7.3 odd 6 inner
980.2.x.j.263.9 64 140.3 odd 12 inner
980.2.x.j.263.10 64 140.123 even 12 inner
980.2.x.j.263.11 64 35.18 odd 12 inner
980.2.x.j.263.12 64 35.3 even 12 inner
980.2.x.j.667.9 64 7.6 odd 2 inner
980.2.x.j.667.10 64 1.1 even 1 trivial
980.2.x.j.667.11 64 4.3 odd 2 inner
980.2.x.j.667.12 64 28.27 even 2 inner
980.2.x.j.863.1 64 35.13 even 4 inner
980.2.x.j.863.2 64 5.3 odd 4 inner
980.2.x.j.863.11 64 20.3 even 4 inner
980.2.x.j.863.12 64 140.83 odd 4 inner