Properties

Label 980.2.x.d.863.1
Level $980$
Weight $2$
Character 980.863
Analytic conductor $7.825$
Analytic rank $0$
Dimension $4$
CM discriminant -4
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(67,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,0,4,0,0,8,0,-6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 863.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 980.863
Dual form 980.2.x.d.67.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(-1.73205 + 1.00000i) q^{4} +(1.86603 - 1.23205i) q^{5} +(2.00000 + 2.00000i) q^{8} +(-2.59808 - 1.50000i) q^{9} +(-2.36603 - 2.09808i) q^{10} +(-1.00000 - 1.00000i) q^{13} +(2.00000 - 3.46410i) q^{16} +(-4.09808 - 1.09808i) q^{17} +(-1.09808 + 4.09808i) q^{18} +(-2.00000 + 4.00000i) q^{20} +(1.96410 - 4.59808i) q^{25} +(-1.00000 + 1.73205i) q^{26} -4.00000i q^{29} +(-5.46410 - 1.46410i) q^{32} +6.00000i q^{34} +6.00000 q^{36} +(-2.56218 - 9.56218i) q^{37} +(6.19615 + 1.26795i) q^{40} -8.00000 q^{41} +(-6.69615 + 0.401924i) q^{45} +(-7.00000 - 1.00000i) q^{50} +(2.73205 + 0.732051i) q^{52} +(3.29423 - 12.2942i) q^{53} +(-5.46410 + 1.46410i) q^{58} +(-6.00000 + 10.3923i) q^{61} +8.00000i q^{64} +(-3.09808 - 0.633975i) q^{65} +(8.19615 - 2.19615i) q^{68} +(-2.19615 - 8.19615i) q^{72} +(-4.02628 + 15.0263i) q^{73} +(-12.1244 + 7.00000i) q^{74} +(-0.535898 - 8.92820i) q^{80} +(4.50000 + 7.79423i) q^{81} +(2.92820 + 10.9282i) q^{82} +(-9.00000 + 3.00000i) q^{85} +(-13.8564 - 8.00000i) q^{89} +(3.00000 + 9.00000i) q^{90} +(13.0000 - 13.0000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 4 q^{5} + 8 q^{8} - 6 q^{10} - 4 q^{13} + 8 q^{16} - 6 q^{17} + 6 q^{18} - 8 q^{20} - 6 q^{25} - 4 q^{26} - 8 q^{32} + 24 q^{36} + 14 q^{37} + 4 q^{40} - 32 q^{41} - 6 q^{45} - 28 q^{50}+ \cdots + 52 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.258819 0.965926i
\(3\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(4\) −1.73205 + 1.00000i −0.866025 + 0.500000i
\(5\) 1.86603 1.23205i 0.834512 0.550990i
\(6\) 0 0
\(7\) 0 0
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) −2.59808 1.50000i −0.866025 0.500000i
\(10\) −2.36603 2.09808i −0.748203 0.663470i
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0 0
\(13\) −1.00000 1.00000i −0.277350 0.277350i 0.554700 0.832050i \(-0.312833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) −4.09808 1.09808i −0.993929 0.266323i −0.275029 0.961436i \(-0.588688\pi\)
−0.718900 + 0.695113i \(0.755354\pi\)
\(18\) −1.09808 + 4.09808i −0.258819 + 0.965926i
\(19\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(20\) −2.00000 + 4.00000i −0.447214 + 0.894427i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(24\) 0 0
\(25\) 1.96410 4.59808i 0.392820 0.919615i
\(26\) −1.00000 + 1.73205i −0.196116 + 0.339683i
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000i 0.742781i −0.928477 0.371391i \(-0.878881\pi\)
0.928477 0.371391i \(-0.121119\pi\)
\(30\) 0 0
\(31\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) −5.46410 1.46410i −0.965926 0.258819i
\(33\) 0 0
\(34\) 6.00000i 1.02899i
\(35\) 0 0
\(36\) 6.00000 1.00000
\(37\) −2.56218 9.56218i −0.421219 1.57201i −0.772043 0.635571i \(-0.780765\pi\)
0.350823 0.936442i \(-0.385902\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 6.19615 + 1.26795i 0.979698 + 0.200480i
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) −6.69615 + 0.401924i −0.998203 + 0.0599153i
\(46\) 0 0
\(47\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −7.00000 1.00000i −0.989949 0.141421i
\(51\) 0 0
\(52\) 2.73205 + 0.732051i 0.378867 + 0.101517i
\(53\) 3.29423 12.2942i 0.452497 1.68874i −0.242846 0.970065i \(-0.578081\pi\)
0.695344 0.718677i \(-0.255252\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −5.46410 + 1.46410i −0.717472 + 0.192246i
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) −6.00000 + 10.3923i −0.768221 + 1.33060i 0.170305 + 0.985391i \(0.445525\pi\)
−0.938527 + 0.345207i \(0.887809\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) −3.09808 0.633975i −0.384269 0.0786349i
\(66\) 0 0
\(67\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(68\) 8.19615 2.19615i 0.993929 0.266323i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −2.19615 8.19615i −0.258819 0.965926i
\(73\) −4.02628 + 15.0263i −0.471240 + 1.75869i 0.164083 + 0.986447i \(0.447534\pi\)
−0.635323 + 0.772246i \(0.719133\pi\)
\(74\) −12.1244 + 7.00000i −1.40943 + 0.813733i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(80\) −0.535898 8.92820i −0.0599153 0.998203i
\(81\) 4.50000 + 7.79423i 0.500000 + 0.866025i
\(82\) 2.92820 + 10.9282i 0.323366 + 1.20682i
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) −9.00000 + 3.00000i −0.976187 + 0.325396i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −13.8564 8.00000i −1.46878 0.847998i −0.469389 0.882992i \(-0.655526\pi\)
−0.999388 + 0.0349934i \(0.988859\pi\)
\(90\) 3.00000 + 9.00000i 0.316228 + 0.948683i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 13.0000 13.0000i 1.31995 1.31995i 0.406138 0.913812i \(-0.366875\pi\)
0.913812 0.406138i \(-0.133125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.19615 + 9.92820i 0.119615 + 0.992820i
\(101\) −1.00000 1.73205i −0.0995037 0.172345i 0.811976 0.583691i \(-0.198392\pi\)
−0.911479 + 0.411346i \(0.865059\pi\)
\(102\) 0 0
\(103\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(104\) 4.00000i 0.392232i
\(105\) 0 0
\(106\) −18.0000 −1.74831
\(107\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(108\) 0 0
\(109\) 5.19615 3.00000i 0.497701 0.287348i −0.230063 0.973176i \(-0.573893\pi\)
0.727764 + 0.685828i \(0.240560\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.00000 1.00000i −0.0940721 0.0940721i 0.658505 0.752577i \(-0.271189\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.00000 + 6.92820i 0.371391 + 0.643268i
\(117\) 1.09808 + 4.09808i 0.101517 + 0.378867i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 + 9.52628i −0.500000 + 0.866025i
\(122\) 16.3923 + 4.39230i 1.48409 + 0.397661i
\(123\) 0 0
\(124\) 0 0
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 10.9282 2.92820i 0.965926 0.258819i
\(129\) 0 0
\(130\) 0.267949 + 4.46410i 0.0235007 + 0.391528i
\(131\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −6.00000 10.3923i −0.514496 0.891133i
\(137\) 9.56218 + 2.56218i 0.816952 + 0.218902i 0.643013 0.765855i \(-0.277684\pi\)
0.173939 + 0.984757i \(0.444351\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −10.3923 + 6.00000i −0.866025 + 0.500000i
\(145\) −4.92820 7.46410i −0.409265 0.619860i
\(146\) 22.0000 1.82073
\(147\) 0 0
\(148\) 14.0000 + 14.0000i 1.15079 + 1.15079i
\(149\) 12.1244 + 7.00000i 0.993266 + 0.573462i 0.906249 0.422744i \(-0.138933\pi\)
0.0870170 + 0.996207i \(0.472267\pi\)
\(150\) 0 0
\(151\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(152\) 0 0
\(153\) 9.00000 + 9.00000i 0.727607 + 0.727607i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 23.2224 + 6.22243i 1.85335 + 0.496604i 0.999706 0.0242497i \(-0.00771967\pi\)
0.853646 + 0.520854i \(0.174386\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −12.0000 + 4.00000i −0.948683 + 0.316228i
\(161\) 0 0
\(162\) 9.00000 9.00000i 0.707107 0.707107i
\(163\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(164\) 13.8564 8.00000i 1.08200 0.624695i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 11.0000i 0.846154i
\(170\) 7.39230 + 11.1962i 0.566964 + 0.858706i
\(171\) 0 0
\(172\) 0 0
\(173\) 15.0263 4.02628i 1.14243 0.306112i 0.362500 0.931984i \(-0.381923\pi\)
0.779926 + 0.625871i \(0.215256\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −5.85641 + 21.8564i −0.438956 + 1.63821i
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 11.1962 7.39230i 0.834512 0.550990i
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −16.5622 14.6865i −1.21768 1.07978i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) 6.95448 25.9545i 0.500595 1.86824i 0.00447566 0.999990i \(-0.498575\pi\)
0.496119 0.868255i \(-0.334758\pi\)
\(194\) −22.5167 13.0000i −1.61660 0.933346i
\(195\) 0 0
\(196\) 0 0
\(197\) 13.0000 13.0000i 0.926212 0.926212i −0.0712470 0.997459i \(-0.522698\pi\)
0.997459 + 0.0712470i \(0.0226979\pi\)
\(198\) 0 0
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) 13.1244 5.26795i 0.928032 0.372500i
\(201\) 0 0
\(202\) −2.00000 + 2.00000i −0.140720 + 0.140720i
\(203\) 0 0
\(204\) 0 0
\(205\) −14.9282 + 9.85641i −1.04263 + 0.688401i
\(206\) 0 0
\(207\) 0 0
\(208\) −5.46410 + 1.46410i −0.378867 + 0.101517i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 6.58846 + 24.5885i 0.452497 + 1.68874i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −6.00000 6.00000i −0.406371 0.406371i
\(219\) 0 0
\(220\) 0 0
\(221\) 3.00000 + 5.19615i 0.201802 + 0.349531i
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) −12.0000 + 9.00000i −0.800000 + 0.600000i
\(226\) −1.00000 + 1.73205i −0.0665190 + 0.115214i
\(227\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(228\) 0 0
\(229\) 3.46410 + 2.00000i 0.228914 + 0.132164i 0.610071 0.792347i \(-0.291141\pi\)
−0.381157 + 0.924510i \(0.624474\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 8.00000 8.00000i 0.525226 0.525226i
\(233\) 28.6865 7.68653i 1.87932 0.503562i 0.879711 0.475509i \(-0.157736\pi\)
0.999606 0.0280525i \(-0.00893057\pi\)
\(234\) 5.19615 3.00000i 0.339683 0.196116i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 4.00000 + 6.92820i 0.257663 + 0.446285i 0.965615 0.259975i \(-0.0837143\pi\)
−0.707953 + 0.706260i \(0.750381\pi\)
\(242\) 15.0263 + 4.02628i 0.965926 + 0.258819i
\(243\) 0 0
\(244\) 24.0000i 1.53644i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −14.2942 + 6.75833i −0.904046 + 0.427434i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) −6.22243 23.2224i −0.388145 1.44858i −0.833150 0.553047i \(-0.813465\pi\)
0.445005 0.895528i \(-0.353202\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 6.00000 2.00000i 0.372104 0.124035i
\(261\) −6.00000 + 10.3923i −0.371391 + 0.643268i
\(262\) 0 0
\(263\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(264\) 0 0
\(265\) −9.00000 27.0000i −0.552866 1.65860i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.5167 13.0000i 1.37287 0.792624i 0.381577 0.924337i \(-0.375381\pi\)
0.991288 + 0.131713i \(0.0420477\pi\)
\(270\) 0 0
\(271\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(272\) −12.0000 + 12.0000i −0.727607 + 0.727607i
\(273\) 0 0
\(274\) 14.0000i 0.845771i
\(275\) 0 0
\(276\) 0 0
\(277\) −31.4186 8.41858i −1.88776 0.505824i −0.998861 0.0477206i \(-0.984804\pi\)
−0.888899 0.458103i \(-0.848529\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 32.0000 1.90896 0.954480 0.298275i \(-0.0964112\pi\)
0.954480 + 0.298275i \(0.0964112\pi\)
\(282\) 0 0
\(283\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 12.0000 + 12.0000i 0.707107 + 0.707107i
\(289\) 0.866025 + 0.500000i 0.0509427 + 0.0294118i
\(290\) −8.39230 + 9.46410i −0.492813 + 0.555751i
\(291\) 0 0
\(292\) −8.05256 30.0526i −0.471240 1.75869i
\(293\) 19.0000 + 19.0000i 1.10999 + 1.10999i 0.993151 + 0.116841i \(0.0372769\pi\)
0.116841 + 0.993151i \(0.462723\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 14.0000 24.2487i 0.813733 1.40943i
\(297\) 0 0
\(298\) 5.12436 19.1244i 0.296846 1.10784i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.60770 + 26.7846i 0.0920564 + 1.53368i
\(306\) 9.00000 15.5885i 0.514496 0.891133i
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) 1.36603 0.366025i 0.0772123 0.0206890i −0.220006 0.975499i \(-0.570608\pi\)
0.297218 + 0.954810i \(0.403941\pi\)
\(314\) 34.0000i 1.91873i
\(315\) 0 0
\(316\) 0 0
\(317\) 1.09808 + 4.09808i 0.0616741 + 0.230171i 0.989882 0.141890i \(-0.0453179\pi\)
−0.928208 + 0.372061i \(0.878651\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 9.85641 + 14.9282i 0.550990 + 0.834512i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −15.5885 9.00000i −0.866025 0.500000i
\(325\) −6.56218 + 2.63397i −0.364004 + 0.146107i
\(326\) 0 0
\(327\) 0 0
\(328\) −16.0000 16.0000i −0.883452 0.883452i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) −7.68653 + 28.6865i −0.421219 + 1.57201i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −7.00000 + 7.00000i −0.381314 + 0.381314i −0.871576 0.490261i \(-0.836901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) −15.0263 + 4.02628i −0.817322 + 0.219001i
\(339\) 0 0
\(340\) 12.5885 14.1962i 0.682705 0.769894i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −11.0000 19.0526i −0.591364 1.02427i
\(347\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(348\) 0 0
\(349\) 36.0000i 1.92704i 0.267644 + 0.963518i \(0.413755\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.29423 12.2942i 0.175334 0.654356i −0.821160 0.570697i \(-0.806673\pi\)
0.996495 0.0836583i \(-0.0266604\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 32.0000 1.69600
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) −14.1962 12.5885i −0.748203 0.663470i
\(361\) 9.50000 + 16.4545i 0.500000 + 0.866025i
\(362\) 6.58846 + 24.5885i 0.346282 + 1.29234i
\(363\) 0 0
\(364\) 0 0
\(365\) 11.0000 + 33.0000i 0.575766 + 1.72730i
\(366\) 0 0
\(367\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(368\) 0 0
\(369\) 20.7846 + 12.0000i 1.08200 + 0.624695i
\(370\) −14.0000 + 28.0000i −0.727825 + 1.45565i
\(371\) 0 0
\(372\) 0 0
\(373\) 15.0263 4.02628i 0.778031 0.208473i 0.152115 0.988363i \(-0.451392\pi\)
0.625917 + 0.779890i \(0.284725\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 + 4.00000i −0.206010 + 0.206010i
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −38.0000 −1.93415
\(387\) 0 0
\(388\) −9.51666 + 35.5167i −0.483135 + 1.80309i
\(389\) −29.4449 + 17.0000i −1.49291 + 0.861934i −0.999967 0.00812520i \(-0.997414\pi\)
−0.492947 + 0.870059i \(0.664080\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −22.5167 13.0000i −1.13437 0.654931i
\(395\) 0 0
\(396\) 0 0
\(397\) 4.75833 + 17.7583i 0.238814 + 0.891265i 0.976392 + 0.216004i \(0.0693024\pi\)
−0.737579 + 0.675261i \(0.764031\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −12.0000 16.0000i −0.600000 0.800000i
\(401\) −1.00000 + 1.73205i −0.0499376 + 0.0864945i −0.889914 0.456129i \(-0.849236\pi\)
0.839976 + 0.542623i \(0.182569\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 3.46410 + 2.00000i 0.172345 + 0.0995037i
\(405\) 18.0000 + 9.00000i 0.894427 + 0.447214i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 5.19615 3.00000i 0.256933 0.148340i −0.366002 0.930614i \(-0.619274\pi\)
0.622935 + 0.782274i \(0.285940\pi\)
\(410\) 18.9282 + 16.7846i 0.934797 + 0.828933i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 4.00000 + 6.92820i 0.196116 + 0.339683i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −28.0000 −1.36464 −0.682318 0.731055i \(-0.739028\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 31.1769 18.0000i 1.51408 0.874157i
\(425\) −13.0981 + 16.6865i −0.635350 + 0.809416i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(432\) 0 0
\(433\) 29.0000 + 29.0000i 1.39365 + 1.39365i 0.816968 + 0.576683i \(0.195653\pi\)
0.576683 + 0.816968i \(0.304347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −6.00000 + 10.3923i −0.287348 + 0.497701i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 6.00000 6.00000i 0.285391 0.285391i
\(443\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(444\) 0 0
\(445\) −35.7128 + 2.14359i −1.69295 + 0.101616i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.0000i 0.660701i −0.943858 0.330350i \(-0.892833\pi\)
0.943858 0.330350i \(-0.107167\pi\)
\(450\) 16.6865 + 13.0981i 0.786611 + 0.617449i
\(451\) 0 0
\(452\) 2.73205 + 0.732051i 0.128505 + 0.0344328i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.22243 23.2224i −0.291073 1.08630i −0.944286 0.329125i \(-0.893246\pi\)
0.653213 0.757174i \(-0.273421\pi\)
\(458\) 1.46410 5.46410i 0.0684130 0.255321i
\(459\) 0 0
\(460\) 0 0
\(461\) −38.0000 −1.76984 −0.884918 0.465746i \(-0.845786\pi\)
−0.884918 + 0.465746i \(0.845786\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) −13.8564 8.00000i −0.643268 0.371391i
\(465\) 0 0
\(466\) −21.0000 36.3731i −0.972806 1.68495i
\(467\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(468\) −6.00000 6.00000i −0.277350 0.277350i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −27.0000 + 27.0000i −1.23625 + 1.23625i
\(478\) 0 0
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 0 0
\(481\) −7.00000 + 12.1244i −0.319173 + 0.552823i
\(482\) 8.00000 8.00000i 0.364390 0.364390i
\(483\) 0 0
\(484\) 22.0000i 1.00000i
\(485\) 8.24167 40.2750i 0.374235 1.82879i
\(486\) 0 0
\(487\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(488\) −32.7846 + 8.78461i −1.48409 + 0.397661i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) −4.39230 + 16.3923i −0.197819 + 0.738272i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(500\) 14.4641 + 17.0526i 0.646854 + 0.762614i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) −4.00000 2.00000i −0.177998 0.0889988i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 38.1051 + 22.0000i 1.68898 + 0.975133i 0.955300 + 0.295637i \(0.0955319\pi\)
0.733679 + 0.679496i \(0.237801\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) 0 0
\(514\) −29.4449 + 17.0000i −1.29876 + 0.749838i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −4.92820 7.46410i −0.216116 0.327323i
\(521\) −11.0000 19.0526i −0.481919 0.834708i 0.517866 0.855462i \(-0.326727\pi\)
−0.999785 + 0.0207541i \(0.993393\pi\)
\(522\) 16.3923 + 4.39230i 0.717472 + 0.192246i
\(523\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 19.9186 11.5000i 0.866025 0.500000i
\(530\) −33.5885 + 22.1769i −1.45899 + 0.963304i
\(531\) 0 0
\(532\) 0 0
\(533\) 8.00000 + 8.00000i 0.346518 + 0.346518i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −26.0000 26.0000i −1.12094 1.12094i
\(539\) 0 0
\(540\) 0 0
\(541\) −21.0000 + 36.3731i −0.902861 + 1.56380i −0.0790969 + 0.996867i \(0.525204\pi\)
−0.823764 + 0.566933i \(0.808130\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 20.7846 + 12.0000i 0.891133 + 0.514496i
\(545\) 6.00000 12.0000i 0.257012 0.514024i
\(546\) 0 0
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) −19.1244 + 5.12436i −0.816952 + 0.218902i
\(549\) 31.1769 18.0000i 1.33060 0.768221i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 46.0000i 1.95435i
\(555\) 0 0
\(556\) 0 0
\(557\) −45.0788 12.0788i −1.91005 0.511797i −0.993798 0.111198i \(-0.964531\pi\)
−0.916253 0.400599i \(-0.868802\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −11.7128 43.7128i −0.494075 1.84391i
\(563\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(564\) 0 0
\(565\) −3.09808 0.633975i −0.130337 0.0266715i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −22.5167 13.0000i −0.943948 0.544988i −0.0527519 0.998608i \(-0.516799\pi\)
−0.891196 + 0.453619i \(0.850133\pi\)
\(570\) 0 0
\(571\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 12.0000 20.7846i 0.500000 0.866025i
\(577\) −31.4186 8.41858i −1.30797 0.350470i −0.463513 0.886090i \(-0.653411\pi\)
−0.844459 + 0.535620i \(0.820078\pi\)
\(578\) 0.366025 1.36603i 0.0152246 0.0568192i
\(579\) 0 0
\(580\) 16.0000 + 8.00000i 0.664364 + 0.332182i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −38.1051 + 22.0000i −1.57680 + 0.910366i
\(585\) 7.09808 + 6.29423i 0.293469 + 0.260234i
\(586\) 19.0000 32.9090i 0.784883 1.35946i
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −38.2487 10.2487i −1.57201 0.421219i
\(593\) 42.3468 11.3468i 1.73897 0.465957i 0.756756 0.653698i \(-0.226783\pi\)
0.982219 + 0.187741i \(0.0601166\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −28.0000 −1.14692
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) −48.0000 −1.95796 −0.978980 0.203954i \(-0.934621\pi\)
−0.978980 + 0.203954i \(0.934621\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.47372 + 24.5526i 0.0599153 + 0.998203i
\(606\) 0 0
\(607\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 36.0000 12.0000i 1.45760 0.485866i
\(611\) 0 0
\(612\) −24.5885 6.58846i −0.993929 0.266323i
\(613\) −0.366025 + 1.36603i −0.0147836 + 0.0551732i −0.972924 0.231127i \(-0.925759\pi\)
0.958140 + 0.286300i \(0.0924254\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.00000 3.00000i 0.120775 0.120775i −0.644136 0.764911i \(-0.722783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 0 0
\(619\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −17.2846 18.0622i −0.691384 0.722487i
\(626\) −1.00000 1.73205i −0.0399680 0.0692267i
\(627\) 0 0
\(628\) −46.4449 + 12.4449i −1.85335 + 0.496604i
\(629\) 42.0000i 1.67465i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 5.19615 3.00000i 0.206366 0.119145i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 16.7846 18.9282i 0.663470 0.748203i
\(641\) 4.00000 + 6.92820i 0.157991 + 0.273648i 0.934144 0.356897i \(-0.116165\pi\)
−0.776153 + 0.630544i \(0.782832\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(648\) −6.58846 + 24.5885i −0.258819 + 0.965926i
\(649\) 0 0
\(650\) 6.00000 + 8.00000i 0.235339 + 0.313786i
\(651\) 0 0
\(652\) 0 0
\(653\) −12.2942 + 3.29423i −0.481110 + 0.128913i −0.491220 0.871036i \(-0.663449\pi\)
0.0101092 + 0.999949i \(0.496782\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −16.0000 + 27.7128i −0.624695 + 1.08200i
\(657\) 33.0000 33.0000i 1.28745 1.28745i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −6.00000 10.3923i −0.233373 0.404214i 0.725426 0.688301i \(-0.241643\pi\)
−0.958799 + 0.284087i \(0.908310\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 42.0000 1.62747
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −11.0000 11.0000i −0.424019 0.424019i 0.462566 0.886585i \(-0.346929\pi\)
−0.886585 + 0.462566i \(0.846929\pi\)
\(674\) 12.1244 + 7.00000i 0.467013 + 0.269630i
\(675\) 0 0
\(676\) 11.0000 + 19.0526i 0.423077 + 0.732791i
\(677\) −9.88269 36.8827i −0.379822 1.41752i −0.846169 0.532915i \(-0.821097\pi\)
0.466347 0.884602i \(-0.345570\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −24.0000 12.0000i −0.920358 0.460179i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(684\) 0 0
\(685\) 21.0000 7.00000i 0.802369 0.267456i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −15.5885 + 9.00000i −0.593873 + 0.342873i
\(690\) 0 0
\(691\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) −22.0000 + 22.0000i −0.836315 + 0.836315i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 32.7846 + 8.78461i 1.24181 + 0.332741i
\(698\) 49.1769 13.1769i 1.86137 0.498754i
\(699\) 0 0
\(700\) 0 0
\(701\) 52.0000 1.96401 0.982006 0.188847i \(-0.0604752\pi\)
0.982006 + 0.188847i \(0.0604752\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −18.0000 −0.677439
\(707\) 0 0
\(708\) 0 0
\(709\) 38.1051 + 22.0000i 1.43107 + 0.826227i 0.997202 0.0747503i \(-0.0238160\pi\)
0.433865 + 0.900978i \(0.357149\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −11.7128 43.7128i −0.438956 1.63821i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) −12.0000 + 24.0000i −0.447214 + 0.894427i
\(721\) 0 0
\(722\) 19.0000 19.0000i 0.707107 0.707107i
\(723\) 0 0
\(724\) 31.1769 18.0000i 1.15868 0.668965i
\(725\) −18.3923 7.85641i −0.683073 0.291780i
\(726\) 0 0
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 41.0526 27.1051i 1.51942 1.00321i
\(731\) 0 0
\(732\) 0 0
\(733\) −39.6147 + 10.6147i −1.46320 + 0.392064i −0.900595 0.434659i \(-0.856869\pi\)
−0.562609 + 0.826723i \(0.690202\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 8.78461 32.7846i 0.323366 1.20682i
\(739\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(740\) 43.3731 + 8.87564i 1.59443 + 0.326275i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 31.2487 1.87564i 1.14486 0.0687183i
\(746\) −11.0000 19.0526i −0.402739 0.697564i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 6.92820 + 4.00000i 0.252310 + 0.145671i
\(755\) 0 0
\(756\) 0 0
\(757\) −17.0000 + 17.0000i −0.617876 + 0.617876i −0.944986 0.327111i \(-0.893925\pi\)
0.327111 + 0.944986i \(0.393925\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 19.0000 32.9090i 0.688749 1.19295i −0.283493 0.958974i \(-0.591493\pi\)
0.972243 0.233975i \(-0.0751733\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 27.8827 + 5.70577i 1.00810 + 0.206293i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 24.0000i 0.865462i −0.901523 0.432731i \(-0.857550\pi\)
0.901523 0.432731i \(-0.142450\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 13.9090 + 51.9090i 0.500595 + 1.86824i
\(773\) 14.2750 53.2750i 0.513436 1.91617i 0.133887 0.990997i \(-0.457254\pi\)
0.379549 0.925172i \(-0.376079\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 52.0000 1.86669
\(777\) 0 0
\(778\) 34.0000 + 34.0000i 1.21896 + 1.21896i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 51.0000 17.0000i 1.82027 0.606756i
\(786\) 0 0
\(787\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(788\) −9.51666 + 35.5167i −0.339017 + 1.26523i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 16.3923 4.39230i 0.582108 0.155975i
\(794\) 22.5167 13.0000i 0.799086 0.461353i
\(795\) 0 0
\(796\) 0 0
\(797\) −37.0000 + 37.0000i −1.31061 + 1.31061i −0.389640 + 0.920967i \(0.627401\pi\)
−0.920967 + 0.389640i \(0.872599\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −17.4641 + 22.2487i −0.617449 + 0.786611i
\(801\) 24.0000 + 41.5692i 0.847998 + 1.46878i
\(802\) 2.73205 + 0.732051i 0.0964721 + 0.0258496i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 1.46410 5.46410i 0.0515069 0.192226i
\(809\) 48.4974 28.0000i 1.70508 0.984428i 0.764644 0.644453i \(-0.222915\pi\)
0.940435 0.339975i \(-0.110418\pi\)
\(810\) 5.70577 27.8827i 0.200480 0.979698i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −6.00000 6.00000i −0.209785 0.209785i
\(819\) 0 0
\(820\) 16.0000 32.0000i 0.558744 1.11749i
\(821\) 14.0000 24.2487i 0.488603 0.846286i −0.511311 0.859396i \(-0.670840\pi\)
0.999914 + 0.0131101i \(0.00417319\pi\)
\(822\) 0 0
\(823\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) −46.7654 + 27.0000i −1.62423 + 0.937749i −0.638457 + 0.769657i \(0.720427\pi\)
−0.985771 + 0.168091i \(0.946240\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 8.00000 8.00000i 0.277350 0.277350i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 13.0000 0.448276
\(842\) 10.2487 + 38.2487i 0.353194 + 1.31814i
\(843\) 0 0
\(844\) 0 0
\(845\) −13.5526 20.5263i −0.466222 0.706125i
\(846\) 0 0
\(847\) 0 0
\(848\) −36.0000 36.0000i −1.23625 1.23625i
\(849\) 0 0
\(850\) 27.5885 + 11.7846i 0.946276 + 0.404209i
\(851\) 0 0
\(852\) 0 0
\(853\) −41.0000 41.0000i −1.40381 1.40381i −0.787505 0.616308i \(-0.788628\pi\)
−0.616308 0.787505i \(-0.711372\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −45.0788 12.0788i −1.53986 0.412605i −0.613642 0.789584i \(-0.710296\pi\)
−0.926222 + 0.376979i \(0.876963\pi\)
\(858\) 0 0
\(859\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(864\) 0 0
\(865\) 23.0788 26.0263i 0.784704 0.884920i
\(866\) 29.0000 50.2295i 0.985460 1.70687i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 16.3923 + 4.39230i 0.555113 + 0.148742i
\(873\) −53.2750 + 14.2750i −1.80309 + 0.483135i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 8.41858 + 31.4186i 0.284275 + 1.06093i 0.949367 + 0.314169i \(0.101726\pi\)
−0.665092 + 0.746762i \(0.731608\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 32.0000 1.07811 0.539054 0.842271i \(-0.318782\pi\)
0.539054 + 0.842271i \(0.318782\pi\)
\(882\) 0 0
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) −10.3923 6.00000i −0.349531 0.201802i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 16.0000 + 48.0000i 0.536321 + 1.60896i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −19.1244 + 5.12436i −0.638188 + 0.171002i
\(899\) 0 0
\(900\) 11.7846 27.5885i 0.392820 0.919615i
\(901\) −27.0000 + 46.7654i −0.899500 + 1.55798i
\(902\) 0 0
\(903\) 0 0
\(904\) 4.00000i 0.133038i
\(905\) −33.5885 + 22.1769i −1.11652 + 0.737186i
\(906\) 0 0
\(907\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(908\) 0 0
\(909\) 6.00000i 0.199007i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −29.4449 + 17.0000i −0.973950 + 0.562310i
\(915\) 0 0
\(916\) −8.00000 −0.264327
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 13.9090 + 51.9090i 0.458067 + 1.70953i
\(923\) 0 0
\(924\) 0 0
\(925\) −49.0000 7.00000i −1.61111 0.230159i
\(926\) 0 0
\(927\) 0 0
\(928\) −5.85641 + 21.8564i −0.192246 + 0.717472i
\(929\) −39.8372 23.0000i −1.30702 0.754606i −0.325418 0.945570i \(-0.605505\pi\)
−0.981597 + 0.190965i \(0.938838\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −42.0000 + 42.0000i −1.37576 + 1.37576i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −6.00000 + 10.3923i −0.196116 + 0.339683i
\(937\) 43.0000 43.0000i 1.40475 1.40475i 0.620703 0.784046i \(-0.286847\pi\)
0.784046 0.620703i \(-0.213153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 29.0000 + 50.2295i 0.945373 + 1.63743i 0.755003 + 0.655722i \(0.227636\pi\)
0.190370 + 0.981712i \(0.439031\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(948\) 0 0
\(949\) 19.0526 11.0000i 0.618472 0.357075i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −41.0000 41.0000i −1.32812 1.32812i −0.907009 0.421111i \(-0.861640\pi\)
−0.421111 0.907009i \(-0.638360\pi\)
\(954\) 46.7654 + 27.0000i 1.51408 + 0.874157i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.5000 + 26.8468i −0.500000 + 0.866025i
\(962\) 19.1244 + 5.12436i 0.616594 + 0.165216i
\(963\) 0 0
\(964\) −13.8564 8.00000i −0.446285 0.257663i
\(965\) −19.0000 57.0000i −0.611632 1.83489i
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) −30.0526 + 8.05256i −0.965926 + 0.258819i
\(969\) 0 0
\(970\) −58.0333 + 3.48334i −1.86334 + 0.111843i
\(971\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 24.0000 + 41.5692i 0.768221 + 1.33060i
\(977\) 36.8827 + 9.88269i 1.17998 + 0.316175i 0.794919 0.606715i \(-0.207513\pi\)
0.385063 + 0.922890i \(0.374180\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −18.0000 −0.574696
\(982\) 0 0
\(983\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(984\) 0 0
\(985\) 8.24167 40.2750i 0.262601 1.28327i
\(986\) 24.0000 0.764316
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 50.5429 + 13.5429i 1.60071 + 0.428909i 0.945257 0.326326i \(-0.105811\pi\)
0.655454 + 0.755235i \(0.272477\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.d.863.1 4
4.3 odd 2 CM 980.2.x.d.863.1 4
5.2 odd 4 inner 980.2.x.d.667.1 4
7.2 even 3 20.2.e.a.3.1 2
7.3 odd 6 980.2.x.c.263.1 4
7.4 even 3 inner 980.2.x.d.263.1 4
7.5 odd 6 980.2.k.a.883.1 2
7.6 odd 2 980.2.x.c.863.1 4
20.7 even 4 inner 980.2.x.d.667.1 4
21.2 odd 6 180.2.k.c.163.1 2
28.3 even 6 980.2.x.c.263.1 4
28.11 odd 6 inner 980.2.x.d.263.1 4
28.19 even 6 980.2.k.a.883.1 2
28.23 odd 6 20.2.e.a.3.1 2
28.27 even 2 980.2.x.c.863.1 4
35.2 odd 12 20.2.e.a.7.1 yes 2
35.9 even 6 100.2.e.b.43.1 2
35.12 even 12 980.2.k.a.687.1 2
35.17 even 12 980.2.x.c.67.1 4
35.23 odd 12 100.2.e.b.7.1 2
35.27 even 4 980.2.x.c.667.1 4
35.32 odd 12 inner 980.2.x.d.67.1 4
56.37 even 6 320.2.n.e.63.1 2
56.51 odd 6 320.2.n.e.63.1 2
84.23 even 6 180.2.k.c.163.1 2
105.2 even 12 180.2.k.c.127.1 2
105.23 even 12 900.2.k.c.307.1 2
105.44 odd 6 900.2.k.c.343.1 2
112.37 even 12 1280.2.o.j.383.1 2
112.51 odd 12 1280.2.o.g.383.1 2
112.93 even 12 1280.2.o.g.383.1 2
112.107 odd 12 1280.2.o.j.383.1 2
140.23 even 12 100.2.e.b.7.1 2
140.27 odd 4 980.2.x.c.667.1 4
140.47 odd 12 980.2.k.a.687.1 2
140.67 even 12 inner 980.2.x.d.67.1 4
140.79 odd 6 100.2.e.b.43.1 2
140.87 odd 12 980.2.x.c.67.1 4
140.107 even 12 20.2.e.a.7.1 yes 2
280.37 odd 12 320.2.n.e.127.1 2
280.93 odd 12 1600.2.n.h.1407.1 2
280.107 even 12 320.2.n.e.127.1 2
280.149 even 6 1600.2.n.h.1343.1 2
280.163 even 12 1600.2.n.h.1407.1 2
280.219 odd 6 1600.2.n.h.1343.1 2
420.23 odd 12 900.2.k.c.307.1 2
420.107 odd 12 180.2.k.c.127.1 2
420.359 even 6 900.2.k.c.343.1 2
560.37 odd 12 1280.2.o.g.127.1 2
560.107 even 12 1280.2.o.g.127.1 2
560.317 odd 12 1280.2.o.j.127.1 2
560.387 even 12 1280.2.o.j.127.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.2.e.a.3.1 2 7.2 even 3
20.2.e.a.3.1 2 28.23 odd 6
20.2.e.a.7.1 yes 2 35.2 odd 12
20.2.e.a.7.1 yes 2 140.107 even 12
100.2.e.b.7.1 2 35.23 odd 12
100.2.e.b.7.1 2 140.23 even 12
100.2.e.b.43.1 2 35.9 even 6
100.2.e.b.43.1 2 140.79 odd 6
180.2.k.c.127.1 2 105.2 even 12
180.2.k.c.127.1 2 420.107 odd 12
180.2.k.c.163.1 2 21.2 odd 6
180.2.k.c.163.1 2 84.23 even 6
320.2.n.e.63.1 2 56.37 even 6
320.2.n.e.63.1 2 56.51 odd 6
320.2.n.e.127.1 2 280.37 odd 12
320.2.n.e.127.1 2 280.107 even 12
900.2.k.c.307.1 2 105.23 even 12
900.2.k.c.307.1 2 420.23 odd 12
900.2.k.c.343.1 2 105.44 odd 6
900.2.k.c.343.1 2 420.359 even 6
980.2.k.a.687.1 2 35.12 even 12
980.2.k.a.687.1 2 140.47 odd 12
980.2.k.a.883.1 2 7.5 odd 6
980.2.k.a.883.1 2 28.19 even 6
980.2.x.c.67.1 4 35.17 even 12
980.2.x.c.67.1 4 140.87 odd 12
980.2.x.c.263.1 4 7.3 odd 6
980.2.x.c.263.1 4 28.3 even 6
980.2.x.c.667.1 4 35.27 even 4
980.2.x.c.667.1 4 140.27 odd 4
980.2.x.c.863.1 4 7.6 odd 2
980.2.x.c.863.1 4 28.27 even 2
980.2.x.d.67.1 4 35.32 odd 12 inner
980.2.x.d.67.1 4 140.67 even 12 inner
980.2.x.d.263.1 4 7.4 even 3 inner
980.2.x.d.263.1 4 28.11 odd 6 inner
980.2.x.d.667.1 4 5.2 odd 4 inner
980.2.x.d.667.1 4 20.7 even 4 inner
980.2.x.d.863.1 4 1.1 even 1 trivial
980.2.x.d.863.1 4 4.3 odd 2 CM
1280.2.o.g.127.1 2 560.37 odd 12
1280.2.o.g.127.1 2 560.107 even 12
1280.2.o.g.383.1 2 112.51 odd 12
1280.2.o.g.383.1 2 112.93 even 12
1280.2.o.j.127.1 2 560.317 odd 12
1280.2.o.j.127.1 2 560.387 even 12
1280.2.o.j.383.1 2 112.37 even 12
1280.2.o.j.383.1 2 112.107 odd 12
1600.2.n.h.1343.1 2 280.149 even 6
1600.2.n.h.1343.1 2 280.219 odd 6
1600.2.n.h.1407.1 2 280.93 odd 12
1600.2.n.h.1407.1 2 280.163 even 12