Properties

Label 980.2.s.e.619.11
Level $980$
Weight $2$
Character 980.619
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(19,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,6,6,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 619.11
Character \(\chi\) \(=\) 980.619
Dual form 980.2.s.e.19.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.674125 - 1.24320i) q^{2} +(-0.634715 - 0.366453i) q^{3} +(-1.09111 - 1.67615i) q^{4} +(-1.51934 - 1.64061i) q^{5} +(-0.883452 + 0.542044i) q^{6} +(-2.81934 + 0.226536i) q^{8} +(-1.23142 - 2.13289i) q^{9} +(-3.06384 + 0.782877i) q^{10} +(-2.33007 - 1.34527i) q^{11} +(0.0783137 + 1.46372i) q^{12} +3.95118 q^{13} +(0.363144 + 1.59809i) q^{15} +(-1.61896 + 3.65773i) q^{16} +(0.709509 - 1.22891i) q^{17} +(-3.48175 + 0.0930760i) q^{18} +(-1.61265 - 2.79319i) q^{19} +(-1.09214 + 4.33673i) q^{20} +(-3.24320 + 1.98987i) q^{22} +(2.45620 + 4.25426i) q^{23} +(1.87249 + 0.889369i) q^{24} +(-0.383193 + 4.98529i) q^{25} +(2.66359 - 4.91212i) q^{26} +4.00375i q^{27} -5.17926 q^{29} +(2.23155 + 0.625848i) q^{30} +(-3.81745 + 6.61201i) q^{31} +(3.45592 + 4.47846i) q^{32} +(0.985953 + 1.70772i) q^{33} +(-1.04948 - 1.71050i) q^{34} +(-2.23142 + 4.39127i) q^{36} +(3.87963 - 2.23990i) q^{37} +(-4.55962 + 0.121890i) q^{38} +(-2.50787 - 1.44792i) q^{39} +(4.65520 + 4.28125i) q^{40} +0.325509i q^{41} -9.28165 q^{43} +(0.287494 + 5.37338i) q^{44} +(-1.62828 + 5.26088i) q^{45} +(6.94469 - 0.185649i) q^{46} +(5.68610 - 3.28287i) q^{47} +(2.36796 - 1.72834i) q^{48} +(5.93942 + 3.83710i) q^{50} +(-0.900672 + 0.520003i) q^{51} +(-4.31117 - 6.62277i) q^{52} +(-1.39942 - 0.807955i) q^{53} +(4.97748 + 2.69903i) q^{54} +(1.33312 + 5.86665i) q^{55} +2.36383i q^{57} +(-3.49147 + 6.43888i) q^{58} +(3.81745 - 6.61201i) q^{59} +(2.28240 - 2.35237i) q^{60} +(-12.3842 + 7.15003i) q^{61} +(5.64664 + 9.20319i) q^{62} +(7.89736 - 1.27737i) q^{64} +(-6.00319 - 6.48234i) q^{65} +(2.78770 - 0.0745223i) q^{66} +(1.51329 - 2.62109i) q^{67} +(-2.83398 + 0.151627i) q^{68} -3.60032i q^{69} -15.4089i q^{71} +(3.95498 + 5.73438i) q^{72} +(-0.709509 + 1.22891i) q^{73} +(-0.169301 - 6.33314i) q^{74} +(2.07009 - 3.02382i) q^{75} +(-2.92222 + 5.75071i) q^{76} +(-3.49068 + 2.14171i) q^{78} +(10.5765 - 6.10637i) q^{79} +(8.46065 - 2.90127i) q^{80} +(-2.22709 + 3.85743i) q^{81} +(0.404674 + 0.219434i) q^{82} -5.26172i q^{83} +(-3.09414 + 0.703103i) q^{85} +(-6.25699 + 11.5390i) q^{86} +(3.28735 + 1.89795i) q^{87} +(6.87401 + 3.26492i) q^{88} +(-4.10930 + 2.37250i) q^{89} +(5.44268 + 5.57078i) q^{90} +(4.45079 - 8.75882i) q^{92} +(4.84598 - 2.79783i) q^{93} +(-0.248133 - 9.28205i) q^{94} +(-2.13236 + 6.88953i) q^{95} +(-0.552378 - 4.10898i) q^{96} -8.35134 q^{97} +6.62638i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 6 q^{4} + 6 q^{5} + 4 q^{9} + 12 q^{10} + 18 q^{16} + 48 q^{24} - 26 q^{25} + 18 q^{26} - 26 q^{30} - 28 q^{36} - 42 q^{40} - 26 q^{44} - 36 q^{45} - 22 q^{46} + 36 q^{50} - 48 q^{54} + 4 q^{60}+ \cdots - 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.674125 1.24320i 0.476679 0.879078i
\(3\) −0.634715 0.366453i −0.366453 0.211572i 0.305455 0.952207i \(-0.401191\pi\)
−0.671908 + 0.740635i \(0.734525\pi\)
\(4\) −1.09111 1.67615i −0.545555 0.838075i
\(5\) −1.51934 1.64061i −0.679471 0.733702i
\(6\) −0.883452 + 0.542044i −0.360668 + 0.221289i
\(7\) 0 0
\(8\) −2.81934 + 0.226536i −0.996787 + 0.0800926i
\(9\) −1.23142 2.13289i −0.410475 0.710964i
\(10\) −3.06384 + 0.782877i −0.968871 + 0.247567i
\(11\) −2.33007 1.34527i −0.702542 0.405613i 0.105751 0.994393i \(-0.466275\pi\)
−0.808294 + 0.588780i \(0.799609\pi\)
\(12\) 0.0783137 + 1.46372i 0.0226072 + 0.422539i
\(13\) 3.95118 1.09586 0.547930 0.836524i \(-0.315416\pi\)
0.547930 + 0.836524i \(0.315416\pi\)
\(14\) 0 0
\(15\) 0.363144 + 1.59809i 0.0937633 + 0.412624i
\(16\) −1.61896 + 3.65773i −0.404740 + 0.914432i
\(17\) 0.709509 1.22891i 0.172081 0.298053i −0.767066 0.641568i \(-0.778284\pi\)
0.939147 + 0.343515i \(0.111618\pi\)
\(18\) −3.48175 + 0.0930760i −0.820657 + 0.0219382i
\(19\) −1.61265 2.79319i −0.369966 0.640801i 0.619593 0.784923i \(-0.287297\pi\)
−0.989560 + 0.144122i \(0.953964\pi\)
\(20\) −1.09214 + 4.33673i −0.244209 + 0.969723i
\(21\) 0 0
\(22\) −3.24320 + 1.98987i −0.691452 + 0.424242i
\(23\) 2.45620 + 4.25426i 0.512152 + 0.887074i 0.999901 + 0.0140897i \(0.00448504\pi\)
−0.487748 + 0.872984i \(0.662182\pi\)
\(24\) 1.87249 + 0.889369i 0.382221 + 0.181542i
\(25\) −0.383193 + 4.98529i −0.0766386 + 0.997059i
\(26\) 2.66359 4.91212i 0.522373 0.963345i
\(27\) 4.00375i 0.770522i
\(28\) 0 0
\(29\) −5.17926 −0.961765 −0.480882 0.876785i \(-0.659684\pi\)
−0.480882 + 0.876785i \(0.659684\pi\)
\(30\) 2.23155 + 0.625848i 0.407423 + 0.114264i
\(31\) −3.81745 + 6.61201i −0.685634 + 1.18755i 0.287603 + 0.957750i \(0.407142\pi\)
−0.973237 + 0.229803i \(0.926192\pi\)
\(32\) 3.45592 + 4.47846i 0.610926 + 0.791688i
\(33\) 0.985953 + 1.70772i 0.171632 + 0.297276i
\(34\) −1.04948 1.71050i −0.179985 0.293349i
\(35\) 0 0
\(36\) −2.23142 + 4.39127i −0.371904 + 0.731878i
\(37\) 3.87963 2.23990i 0.637806 0.368238i −0.145963 0.989290i \(-0.546628\pi\)
0.783769 + 0.621052i \(0.213295\pi\)
\(38\) −4.55962 + 0.121890i −0.739669 + 0.0197732i
\(39\) −2.50787 1.44792i −0.401581 0.231853i
\(40\) 4.65520 + 4.28125i 0.736052 + 0.676925i
\(41\) 0.325509i 0.0508359i 0.999677 + 0.0254180i \(0.00809166\pi\)
−0.999677 + 0.0254180i \(0.991908\pi\)
\(42\) 0 0
\(43\) −9.28165 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(44\) 0.287494 + 5.37338i 0.0433413 + 0.810067i
\(45\) −1.62828 + 5.26088i −0.242730 + 0.784246i
\(46\) 6.94469 0.185649i 1.02394 0.0273725i
\(47\) 5.68610 3.28287i 0.829403 0.478856i −0.0242453 0.999706i \(-0.507718\pi\)
0.853648 + 0.520850i \(0.174385\pi\)
\(48\) 2.36796 1.72834i 0.341786 0.249465i
\(49\) 0 0
\(50\) 5.93942 + 3.83710i 0.839960 + 0.542648i
\(51\) −0.900672 + 0.520003i −0.126119 + 0.0728150i
\(52\) −4.31117 6.62277i −0.597851 0.918412i
\(53\) −1.39942 0.807955i −0.192225 0.110981i 0.400799 0.916166i \(-0.368733\pi\)
−0.593024 + 0.805185i \(0.702066\pi\)
\(54\) 4.97748 + 2.69903i 0.677349 + 0.367292i
\(55\) 1.33312 + 5.86665i 0.179758 + 0.791059i
\(56\) 0 0
\(57\) 2.36383i 0.313097i
\(58\) −3.49147 + 6.43888i −0.458453 + 0.845466i
\(59\) 3.81745 6.61201i 0.496989 0.860811i −0.503005 0.864284i \(-0.667772\pi\)
0.999994 + 0.00347297i \(0.00110548\pi\)
\(60\) 2.28240 2.35237i 0.294657 0.303690i
\(61\) −12.3842 + 7.15003i −1.58564 + 0.915467i −0.591622 + 0.806215i \(0.701512\pi\)
−0.994014 + 0.109252i \(0.965154\pi\)
\(62\) 5.64664 + 9.20319i 0.717124 + 1.16881i
\(63\) 0 0
\(64\) 7.89736 1.27737i 0.987170 0.159671i
\(65\) −6.00319 6.48234i −0.744605 0.804035i
\(66\) 2.78770 0.0745223i 0.343142 0.00917306i
\(67\) 1.51329 2.62109i 0.184878 0.320218i −0.758658 0.651490i \(-0.774144\pi\)
0.943535 + 0.331272i \(0.107478\pi\)
\(68\) −2.83398 + 0.151627i −0.343671 + 0.0183875i
\(69\) 3.60032i 0.433427i
\(70\) 0 0
\(71\) 15.4089i 1.82870i −0.404922 0.914351i \(-0.632701\pi\)
0.404922 0.914351i \(-0.367299\pi\)
\(72\) 3.95498 + 5.73438i 0.466099 + 0.675803i
\(73\) −0.709509 + 1.22891i −0.0830418 + 0.143833i −0.904555 0.426357i \(-0.859797\pi\)
0.821513 + 0.570189i \(0.193130\pi\)
\(74\) −0.169301 6.33314i −0.0196808 0.736212i
\(75\) 2.07009 3.02382i 0.239034 0.349160i
\(76\) −2.92222 + 5.75071i −0.335202 + 0.659652i
\(77\) 0 0
\(78\) −3.49068 + 2.14171i −0.395241 + 0.242501i
\(79\) 10.5765 6.10637i 1.18995 0.687021i 0.231659 0.972797i \(-0.425585\pi\)
0.958296 + 0.285776i \(0.0922515\pi\)
\(80\) 8.46065 2.90127i 0.945930 0.324371i
\(81\) −2.22709 + 3.85743i −0.247454 + 0.428604i
\(82\) 0.404674 + 0.219434i 0.0446887 + 0.0242324i
\(83\) 5.26172i 0.577549i −0.957397 0.288774i \(-0.906752\pi\)
0.957397 0.288774i \(-0.0932477\pi\)
\(84\) 0 0
\(85\) −3.09414 + 0.703103i −0.335607 + 0.0762622i
\(86\) −6.25699 + 11.5390i −0.674709 + 1.24428i
\(87\) 3.28735 + 1.89795i 0.352441 + 0.203482i
\(88\) 6.87401 + 3.26492i 0.732772 + 0.348041i
\(89\) −4.10930 + 2.37250i −0.435585 + 0.251485i −0.701723 0.712450i \(-0.747586\pi\)
0.266138 + 0.963935i \(0.414252\pi\)
\(90\) 5.44268 + 5.57078i 0.573709 + 0.587212i
\(91\) 0 0
\(92\) 4.45079 8.75882i 0.464027 0.913170i
\(93\) 4.84598 2.79783i 0.502505 0.290121i
\(94\) −0.248133 9.28205i −0.0255929 0.957370i
\(95\) −2.13236 + 6.88953i −0.218776 + 0.706851i
\(96\) −0.552378 4.10898i −0.0563768 0.419371i
\(97\) −8.35134 −0.847950 −0.423975 0.905674i \(-0.639366\pi\)
−0.423975 + 0.905674i \(0.639366\pi\)
\(98\) 0 0
\(99\) 6.62638i 0.665976i
\(100\) 8.77421 4.79721i 0.877421 0.479721i
\(101\) 0.241927 + 0.139677i 0.0240727 + 0.0138984i 0.511988 0.858993i \(-0.328909\pi\)
−0.487915 + 0.872891i \(0.662243\pi\)
\(102\) 0.0393039 + 1.47027i 0.00389167 + 0.145578i
\(103\) −11.6053 + 6.70030i −1.14350 + 0.660200i −0.947295 0.320362i \(-0.896195\pi\)
−0.196206 + 0.980563i \(0.562862\pi\)
\(104\) −11.1397 + 0.895084i −1.09234 + 0.0877703i
\(105\) 0 0
\(106\) −1.94784 + 1.19510i −0.189191 + 0.116078i
\(107\) 2.71447 + 4.70160i 0.262418 + 0.454521i 0.966884 0.255217i \(-0.0821468\pi\)
−0.704466 + 0.709738i \(0.748813\pi\)
\(108\) 6.71089 4.36853i 0.645756 0.420362i
\(109\) −4.45851 + 7.72237i −0.427048 + 0.739669i −0.996609 0.0822798i \(-0.973780\pi\)
0.569561 + 0.821949i \(0.307113\pi\)
\(110\) 8.19213 + 2.29752i 0.781089 + 0.219060i
\(111\) −3.28327 −0.311634
\(112\) 0 0
\(113\) 1.05161i 0.0989268i 0.998776 + 0.0494634i \(0.0157511\pi\)
−0.998776 + 0.0494634i \(0.984249\pi\)
\(114\) 2.93873 + 1.59352i 0.275237 + 0.149247i
\(115\) 3.24777 10.4933i 0.302856 0.978508i
\(116\) 5.65114 + 8.68122i 0.524695 + 0.806031i
\(117\) −4.86558 8.42743i −0.449823 0.779116i
\(118\) −5.64664 9.20319i −0.519815 0.847222i
\(119\) 0 0
\(120\) −1.38585 4.42328i −0.126510 0.403789i
\(121\) −1.88052 3.25715i −0.170956 0.296105i
\(122\) 0.540428 + 20.2161i 0.0489280 + 1.83028i
\(123\) 0.119284 0.206605i 0.0107554 0.0186290i
\(124\) 15.2480 0.815817i 1.36931 0.0732626i
\(125\) 8.76112 6.94570i 0.783618 0.621243i
\(126\) 0 0
\(127\) 1.71773 0.152424 0.0762121 0.997092i \(-0.475717\pi\)
0.0762121 + 0.997092i \(0.475717\pi\)
\(128\) 3.73579 10.6791i 0.330200 0.943911i
\(129\) 5.89120 + 3.40128i 0.518691 + 0.299466i
\(130\) −12.1058 + 3.09328i −1.06175 + 0.271299i
\(131\) −7.07173 12.2486i −0.617860 1.07016i −0.989876 0.141938i \(-0.954667\pi\)
0.372016 0.928226i \(-0.378667\pi\)
\(132\) 1.78661 3.51591i 0.155505 0.306021i
\(133\) 0 0
\(134\) −2.23841 3.64827i −0.193369 0.315163i
\(135\) 6.56859 6.08307i 0.565334 0.523547i
\(136\) −1.72196 + 3.62543i −0.147657 + 0.310878i
\(137\) −12.8787 7.43551i −1.10030 0.635259i −0.164000 0.986460i \(-0.552440\pi\)
−0.936300 + 0.351202i \(0.885773\pi\)
\(138\) −4.47593 2.42707i −0.381016 0.206606i
\(139\) 7.06762 0.599468 0.299734 0.954023i \(-0.403102\pi\)
0.299734 + 0.954023i \(0.403102\pi\)
\(140\) 0 0
\(141\) −4.81207 −0.405249
\(142\) −19.1564 10.3875i −1.60757 0.871703i
\(143\) −9.20652 5.31538i −0.769888 0.444495i
\(144\) 9.79516 1.05116i 0.816263 0.0875963i
\(145\) 7.86908 + 8.49714i 0.653491 + 0.705649i
\(146\) 1.04948 + 1.71050i 0.0868557 + 0.141562i
\(147\) 0 0
\(148\) −7.98751 4.05885i −0.656569 0.333636i
\(149\) −4.39289 7.60870i −0.359879 0.623329i 0.628061 0.778164i \(-0.283849\pi\)
−0.987940 + 0.154835i \(0.950515\pi\)
\(150\) −2.36372 4.61198i −0.192997 0.376566i
\(151\) 0.260095 + 0.150166i 0.0211663 + 0.0122204i 0.510546 0.859851i \(-0.329443\pi\)
−0.489380 + 0.872071i \(0.662777\pi\)
\(152\) 5.17936 + 7.50962i 0.420101 + 0.609110i
\(153\) −3.49483 −0.282540
\(154\) 0 0
\(155\) 16.6477 3.78298i 1.33718 0.303856i
\(156\) 0.309431 + 5.78341i 0.0247743 + 0.463043i
\(157\) 9.61742 16.6579i 0.767553 1.32944i −0.171333 0.985213i \(-0.554807\pi\)
0.938886 0.344228i \(-0.111859\pi\)
\(158\) −0.461544 17.2653i −0.0367185 1.37355i
\(159\) 0.592155 + 1.02564i 0.0469609 + 0.0813387i
\(160\) 2.09668 12.4741i 0.165757 0.986167i
\(161\) 0 0
\(162\) 3.29424 + 5.36912i 0.258820 + 0.421838i
\(163\) −5.35958 9.28306i −0.419795 0.727105i 0.576124 0.817362i \(-0.304565\pi\)
−0.995919 + 0.0902569i \(0.971231\pi\)
\(164\) 0.545602 0.355166i 0.0426043 0.0277338i
\(165\) 1.30370 4.21218i 0.101493 0.327917i
\(166\) −6.54139 3.54706i −0.507710 0.275305i
\(167\) 13.2256i 1.02343i −0.859155 0.511715i \(-0.829010\pi\)
0.859155 0.511715i \(-0.170990\pi\)
\(168\) 0 0
\(169\) 2.61180 0.200908
\(170\) −1.21174 + 4.32063i −0.0929362 + 0.331377i
\(171\) −3.97171 + 6.87920i −0.303724 + 0.526065i
\(172\) 10.1273 + 15.5574i 0.772199 + 1.18624i
\(173\) −5.62704 9.74632i −0.427816 0.740999i 0.568863 0.822432i \(-0.307384\pi\)
−0.996679 + 0.0814335i \(0.974050\pi\)
\(174\) 4.57563 2.80739i 0.346878 0.212828i
\(175\) 0 0
\(176\) 8.69290 6.34483i 0.655252 0.478259i
\(177\) −4.84598 + 2.79783i −0.364246 + 0.210298i
\(178\) 0.179323 + 6.70806i 0.0134409 + 0.502790i
\(179\) −0.697992 0.402986i −0.0521703 0.0301206i 0.473688 0.880693i \(-0.342922\pi\)
−0.525858 + 0.850572i \(0.676256\pi\)
\(180\) 10.5947 3.01095i 0.789679 0.224423i
\(181\) 0.0667108i 0.00495857i −0.999997 0.00247929i \(-0.999211\pi\)
0.999997 0.00247929i \(-0.000789182\pi\)
\(182\) 0 0
\(183\) 10.4806 0.774747
\(184\) −7.88860 11.4378i −0.581555 0.843205i
\(185\) −9.56929 2.96177i −0.703548 0.217753i
\(186\) −0.211471 7.91062i −0.0155058 0.580035i
\(187\) −3.30641 + 1.90896i −0.241789 + 0.139597i
\(188\) −11.7067 5.94878i −0.853802 0.433860i
\(189\) 0 0
\(190\) 7.12761 + 7.29536i 0.517091 + 0.529261i
\(191\) −15.1210 + 8.73010i −1.09412 + 0.631688i −0.934669 0.355519i \(-0.884304\pi\)
−0.159446 + 0.987207i \(0.550971\pi\)
\(192\) −5.48067 2.08325i −0.395533 0.150345i
\(193\) 14.8928 + 8.59835i 1.07201 + 0.618923i 0.928729 0.370760i \(-0.120903\pi\)
0.143277 + 0.989683i \(0.454236\pi\)
\(194\) −5.62985 + 10.3824i −0.404200 + 0.745414i
\(195\) 1.43485 + 6.31432i 0.102751 + 0.452178i
\(196\) 0 0
\(197\) 11.9392i 0.850635i −0.905044 0.425318i \(-0.860162\pi\)
0.905044 0.425318i \(-0.139838\pi\)
\(198\) 8.23793 + 4.46701i 0.585445 + 0.317457i
\(199\) −7.76016 + 13.4410i −0.550103 + 0.952807i 0.448163 + 0.893952i \(0.352078\pi\)
−0.998267 + 0.0588552i \(0.981255\pi\)
\(200\) −0.0489975 14.1421i −0.00346465 0.999994i
\(201\) −1.92101 + 1.10910i −0.135498 + 0.0782297i
\(202\) 0.336736 0.206605i 0.0236927 0.0145367i
\(203\) 0 0
\(204\) 1.85433 + 0.942281i 0.129829 + 0.0659728i
\(205\) 0.534033 0.494560i 0.0372985 0.0345415i
\(206\) 0.506436 + 18.9445i 0.0352850 + 1.31993i
\(207\) 6.04924 10.4776i 0.420452 0.728243i
\(208\) −6.39679 + 14.4523i −0.443538 + 1.00209i
\(209\) 8.67775i 0.600253i
\(210\) 0 0
\(211\) 14.1636i 0.975063i 0.873105 + 0.487531i \(0.162103\pi\)
−0.873105 + 0.487531i \(0.837897\pi\)
\(212\) 0.172666 + 3.22720i 0.0118588 + 0.221645i
\(213\) −5.64664 + 9.78027i −0.386901 + 0.670133i
\(214\) 7.67494 0.205171i 0.524648 0.0140252i
\(215\) 14.1020 + 15.2275i 0.961749 + 1.03851i
\(216\) −0.906994 11.2879i −0.0617132 0.768047i
\(217\) 0 0
\(218\) 6.59488 + 10.7487i 0.446662 + 0.727993i
\(219\) 0.900672 0.520003i 0.0608618 0.0351385i
\(220\) 8.37881 8.63567i 0.564899 0.582217i
\(221\) 2.80340 4.85563i 0.188577 0.326625i
\(222\) −2.21334 + 4.08178i −0.148550 + 0.273951i
\(223\) 3.03443i 0.203201i −0.994825 0.101600i \(-0.967604\pi\)
0.994825 0.101600i \(-0.0323963\pi\)
\(224\) 0 0
\(225\) 11.1050 5.32171i 0.740331 0.354780i
\(226\) 1.30736 + 0.708914i 0.0869643 + 0.0471563i
\(227\) 12.7971 + 7.38839i 0.849371 + 0.490385i 0.860439 0.509554i \(-0.170190\pi\)
−0.0110676 + 0.999939i \(0.503523\pi\)
\(228\) 3.96214 2.57920i 0.262399 0.170812i
\(229\) 5.56933 3.21545i 0.368031 0.212483i −0.304567 0.952491i \(-0.598512\pi\)
0.672598 + 0.740008i \(0.265178\pi\)
\(230\) −10.8559 11.1115i −0.715820 0.732668i
\(231\) 0 0
\(232\) 14.6021 1.17329i 0.958675 0.0770303i
\(233\) −15.1300 + 8.73532i −0.991201 + 0.572270i −0.905633 0.424062i \(-0.860604\pi\)
−0.0855677 + 0.996332i \(0.527270\pi\)
\(234\) −13.7570 + 0.367760i −0.899324 + 0.0240412i
\(235\) −14.0250 4.34086i −0.914893 0.283166i
\(236\) −15.2480 + 0.815817i −0.992559 + 0.0531052i
\(237\) −8.95079 −0.581416
\(238\) 0 0
\(239\) 3.22490i 0.208601i 0.994546 + 0.104301i \(0.0332604\pi\)
−0.994546 + 0.104301i \(0.966740\pi\)
\(240\) −6.43328 1.25895i −0.415266 0.0812651i
\(241\) 17.7424 + 10.2436i 1.14289 + 0.659848i 0.947145 0.320807i \(-0.103954\pi\)
0.195745 + 0.980655i \(0.437287\pi\)
\(242\) −5.31701 + 0.142137i −0.341790 + 0.00913692i
\(243\) 13.2292 7.63787i 0.848653 0.489970i
\(244\) 25.4971 + 12.9563i 1.63228 + 0.829444i
\(245\) 0 0
\(246\) −0.176440 0.287572i −0.0112494 0.0183349i
\(247\) −6.37185 11.0364i −0.405431 0.702227i
\(248\) 9.26482 19.5063i 0.588317 1.23865i
\(249\) −1.92817 + 3.33969i −0.122193 + 0.211644i
\(250\) −2.72883 15.5741i −0.172586 0.984994i
\(251\) −15.1647 −0.957189 −0.478594 0.878036i \(-0.658854\pi\)
−0.478594 + 0.878036i \(0.658854\pi\)
\(252\) 0 0
\(253\) 13.2170i 0.830943i
\(254\) 1.15797 2.13549i 0.0726574 0.133993i
\(255\) 2.22155 + 0.687587i 0.139119 + 0.0430583i
\(256\) −10.7579 11.8434i −0.672372 0.740214i
\(257\) 2.36577 + 4.09764i 0.147573 + 0.255604i 0.930330 0.366724i \(-0.119521\pi\)
−0.782757 + 0.622327i \(0.786187\pi\)
\(258\) 8.19989 5.03106i 0.510503 0.313220i
\(259\) 0 0
\(260\) −4.31522 + 17.1352i −0.267619 + 1.06268i
\(261\) 6.37787 + 11.0468i 0.394780 + 0.683780i
\(262\) −19.9947 + 0.534510i −1.23528 + 0.0330221i
\(263\) 2.35021 4.07068i 0.144920 0.251009i −0.784423 0.620226i \(-0.787041\pi\)
0.929343 + 0.369217i \(0.120374\pi\)
\(264\) −3.16660 4.59129i −0.194891 0.282574i
\(265\) 0.800660 + 3.52346i 0.0491842 + 0.216444i
\(266\) 0 0
\(267\) 3.47764 0.212828
\(268\) −6.04451 + 0.323401i −0.369227 + 0.0197549i
\(269\) −21.2532 12.2706i −1.29583 0.748149i −0.316151 0.948709i \(-0.602391\pi\)
−0.979682 + 0.200559i \(0.935724\pi\)
\(270\) −3.13444 12.2668i −0.190756 0.746537i
\(271\) −13.1957 22.8556i −0.801582 1.38838i −0.918574 0.395248i \(-0.870659\pi\)
0.116993 0.993133i \(-0.462675\pi\)
\(272\) 3.34634 + 4.58474i 0.202902 + 0.277991i
\(273\) 0 0
\(274\) −17.9257 + 10.9984i −1.08293 + 0.664435i
\(275\) 7.59941 11.1006i 0.458262 0.669390i
\(276\) −6.03468 + 3.92834i −0.363245 + 0.236458i
\(277\) −20.8453 12.0350i −1.25247 0.723115i −0.280872 0.959745i \(-0.590624\pi\)
−0.971600 + 0.236630i \(0.923957\pi\)
\(278\) 4.76446 8.78649i 0.285753 0.526979i
\(279\) 18.8036 1.12574
\(280\) 0 0
\(281\) −7.78577 −0.464460 −0.232230 0.972661i \(-0.574602\pi\)
−0.232230 + 0.972661i \(0.574602\pi\)
\(282\) −3.24394 + 5.98238i −0.193174 + 0.356245i
\(283\) 6.88540 + 3.97529i 0.409294 + 0.236306i 0.690487 0.723345i \(-0.257396\pi\)
−0.281192 + 0.959651i \(0.590730\pi\)
\(284\) −25.8277 + 16.8128i −1.53259 + 0.997657i
\(285\) 3.87813 3.59147i 0.229720 0.212741i
\(286\) −12.8145 + 7.86234i −0.757734 + 0.464910i
\(287\) 0 0
\(288\) 5.29637 12.8860i 0.312091 0.759314i
\(289\) 7.49319 + 12.9786i 0.440776 + 0.763447i
\(290\) 15.8684 4.05472i 0.931826 0.238102i
\(291\) 5.30071 + 3.06037i 0.310733 + 0.179402i
\(292\) 2.83398 0.151627i 0.165846 0.00887333i
\(293\) 2.11501 0.123560 0.0617801 0.998090i \(-0.480322\pi\)
0.0617801 + 0.998090i \(0.480322\pi\)
\(294\) 0 0
\(295\) −16.6477 + 3.78298i −0.969269 + 0.220254i
\(296\) −10.4306 + 7.19392i −0.606264 + 0.418138i
\(297\) 5.38611 9.32902i 0.312534 0.541325i
\(298\) −12.4205 + 0.332032i −0.719501 + 0.0192341i
\(299\) 9.70487 + 16.8093i 0.561247 + 0.972108i
\(300\) −7.32707 0.170469i −0.423029 0.00984206i
\(301\) 0 0
\(302\) 0.362024 0.222121i 0.0208321 0.0127816i
\(303\) −0.102370 0.177310i −0.00588100 0.0101862i
\(304\) 12.8275 1.37657i 0.735709 0.0789517i
\(305\) 30.5463 + 9.45430i 1.74907 + 0.541352i
\(306\) −2.35595 + 4.34478i −0.134681 + 0.248375i
\(307\) 18.6560i 1.06475i −0.846508 0.532376i \(-0.821299\pi\)
0.846508 0.532376i \(-0.178701\pi\)
\(308\) 0 0
\(309\) 9.82137 0.558718
\(310\) 6.51965 23.2467i 0.370291 1.32033i
\(311\) 4.09153 7.08673i 0.232009 0.401852i −0.726390 0.687283i \(-0.758803\pi\)
0.958399 + 0.285431i \(0.0921367\pi\)
\(312\) 7.39855 + 3.51405i 0.418860 + 0.198944i
\(313\) 11.6871 + 20.2427i 0.660597 + 1.14419i 0.980459 + 0.196723i \(0.0630299\pi\)
−0.319863 + 0.947464i \(0.603637\pi\)
\(314\) −14.2258 23.1859i −0.802806 1.30846i
\(315\) 0 0
\(316\) −21.7754 11.0652i −1.22496 0.622464i
\(317\) 22.6966 13.1039i 1.27477 0.735988i 0.298887 0.954288i \(-0.403385\pi\)
0.975882 + 0.218300i \(0.0700512\pi\)
\(318\) 1.67427 0.0447574i 0.0938883 0.00250987i
\(319\) 12.0680 + 6.96749i 0.675680 + 0.390104i
\(320\) −14.0945 11.0157i −0.787904 0.615798i
\(321\) 3.97890i 0.222081i
\(322\) 0 0
\(323\) −4.57675 −0.254657
\(324\) 8.89563 0.475946i 0.494202 0.0264414i
\(325\) −1.51406 + 19.6978i −0.0839852 + 1.09264i
\(326\) −15.1538 + 0.405098i −0.839289 + 0.0224363i
\(327\) 5.65977 3.26767i 0.312986 0.180702i
\(328\) −0.0737395 0.917720i −0.00407158 0.0506726i
\(329\) 0 0
\(330\) −4.35773 4.46030i −0.239885 0.245531i
\(331\) −16.9060 + 9.76067i −0.929237 + 0.536495i −0.886570 0.462594i \(-0.846919\pi\)
−0.0426665 + 0.999089i \(0.513585\pi\)
\(332\) −8.81943 + 5.74111i −0.484029 + 0.315085i
\(333\) −9.55493 5.51654i −0.523607 0.302305i
\(334\) −16.4422 8.91574i −0.899675 0.487848i
\(335\) −6.59940 + 1.49963i −0.360564 + 0.0819333i
\(336\) 0 0
\(337\) 31.7520i 1.72964i 0.502082 + 0.864820i \(0.332567\pi\)
−0.502082 + 0.864820i \(0.667433\pi\)
\(338\) 1.76068 3.24700i 0.0957684 0.176614i
\(339\) 0.385364 0.667470i 0.0209301 0.0362520i
\(340\) 4.55455 + 4.41908i 0.247005 + 0.239658i
\(341\) 17.7898 10.2710i 0.963373 0.556204i
\(342\) 5.87481 + 9.57508i 0.317674 + 0.517761i
\(343\) 0 0
\(344\) 26.1681 2.10263i 1.41089 0.113366i
\(345\) −5.90671 + 5.47012i −0.318007 + 0.294501i
\(346\) −15.9100 + 0.425314i −0.855326 + 0.0228650i
\(347\) 9.19210 15.9212i 0.493458 0.854694i −0.506514 0.862232i \(-0.669066\pi\)
0.999972 + 0.00753782i \(0.00239938\pi\)
\(348\) −0.405607 7.58097i −0.0217428 0.406383i
\(349\) 2.37390i 0.127072i −0.997980 0.0635360i \(-0.979762\pi\)
0.997980 0.0635360i \(-0.0202378\pi\)
\(350\) 0 0
\(351\) 15.8195i 0.844384i
\(352\) −2.02781 15.0843i −0.108082 0.803994i
\(353\) −1.07710 + 1.86560i −0.0573284 + 0.0992958i −0.893265 0.449530i \(-0.851592\pi\)
0.835937 + 0.548826i \(0.184925\pi\)
\(354\) 0.211471 + 7.91062i 0.0112396 + 0.420445i
\(355\) −25.2800 + 23.4114i −1.34172 + 1.24255i
\(356\) 8.46037 + 4.29914i 0.448399 + 0.227854i
\(357\) 0 0
\(358\) −0.971527 + 0.596083i −0.0513468 + 0.0315039i
\(359\) −4.40004 + 2.54037i −0.232225 + 0.134075i −0.611598 0.791168i \(-0.709473\pi\)
0.379373 + 0.925244i \(0.376140\pi\)
\(360\) 3.39890 15.2011i 0.179138 0.801167i
\(361\) 4.29874 7.44564i 0.226250 0.391876i
\(362\) −0.0829350 0.0449714i −0.00435897 0.00236364i
\(363\) 2.75648i 0.144678i
\(364\) 0 0
\(365\) 3.09414 0.703103i 0.161955 0.0368021i
\(366\) 7.06523 13.0295i 0.369306 0.681063i
\(367\) 11.7306 + 6.77267i 0.612333 + 0.353530i 0.773878 0.633335i \(-0.218314\pi\)
−0.161545 + 0.986865i \(0.551648\pi\)
\(368\) −19.5374 + 2.09663i −1.01846 + 0.109295i
\(369\) 0.694275 0.400840i 0.0361425 0.0208669i
\(370\) −10.1330 + 9.89997i −0.526788 + 0.514675i
\(371\) 0 0
\(372\) −9.97707 5.06985i −0.517287 0.262860i
\(373\) −6.17822 + 3.56700i −0.319896 + 0.184692i −0.651346 0.758781i \(-0.725795\pi\)
0.331450 + 0.943473i \(0.392462\pi\)
\(374\) 0.144287 + 5.39742i 0.00746089 + 0.279094i
\(375\) −8.10608 + 1.19800i −0.418596 + 0.0618647i
\(376\) −15.2874 + 10.5436i −0.788386 + 0.543747i
\(377\) −20.4642 −1.05396
\(378\) 0 0
\(379\) 16.2436i 0.834379i −0.908820 0.417189i \(-0.863015\pi\)
0.908820 0.417189i \(-0.136985\pi\)
\(380\) 13.8745 3.94308i 0.711748 0.202275i
\(381\) −1.09027 0.629468i −0.0558562 0.0322486i
\(382\) 0.659856 + 24.6836i 0.0337612 + 1.26292i
\(383\) −8.56254 + 4.94358i −0.437525 + 0.252605i −0.702547 0.711637i \(-0.747954\pi\)
0.265022 + 0.964242i \(0.414621\pi\)
\(384\) −6.28456 + 5.40921i −0.320707 + 0.276038i
\(385\) 0 0
\(386\) 20.7291 12.7184i 1.05508 0.647349i
\(387\) 11.4296 + 19.7967i 0.581002 + 1.00632i
\(388\) 9.11222 + 13.9981i 0.462603 + 0.710645i
\(389\) 15.9811 27.6802i 0.810276 1.40344i −0.102395 0.994744i \(-0.532650\pi\)
0.912671 0.408696i \(-0.134016\pi\)
\(390\) 8.81725 + 2.47284i 0.446479 + 0.125217i
\(391\) 6.97078 0.352527
\(392\) 0 0
\(393\) 10.3658i 0.522886i
\(394\) −14.8429 8.04854i −0.747774 0.405480i
\(395\) −26.0876 8.07430i −1.31261 0.406262i
\(396\) 11.1068 7.23011i 0.558138 0.363326i
\(397\) −8.73784 15.1344i −0.438539 0.759573i 0.559038 0.829142i \(-0.311171\pi\)
−0.997577 + 0.0695697i \(0.977837\pi\)
\(398\) 11.4786 + 18.7084i 0.575369 + 0.937766i
\(399\) 0 0
\(400\) −17.6145 9.47260i −0.880724 0.473630i
\(401\) 8.67926 + 15.0329i 0.433422 + 0.750708i 0.997165 0.0752415i \(-0.0239728\pi\)
−0.563744 + 0.825950i \(0.690639\pi\)
\(402\) 0.0838301 + 3.13588i 0.00418106 + 0.156404i
\(403\) −15.0834 + 26.1252i −0.751358 + 1.30139i
\(404\) −0.0298500 0.557909i −0.00148509 0.0277570i
\(405\) 9.71225 2.20698i 0.482606 0.109666i
\(406\) 0 0
\(407\) −12.0531 −0.597448
\(408\) 2.42150 1.67010i 0.119882 0.0826823i
\(409\) −6.32187 3.64993i −0.312596 0.180478i 0.335491 0.942043i \(-0.391098\pi\)
−0.648088 + 0.761566i \(0.724431\pi\)
\(410\) −0.254833 0.997306i −0.0125853 0.0492535i
\(411\) 5.44952 + 9.43885i 0.268805 + 0.465584i
\(412\) 23.8933 + 12.1414i 1.17714 + 0.598164i
\(413\) 0 0
\(414\) −8.94784 14.5837i −0.439762 0.716748i
\(415\) −8.63242 + 7.99436i −0.423749 + 0.392428i
\(416\) 13.6549 + 17.6952i 0.669489 + 0.867578i
\(417\) −4.48592 2.58995i −0.219677 0.126830i
\(418\) 10.7882 + 5.84989i 0.527669 + 0.286128i
\(419\) −17.9278 −0.875831 −0.437915 0.899016i \(-0.644283\pi\)
−0.437915 + 0.899016i \(0.644283\pi\)
\(420\) 0 0
\(421\) 12.6334 0.615716 0.307858 0.951432i \(-0.400388\pi\)
0.307858 + 0.951432i \(0.400388\pi\)
\(422\) 17.6082 + 9.54805i 0.857156 + 0.464792i
\(423\) −14.0040 8.08522i −0.680898 0.393117i
\(424\) 4.12847 + 1.96088i 0.200496 + 0.0952288i
\(425\) 5.85458 + 4.00802i 0.283989 + 0.194418i
\(426\) 8.35232 + 13.6130i 0.404671 + 0.659554i
\(427\) 0 0
\(428\) 4.91881 9.67983i 0.237759 0.467892i
\(429\) 3.89567 + 6.74750i 0.188085 + 0.325773i
\(430\) 28.4375 7.26638i 1.37138 0.350416i
\(431\) 28.2962 + 16.3368i 1.36298 + 0.786918i 0.990020 0.140929i \(-0.0450090\pi\)
0.372962 + 0.927847i \(0.378342\pi\)
\(432\) −14.6446 6.48191i −0.704590 0.311861i
\(433\) 23.5884 1.13359 0.566794 0.823860i \(-0.308184\pi\)
0.566794 + 0.823860i \(0.308184\pi\)
\(434\) 0 0
\(435\) −1.88082 8.27690i −0.0901783 0.396847i
\(436\) 17.8086 0.952818i 0.852877 0.0456317i
\(437\) 7.92195 13.7212i 0.378958 0.656375i
\(438\) −0.0393039 1.47027i −0.00187801 0.0702520i
\(439\) 9.19501 + 15.9262i 0.438854 + 0.760117i 0.997601 0.0692207i \(-0.0220513\pi\)
−0.558748 + 0.829338i \(0.688718\pi\)
\(440\) −5.08753 16.2381i −0.242538 0.774121i
\(441\) 0 0
\(442\) −4.14669 6.75849i −0.197238 0.321469i
\(443\) 1.69217 + 2.93092i 0.0803973 + 0.139252i 0.903421 0.428755i \(-0.141048\pi\)
−0.823023 + 0.568008i \(0.807714\pi\)
\(444\) 3.58241 + 5.50326i 0.170014 + 0.261173i
\(445\) 10.1358 + 3.13710i 0.480482 + 0.148713i
\(446\) −3.77242 2.04559i −0.178629 0.0968614i
\(447\) 6.43914i 0.304561i
\(448\) 0 0
\(449\) −11.9013 −0.561658 −0.280829 0.959758i \(-0.590609\pi\)
−0.280829 + 0.959758i \(0.590609\pi\)
\(450\) 0.870172 17.3932i 0.0410203 0.819924i
\(451\) 0.437896 0.758458i 0.0206197 0.0357144i
\(452\) 1.76265 1.14742i 0.0829081 0.0539700i
\(453\) −0.110058 0.190625i −0.00517096 0.00895636i
\(454\) 17.8121 10.9287i 0.835963 0.512907i
\(455\) 0 0
\(456\) −0.535494 6.66445i −0.0250768 0.312092i
\(457\) −18.2475 + 10.5352i −0.853582 + 0.492816i −0.861858 0.507150i \(-0.830699\pi\)
0.00827601 + 0.999966i \(0.497366\pi\)
\(458\) −0.243037 9.09142i −0.0113564 0.424814i
\(459\) 4.92023 + 2.84070i 0.229657 + 0.132592i
\(460\) −21.1321 + 6.00564i −0.985288 + 0.280014i
\(461\) 29.6708i 1.38191i 0.722899 + 0.690954i \(0.242809\pi\)
−0.722899 + 0.690954i \(0.757191\pi\)
\(462\) 0 0
\(463\) 15.0481 0.699342 0.349671 0.936873i \(-0.386293\pi\)
0.349671 + 0.936873i \(0.386293\pi\)
\(464\) 8.38501 18.9443i 0.389264 0.879468i
\(465\) −11.9528 3.69950i −0.554300 0.171560i
\(466\) 0.660251 + 24.6984i 0.0305855 + 1.14413i
\(467\) 4.45656 2.57299i 0.206225 0.119064i −0.393331 0.919397i \(-0.628677\pi\)
0.599556 + 0.800333i \(0.295344\pi\)
\(468\) −8.81676 + 17.3507i −0.407555 + 0.802036i
\(469\) 0 0
\(470\) −14.8512 + 14.5097i −0.685035 + 0.669283i
\(471\) −12.2086 + 7.04865i −0.562544 + 0.324785i
\(472\) −9.26482 + 19.5063i −0.426448 + 0.897850i
\(473\) 21.6269 + 12.4863i 0.994405 + 0.574120i
\(474\) −6.03395 + 11.1277i −0.277149 + 0.511110i
\(475\) 14.5428 6.96919i 0.667270 0.319768i
\(476\) 0 0
\(477\) 3.97974i 0.182220i
\(478\) 4.00921 + 2.17399i 0.183377 + 0.0994358i
\(479\) 19.9783 34.6035i 0.912834 1.58107i 0.102792 0.994703i \(-0.467222\pi\)
0.810042 0.586372i \(-0.199444\pi\)
\(480\) −5.90197 + 7.14918i −0.269387 + 0.326314i
\(481\) 15.3291 8.85025i 0.698946 0.403537i
\(482\) 24.6955 15.1520i 1.12485 0.690153i
\(483\) 0 0
\(484\) −3.40763 + 6.70594i −0.154892 + 0.304816i
\(485\) 12.6885 + 13.7013i 0.576157 + 0.622143i
\(486\) −0.577301 21.5955i −0.0261869 0.979590i
\(487\) −6.11246 + 10.5871i −0.276982 + 0.479747i −0.970633 0.240564i \(-0.922668\pi\)
0.693651 + 0.720311i \(0.256001\pi\)
\(488\) 33.2956 22.9638i 1.50722 1.03952i
\(489\) 7.85613i 0.355266i
\(490\) 0 0
\(491\) 22.9515i 1.03579i −0.855445 0.517894i \(-0.826716\pi\)
0.855445 0.517894i \(-0.173284\pi\)
\(492\) −0.476453 + 0.0254918i −0.0214802 + 0.00114926i
\(493\) −3.67473 + 6.36483i −0.165502 + 0.286657i
\(494\) −18.0159 + 0.481610i −0.810573 + 0.0216687i
\(495\) 10.8713 10.0677i 0.488628 0.452511i
\(496\) −18.0047 24.6678i −0.808433 1.10762i
\(497\) 0 0
\(498\) 2.85209 + 4.64848i 0.127805 + 0.208303i
\(499\) 3.64376 2.10372i 0.163117 0.0941756i −0.416219 0.909264i \(-0.636645\pi\)
0.579336 + 0.815089i \(0.303312\pi\)
\(500\) −21.2014 7.10643i −0.948155 0.317809i
\(501\) −4.84657 + 8.39451i −0.216529 + 0.375039i
\(502\) −10.2229 + 18.8528i −0.456272 + 0.841443i
\(503\) 43.1904i 1.92576i 0.269924 + 0.962882i \(0.413001\pi\)
−0.269924 + 0.962882i \(0.586999\pi\)
\(504\) 0 0
\(505\) −0.138416 0.609125i −0.00615942 0.0271057i
\(506\) −16.4314 8.90988i −0.730463 0.396093i
\(507\) −1.65775 0.957101i −0.0736232 0.0425064i
\(508\) −1.87424 2.87918i −0.0831558 0.127743i
\(509\) 32.3532 18.6791i 1.43403 0.827937i 0.436604 0.899654i \(-0.356181\pi\)
0.997425 + 0.0717169i \(0.0228478\pi\)
\(510\) 2.35241 2.29832i 0.104167 0.101771i
\(511\) 0 0
\(512\) −21.9760 + 5.39037i −0.971211 + 0.238223i
\(513\) 11.1832 6.45664i 0.493751 0.285067i
\(514\) 6.68903 0.178815i 0.295040 0.00788717i
\(515\) 28.6249 + 8.85964i 1.26137 + 0.390402i
\(516\) −0.726880 13.5857i −0.0319991 0.598077i
\(517\) −17.6653 −0.776921
\(518\) 0 0
\(519\) 8.24817i 0.362055i
\(520\) 18.3935 + 16.9160i 0.806610 + 0.741814i
\(521\) −13.9610 8.06040i −0.611643 0.353132i 0.161965 0.986796i \(-0.448217\pi\)
−0.773608 + 0.633664i \(0.781550\pi\)
\(522\) 18.0329 0.482065i 0.789279 0.0210994i
\(523\) 13.8279 7.98356i 0.604653 0.349097i −0.166217 0.986089i \(-0.553155\pi\)
0.770870 + 0.636993i \(0.219822\pi\)
\(524\) −12.8145 + 25.2178i −0.559802 + 1.10165i
\(525\) 0 0
\(526\) −3.47635 5.66594i −0.151576 0.247047i
\(527\) 5.41703 + 9.38257i 0.235969 + 0.408711i
\(528\) −7.84259 + 0.841618i −0.341305 + 0.0366267i
\(529\) −0.565805 + 0.980002i −0.0246002 + 0.0426088i
\(530\) 4.92012 + 1.37987i 0.213717 + 0.0599378i
\(531\) −18.8036 −0.816007
\(532\) 0 0
\(533\) 1.28614i 0.0557090i
\(534\) 2.34437 4.32342i 0.101451 0.187092i
\(535\) 3.58928 11.5967i 0.155178 0.501371i
\(536\) −3.67271 + 7.73257i −0.158637 + 0.333996i
\(537\) 0.295350 + 0.511562i 0.0127453 + 0.0220755i
\(538\) −29.5822 + 18.1502i −1.27538 + 0.782511i
\(539\) 0 0
\(540\) −17.3632 4.37264i −0.747193 0.188169i
\(541\) 7.31686 + 12.6732i 0.314576 + 0.544862i 0.979347 0.202185i \(-0.0648042\pi\)
−0.664771 + 0.747047i \(0.731471\pi\)
\(542\) −37.3098 + 0.997384i −1.60259 + 0.0428413i
\(543\) −0.0244463 + 0.0423423i −0.00104909 + 0.00181708i
\(544\) 7.95562 1.06949i 0.341094 0.0458540i
\(545\) 19.4434 4.41826i 0.832864 0.189257i
\(546\) 0 0
\(547\) −16.5936 −0.709493 −0.354747 0.934963i \(-0.615433\pi\)
−0.354747 + 0.934963i \(0.615433\pi\)
\(548\) 1.58902 + 29.6996i 0.0678798 + 1.26870i
\(549\) 30.5005 + 17.6094i 1.30173 + 0.751553i
\(550\) −8.67733 16.9308i −0.370002 0.721932i
\(551\) 8.35232 + 14.4666i 0.355821 + 0.616300i
\(552\) 0.815602 + 10.1505i 0.0347143 + 0.432035i
\(553\) 0 0
\(554\) −29.0143 + 17.8018i −1.23270 + 0.756327i
\(555\) 4.98842 + 5.38657i 0.211747 + 0.228647i
\(556\) −7.71155 11.8464i −0.327043 0.502399i
\(557\) −21.4562 12.3878i −0.909129 0.524886i −0.0289782 0.999580i \(-0.509225\pi\)
−0.880151 + 0.474694i \(0.842559\pi\)
\(558\) 12.6760 23.3767i 0.536617 0.989615i
\(559\) −36.6734 −1.55112
\(560\) 0 0
\(561\) 2.79817 0.118139
\(562\) −5.24859 + 9.67930i −0.221398 + 0.408296i
\(563\) 20.7434 + 11.9762i 0.874230 + 0.504737i 0.868751 0.495248i \(-0.164923\pi\)
0.00547814 + 0.999985i \(0.498256\pi\)
\(564\) 5.25049 + 8.06575i 0.221086 + 0.339629i
\(565\) 1.72527 1.59775i 0.0725828 0.0672179i
\(566\) 9.58371 5.88011i 0.402833 0.247159i
\(567\) 0 0
\(568\) 3.49068 + 43.4430i 0.146466 + 1.82283i
\(569\) −4.58078 7.93415i −0.192036 0.332617i 0.753889 0.657002i \(-0.228176\pi\)
−0.945925 + 0.324385i \(0.894843\pi\)
\(570\) −1.85059 7.24240i −0.0775127 0.303351i
\(571\) −21.4132 12.3629i −0.896114 0.517372i −0.0201768 0.999796i \(-0.506423\pi\)
−0.875938 + 0.482425i \(0.839756\pi\)
\(572\) 1.13594 + 21.2312i 0.0474959 + 0.887720i
\(573\) 12.7967 0.534589
\(574\) 0 0
\(575\) −22.1499 + 10.6147i −0.923716 + 0.442662i
\(576\) −12.4495 15.2712i −0.518729 0.636301i
\(577\) 4.75184 8.23042i 0.197822 0.342637i −0.750000 0.661438i \(-0.769947\pi\)
0.947822 + 0.318801i \(0.103280\pi\)
\(578\) 21.1864 0.566366i 0.881237 0.0235577i
\(579\) −6.30178 10.9150i −0.261893 0.453612i
\(580\) 5.65646 22.4611i 0.234872 0.932645i
\(581\) 0 0
\(582\) 7.37801 4.52679i 0.305828 0.187642i
\(583\) 2.17383 + 3.76518i 0.0900308 + 0.155938i
\(584\) 1.72196 3.62543i 0.0712551 0.150022i
\(585\) −6.43363 + 20.7867i −0.265998 + 0.859423i
\(586\) 1.42578 2.62939i 0.0588985 0.108619i
\(587\) 14.2100i 0.586508i 0.956035 + 0.293254i \(0.0947382\pi\)
−0.956035 + 0.293254i \(0.905262\pi\)
\(588\) 0 0
\(589\) 24.6248 1.01465
\(590\) −6.51965 + 23.2467i −0.268410 + 0.957053i
\(591\) −4.37516 + 7.57801i −0.179970 + 0.311717i
\(592\) 1.91200 + 17.8169i 0.0785828 + 0.732271i
\(593\) 8.87854 + 15.3781i 0.364598 + 0.631502i 0.988712 0.149831i \(-0.0478731\pi\)
−0.624114 + 0.781334i \(0.714540\pi\)
\(594\) −7.96695 12.9850i −0.326888 0.532779i
\(595\) 0 0
\(596\) −7.96020 + 15.6651i −0.326063 + 0.641666i
\(597\) 9.85098 5.68746i 0.403174 0.232772i
\(598\) 27.4397 0.733533i 1.12209 0.0299964i
\(599\) −18.1537 10.4811i −0.741741 0.428244i 0.0809612 0.996717i \(-0.474201\pi\)
−0.822702 + 0.568473i \(0.807534\pi\)
\(600\) −5.15129 + 8.99412i −0.210301 + 0.367183i
\(601\) 20.7196i 0.845169i −0.906324 0.422585i \(-0.861123\pi\)
0.906324 0.422585i \(-0.138877\pi\)
\(602\) 0 0
\(603\) −7.45401 −0.303551
\(604\) −0.0320917 0.599807i −0.00130579 0.0244058i
\(605\) −2.48656 + 8.03393i −0.101093 + 0.326626i
\(606\) −0.289442 + 0.00773753i −0.0117578 + 0.000314316i
\(607\) 2.77584 1.60263i 0.112668 0.0650487i −0.442607 0.896716i \(-0.645946\pi\)
0.555275 + 0.831667i \(0.312613\pi\)
\(608\) 6.93600 16.8752i 0.281292 0.684380i
\(609\) 0 0
\(610\) 32.3456 31.6018i 1.30964 1.27952i
\(611\) 22.4668 12.9712i 0.908909 0.524759i
\(612\) 3.81324 + 5.85786i 0.154141 + 0.236790i
\(613\) 4.15308 + 2.39778i 0.167741 + 0.0968454i 0.581520 0.813532i \(-0.302458\pi\)
−0.413779 + 0.910377i \(0.635791\pi\)
\(614\) −23.1932 12.5765i −0.936000 0.507545i
\(615\) −0.520191 + 0.118207i −0.0209761 + 0.00476655i
\(616\) 0 0
\(617\) 8.95961i 0.360700i −0.983602 0.180350i \(-0.942277\pi\)
0.983602 0.180350i \(-0.0577231\pi\)
\(618\) 6.62084 12.2100i 0.266329 0.491157i
\(619\) −12.8347 + 22.2303i −0.515868 + 0.893510i 0.483962 + 0.875089i \(0.339197\pi\)
−0.999830 + 0.0184212i \(0.994136\pi\)
\(620\) −24.5054 23.7765i −0.984159 0.954886i
\(621\) −17.0330 + 9.83400i −0.683510 + 0.394625i
\(622\) −6.05205 9.86394i −0.242665 0.395508i
\(623\) 0 0
\(624\) 9.35623 6.82898i 0.374549 0.273378i
\(625\) −24.7063 3.82066i −0.988253 0.152826i
\(626\) 33.0444 0.883361i 1.32072 0.0353062i
\(627\) 3.17999 5.50790i 0.126996 0.219964i
\(628\) −38.4147 + 2.05531i −1.53291 + 0.0820160i
\(629\) 6.35693i 0.253467i
\(630\) 0 0
\(631\) 1.75095i 0.0697043i 0.999392 + 0.0348521i \(0.0110960\pi\)
−0.999392 + 0.0348521i \(0.988904\pi\)
\(632\) −28.4356 + 19.6119i −1.13111 + 0.780120i
\(633\) 5.19029 8.98985i 0.206296 0.357314i
\(634\) −0.990445 37.0502i −0.0393356 1.47145i
\(635\) −2.60983 2.81813i −0.103568 0.111834i
\(636\) 1.07302 2.11163i 0.0425482 0.0837315i
\(637\) 0 0
\(638\) 16.7974 10.3061i 0.665014 0.408021i
\(639\) −32.8655 + 18.9749i −1.30014 + 0.750636i
\(640\) −23.1962 + 10.0963i −0.916911 + 0.399091i
\(641\) 20.3887 35.3143i 0.805306 1.39483i −0.110778 0.993845i \(-0.535334\pi\)
0.916084 0.400986i \(-0.131332\pi\)
\(642\) −4.94658 2.68228i −0.195226 0.105861i
\(643\) 35.0077i 1.38057i 0.723538 + 0.690285i \(0.242515\pi\)
−0.723538 + 0.690285i \(0.757485\pi\)
\(644\) 0 0
\(645\) −3.37057 14.8329i −0.132716 0.584043i
\(646\) −3.08530 + 5.68983i −0.121390 + 0.223863i
\(647\) 20.9951 + 12.1215i 0.825404 + 0.476547i 0.852276 0.523092i \(-0.175221\pi\)
−0.0268724 + 0.999639i \(0.508555\pi\)
\(648\) 5.40508 11.3799i 0.212331 0.447046i
\(649\) −17.7898 + 10.2710i −0.698312 + 0.403171i
\(650\) 23.4677 + 15.1611i 0.920478 + 0.594666i
\(651\) 0 0
\(652\) −9.71192 + 19.1123i −0.380348 + 0.748495i
\(653\) 37.4046 21.5956i 1.46376 0.845100i 0.464574 0.885534i \(-0.346208\pi\)
0.999182 + 0.0404346i \(0.0128742\pi\)
\(654\) −0.246984 9.23906i −0.00965782 0.361276i
\(655\) −9.35077 + 30.2118i −0.365365 + 1.18047i
\(656\) −1.19062 0.526985i −0.0464860 0.0205753i
\(657\) 3.49483 0.136346
\(658\) 0 0
\(659\) 11.6398i 0.453422i 0.973962 + 0.226711i \(0.0727973\pi\)
−0.973962 + 0.226711i \(0.927203\pi\)
\(660\) −8.48272 + 2.41075i −0.330189 + 0.0938383i
\(661\) −14.8021 8.54599i −0.575735 0.332400i 0.183702 0.982982i \(-0.441192\pi\)
−0.759436 + 0.650582i \(0.774525\pi\)
\(662\) 0.737751 + 27.5975i 0.0286735 + 1.07261i
\(663\) −3.55871 + 2.05462i −0.138209 + 0.0797950i
\(664\) 1.19197 + 14.8346i 0.0462574 + 0.575693i
\(665\) 0 0
\(666\) −13.2994 + 8.15989i −0.515342 + 0.316189i
\(667\) −12.7213 22.0339i −0.492570 0.853157i
\(668\) −22.1682 + 14.4306i −0.857712 + 0.558338i
\(669\) −1.11198 + 1.92600i −0.0429915 + 0.0744634i
\(670\) −2.58448 + 9.21533i −0.0998472 + 0.356019i
\(671\) 38.4748 1.48530
\(672\) 0 0
\(673\) 3.77972i 0.145697i 0.997343 + 0.0728487i \(0.0232090\pi\)
−0.997343 + 0.0728487i \(0.976791\pi\)
\(674\) 39.4742 + 21.4048i 1.52049 + 0.824482i
\(675\) −19.9599 1.53421i −0.768256 0.0590518i
\(676\) −2.84976 4.37777i −0.109606 0.168376i
\(677\) −13.8872 24.0534i −0.533729 0.924446i −0.999224 0.0393956i \(-0.987457\pi\)
0.465494 0.885051i \(-0.345877\pi\)
\(678\) −0.570017 0.929044i −0.0218914 0.0356797i
\(679\) 0 0
\(680\) 8.56416 2.68322i 0.328421 0.102897i
\(681\) −5.41499 9.37904i −0.207503 0.359405i
\(682\) −0.776321 29.0403i −0.0297269 1.11201i
\(683\) −5.58652 + 9.67614i −0.213762 + 0.370247i −0.952889 0.303319i \(-0.901905\pi\)
0.739127 + 0.673567i \(0.235239\pi\)
\(684\) 15.8641 0.848783i 0.606580 0.0324540i
\(685\) 7.36837 + 32.4260i 0.281531 + 1.23893i
\(686\) 0 0
\(687\) −4.71324 −0.179821
\(688\) 15.0266 33.9497i 0.572884 1.29432i
\(689\) −5.52935 3.19237i −0.210652 0.121620i
\(690\) 2.81861 + 11.0308i 0.107302 + 0.419935i
\(691\) 17.7057 + 30.6672i 0.673556 + 1.16663i 0.976889 + 0.213749i \(0.0685675\pi\)
−0.303332 + 0.952885i \(0.598099\pi\)
\(692\) −10.1966 + 20.0661i −0.387616 + 0.762797i
\(693\) 0 0
\(694\) −13.5966 22.1605i −0.516122 0.841202i
\(695\) −10.7381 11.5952i −0.407321 0.439831i
\(696\) −9.69812 4.60627i −0.367606 0.174600i
\(697\) 0.400020 + 0.230952i 0.0151518 + 0.00874791i
\(698\) −2.95124 1.60031i −0.111706 0.0605725i
\(699\) 12.8043 0.484304
\(700\) 0 0
\(701\) 2.24955 0.0849643 0.0424821 0.999097i \(-0.486473\pi\)
0.0424821 + 0.999097i \(0.486473\pi\)
\(702\) 19.6669 + 10.6643i 0.742279 + 0.402500i
\(703\) −12.5129 7.22434i −0.471934 0.272471i
\(704\) −20.1198 7.64771i −0.758293 0.288234i
\(705\) 7.31118 + 7.89472i 0.275355 + 0.297332i
\(706\) 1.59321 + 2.59671i 0.0599614 + 0.0977283i
\(707\) 0 0
\(708\) 9.97707 + 5.06985i 0.374961 + 0.190537i
\(709\) 7.94601 + 13.7629i 0.298418 + 0.516876i 0.975774 0.218780i \(-0.0702076\pi\)
−0.677356 + 0.735656i \(0.736874\pi\)
\(710\) 12.0633 + 47.2104i 0.452727 + 1.77178i
\(711\) −26.0485 15.0391i −0.976893 0.564010i
\(712\) 11.0480 7.61980i 0.414043 0.285564i
\(713\) −37.5056 −1.40460
\(714\) 0 0
\(715\) 5.26739 + 23.1802i 0.196989 + 0.866890i
\(716\) 0.0861211 + 1.60964i 0.00321850 + 0.0601551i
\(717\) 1.18177 2.04689i 0.0441341 0.0764425i
\(718\) 0.192011 + 7.18267i 0.00716579 + 0.268055i
\(719\) −18.0142 31.2015i −0.671817 1.16362i −0.977388 0.211452i \(-0.932181\pi\)
0.305572 0.952169i \(-0.401152\pi\)
\(720\) −16.6067 14.4730i −0.618897 0.539375i
\(721\) 0 0
\(722\) −6.35856 10.3635i −0.236641 0.385690i
\(723\) −7.50758 13.0035i −0.279210 0.483606i
\(724\) −0.111817 + 0.0727888i −0.00415565 + 0.00270517i
\(725\) 1.98466 25.8201i 0.0737083 0.958936i
\(726\) 3.42687 + 1.85822i 0.127183 + 0.0689648i
\(727\) 51.4779i 1.90921i −0.297878 0.954604i \(-0.596279\pi\)
0.297878 0.954604i \(-0.403721\pi\)
\(728\) 0 0
\(729\) 2.16686 0.0802541
\(730\) 1.21174 4.32063i 0.0448485 0.159914i
\(731\) −6.58541 + 11.4063i −0.243570 + 0.421876i
\(732\) −11.4355 17.5670i −0.422667 0.649296i
\(733\) −17.9717 31.1280i −0.663801 1.14974i −0.979609 0.200914i \(-0.935609\pi\)
0.315807 0.948823i \(-0.397725\pi\)
\(734\) 16.3277 10.0179i 0.602667 0.369768i
\(735\) 0 0
\(736\) −10.5641 + 25.7024i −0.389398 + 0.947401i
\(737\) −7.05214 + 4.07155i −0.259769 + 0.149978i
\(738\) −0.0302971 1.13334i −0.00111525 0.0417189i
\(739\) −15.7903 9.11653i −0.580855 0.335357i 0.180618 0.983553i \(-0.442190\pi\)
−0.761473 + 0.648196i \(0.775524\pi\)
\(740\) 5.47678 + 19.2712i 0.201330 + 0.708422i
\(741\) 9.33993i 0.343111i
\(742\) 0 0
\(743\) 29.1171 1.06820 0.534102 0.845420i \(-0.320650\pi\)
0.534102 + 0.845420i \(0.320650\pi\)
\(744\) −13.0287 + 8.98582i −0.477654 + 0.329436i
\(745\) −5.80860 + 18.7672i −0.212811 + 0.687578i
\(746\) 0.269608 + 10.0854i 0.00987105 + 0.369252i
\(747\) −11.2227 + 6.47941i −0.410616 + 0.237069i
\(748\) 6.80736 + 3.45916i 0.248902 + 0.126479i
\(749\) 0 0
\(750\) −3.97515 + 10.8851i −0.145152 + 0.397468i
\(751\) 37.2703 21.5180i 1.36001 0.785203i 0.370386 0.928878i \(-0.379225\pi\)
0.989625 + 0.143675i \(0.0458921\pi\)
\(752\) 2.80229 + 26.1130i 0.102189 + 0.952245i
\(753\) 9.62527 + 5.55715i 0.350764 + 0.202514i
\(754\) −13.7954 + 25.4411i −0.502400 + 0.926512i
\(755\) −0.148810 0.654869i −0.00541576 0.0238331i
\(756\) 0 0
\(757\) 10.6531i 0.387193i −0.981081 0.193597i \(-0.937985\pi\)
0.981081 0.193597i \(-0.0620153\pi\)
\(758\) −20.1941 10.9502i −0.733484 0.397730i
\(759\) −4.84339 + 8.38899i −0.175804 + 0.304501i
\(760\) 4.45112 19.9070i 0.161459 0.722102i
\(761\) −12.3298 + 7.11864i −0.446956 + 0.258050i −0.706544 0.707669i \(-0.749747\pi\)
0.259588 + 0.965720i \(0.416413\pi\)
\(762\) −1.51754 + 0.931088i −0.0549745 + 0.0337297i
\(763\) 0 0
\(764\) 31.1316 + 15.8195i 1.12630 + 0.572331i
\(765\) 5.30984 + 5.73365i 0.191978 + 0.207300i
\(766\) 0.373656 + 13.9776i 0.0135007 + 0.505030i
\(767\) 15.0834 26.1252i 0.544630 0.943327i
\(768\) 2.48817 + 11.4595i 0.0897842 + 0.413508i
\(769\) 35.5770i 1.28294i −0.767149 0.641469i \(-0.778325\pi\)
0.767149 0.641469i \(-0.221675\pi\)
\(770\) 0 0
\(771\) 3.46777i 0.124889i
\(772\) −1.83753 34.3443i −0.0661342 1.23608i
\(773\) −5.94268 + 10.2930i −0.213743 + 0.370214i −0.952883 0.303338i \(-0.901899\pi\)
0.739140 + 0.673552i \(0.235232\pi\)
\(774\) 32.3164 0.863899i 1.16159 0.0310522i
\(775\) −31.5000 21.5648i −1.13151 0.774630i
\(776\) 23.5453 1.89188i 0.845226 0.0679145i
\(777\) 0 0
\(778\) −23.6388 38.5277i −0.847491 1.38129i
\(779\) 0.909207 0.524931i 0.0325757 0.0188076i
\(780\) 9.01817 9.29463i 0.322902 0.332801i
\(781\) −20.7291 + 35.9038i −0.741745 + 1.28474i
\(782\) 4.69918 8.66609i 0.168042 0.309899i
\(783\) 20.7365i 0.741061i
\(784\) 0 0
\(785\) −41.9412 + 9.53058i −1.49694 + 0.340161i
\(786\) 12.8868 + 6.98786i 0.459658 + 0.249249i
\(787\) −40.1645 23.1890i −1.43171 0.826597i −0.434457 0.900692i \(-0.643060\pi\)
−0.997251 + 0.0740951i \(0.976393\pi\)
\(788\) −20.0119 + 13.0270i −0.712896 + 0.464068i
\(789\) −2.98342 + 1.72248i −0.106213 + 0.0613219i
\(790\) −27.6243 + 26.9891i −0.982828 + 0.960228i
\(791\) 0 0
\(792\) −1.50111 18.6820i −0.0533398 0.663836i
\(793\) −48.9322 + 28.2510i −1.73763 + 1.00322i
\(794\) −24.7055 + 0.660441i −0.876766 + 0.0234382i
\(795\) 0.782991 2.52980i 0.0277698 0.0897226i
\(796\) 30.9963 1.65841i 1.09864 0.0587806i
\(797\) 9.09251 0.322073 0.161037 0.986948i \(-0.448516\pi\)
0.161037 + 0.986948i \(0.448516\pi\)
\(798\) 0 0
\(799\) 9.31691i 0.329609i
\(800\) −23.6507 + 15.5127i −0.836180 + 0.548455i
\(801\) 10.1206 + 5.84312i 0.357593 + 0.206457i
\(802\) 24.5399 0.656013i 0.866534 0.0231646i
\(803\) 3.30641 1.90896i 0.116681 0.0673656i
\(804\) 3.95505 + 2.00976i 0.139484 + 0.0708788i
\(805\) 0 0
\(806\) 22.3109 + 36.3634i 0.785867 + 1.28085i
\(807\) 8.99316 + 15.5766i 0.316574 + 0.548323i
\(808\) −0.713717 0.338991i −0.0251085 0.0119257i
\(809\) −8.66128 + 15.0018i −0.304515 + 0.527435i −0.977153 0.212536i \(-0.931828\pi\)
0.672639 + 0.739971i \(0.265161\pi\)
\(810\) 3.80355 13.5621i 0.133643 0.476523i
\(811\) 16.4459 0.577493 0.288746 0.957406i \(-0.406762\pi\)
0.288746 + 0.957406i \(0.406762\pi\)
\(812\) 0 0
\(813\) 19.3424i 0.678368i
\(814\) −8.12527 + 14.9844i −0.284791 + 0.525203i
\(815\) −7.08683 + 22.8971i −0.248241 + 0.802051i
\(816\) −0.443879 4.13628i −0.0155389 0.144799i
\(817\) 14.9680 + 25.9254i 0.523664 + 0.907013i
\(818\) −8.79934 + 5.39886i −0.307662 + 0.188767i
\(819\) 0 0
\(820\) −1.41164 0.355500i −0.0492968 0.0124146i
\(821\) −22.4527 38.8892i −0.783603 1.35724i −0.929830 0.367990i \(-0.880046\pi\)
0.146226 0.989251i \(-0.453287\pi\)
\(822\) 15.4081 0.411897i 0.537418 0.0143666i
\(823\) 11.8546 20.5328i 0.413226 0.715729i −0.582014 0.813179i \(-0.697735\pi\)
0.995240 + 0.0974497i \(0.0310685\pi\)
\(824\) 31.2013 21.5194i 1.08695 0.749665i
\(825\) −8.89130 + 4.26088i −0.309555 + 0.148345i
\(826\) 0 0
\(827\) 8.20536 0.285328 0.142664 0.989771i \(-0.454433\pi\)
0.142664 + 0.989771i \(0.454433\pi\)
\(828\) −24.1624 + 1.29277i −0.839702 + 0.0449268i
\(829\) 19.1548 + 11.0590i 0.665272 + 0.384095i 0.794283 0.607548i \(-0.207847\pi\)
−0.129011 + 0.991643i \(0.541180\pi\)
\(830\) 4.11928 + 16.1211i 0.142982 + 0.559570i
\(831\) 8.82054 + 15.2776i 0.305981 + 0.529975i
\(832\) 31.2039 5.04710i 1.08180 0.174977i
\(833\) 0 0
\(834\) −6.24391 + 3.83096i −0.216209 + 0.132655i
\(835\) −21.6981 + 20.0943i −0.750894 + 0.695391i
\(836\) 14.5452 9.46838i 0.503057 0.327471i
\(837\) −26.4729 15.2841i −0.915036 0.528296i
\(838\) −12.0856 + 22.2879i −0.417490 + 0.769923i
\(839\) −3.64977 −0.126004 −0.0630020 0.998013i \(-0.520067\pi\)
−0.0630020 + 0.998013i \(0.520067\pi\)
\(840\) 0 0
\(841\) −2.17525 −0.0750086
\(842\) 8.51652 15.7059i 0.293499 0.541262i
\(843\) 4.94174 + 2.85312i 0.170203 + 0.0982665i
\(844\) 23.7403 15.4541i 0.817176 0.531950i
\(845\) −3.96822 4.28494i −0.136511 0.147407i
\(846\) −19.4920 + 11.9594i −0.670150 + 0.411172i
\(847\) 0 0
\(848\) 5.22088 3.81065i 0.179286 0.130858i
\(849\) −2.91351 5.04634i −0.0999913 0.173190i
\(850\) 8.92951 4.57652i 0.306280 0.156974i
\(851\) 19.0582 + 11.0033i 0.653308 + 0.377188i
\(852\) 22.5543 1.20673i 0.772697 0.0413419i
\(853\) −1.03474 −0.0354290 −0.0177145 0.999843i \(-0.505639\pi\)
−0.0177145 + 0.999843i \(0.505639\pi\)
\(854\) 0 0
\(855\) 17.3205 3.93584i 0.592347 0.134603i
\(856\) −8.71810 12.6405i −0.297979 0.432043i
\(857\) 24.2563 42.0132i 0.828581 1.43514i −0.0705709 0.997507i \(-0.522482\pi\)
0.899152 0.437637i \(-0.144185\pi\)
\(858\) 11.0147 0.294451i 0.376035 0.0100524i
\(859\) −12.4674 21.5941i −0.425382 0.736783i 0.571074 0.820898i \(-0.306527\pi\)
−0.996456 + 0.0841157i \(0.973193\pi\)
\(860\) 10.1368 40.2520i 0.345663 1.37258i
\(861\) 0 0
\(862\) 39.3852 24.1649i 1.34147 0.823060i
\(863\) 2.98354 + 5.16765i 0.101561 + 0.175909i 0.912328 0.409460i \(-0.134283\pi\)
−0.810767 + 0.585369i \(0.800950\pi\)
\(864\) −17.9307 + 13.8366i −0.610013 + 0.470732i
\(865\) −7.44049 + 24.0398i −0.252984 + 0.817377i
\(866\) 15.9016 29.3252i 0.540357 0.996511i
\(867\) 10.9836i 0.373023i
\(868\) 0 0
\(869\) −32.8588 −1.11466
\(870\) −11.5578 3.24143i −0.391845 0.109895i
\(871\) 5.97927 10.3564i 0.202600 0.350913i
\(872\) 10.8207 22.7820i 0.366434 0.771496i
\(873\) 10.2840 + 17.8125i 0.348062 + 0.602861i
\(874\) −11.7179 19.0984i −0.396363 0.646014i
\(875\) 0 0
\(876\) −1.85433 0.942281i −0.0626522 0.0318367i
\(877\) 29.2974 16.9149i 0.989304 0.571175i 0.0842381 0.996446i \(-0.473154\pi\)
0.905066 + 0.425270i \(0.139821\pi\)
\(878\) 25.9981 0.694996i 0.877394 0.0234550i
\(879\) −1.34243 0.775051i −0.0452789 0.0261418i
\(880\) −23.6169 4.62168i −0.796125 0.155797i
\(881\) 20.9239i 0.704944i −0.935822 0.352472i \(-0.885341\pi\)
0.935822 0.352472i \(-0.114659\pi\)
\(882\) 0 0
\(883\) 14.7876 0.497642 0.248821 0.968549i \(-0.419957\pi\)
0.248821 + 0.968549i \(0.419957\pi\)
\(884\) −11.1976 + 0.599107i −0.376615 + 0.0201501i
\(885\) 11.9528 + 3.69950i 0.401790 + 0.124357i
\(886\) 4.78446 0.127901i 0.160737 0.00429691i
\(887\) −6.40786 + 3.69958i −0.215155 + 0.124220i −0.603705 0.797208i \(-0.706309\pi\)
0.388550 + 0.921428i \(0.372976\pi\)
\(888\) 9.25667 0.743780i 0.310633 0.0249596i
\(889\) 0 0
\(890\) 10.7328 10.4860i 0.359766 0.351493i
\(891\) 10.3785 5.99206i 0.347694 0.200741i
\(892\) −5.08617 + 3.31090i −0.170297 + 0.110857i
\(893\) −18.3393 10.5882i −0.613702 0.354321i
\(894\) 8.00516 + 4.34079i 0.267733 + 0.145178i
\(895\) 0.399347 + 1.75740i 0.0133487 + 0.0587435i
\(896\) 0 0
\(897\) 14.2255i 0.474976i
\(898\) −8.02298 + 14.7958i −0.267730 + 0.493741i
\(899\) 19.7716 34.2453i 0.659418 1.14215i
\(900\) −21.0367 12.8070i −0.701224 0.426901i
\(901\) −1.98580 + 1.14650i −0.0661566 + 0.0381956i
\(902\) −0.647721 1.05569i −0.0215668 0.0351506i
\(903\) 0 0
\(904\) −0.238227 2.96484i −0.00792331 0.0986090i
\(905\) −0.109446 + 0.101357i −0.00363812 + 0.00336920i
\(906\) −0.311179 + 0.00831860i −0.0103382 + 0.000276367i
\(907\) 9.25608 16.0320i 0.307343 0.532334i −0.670437 0.741966i \(-0.733893\pi\)
0.977780 + 0.209632i \(0.0672268\pi\)
\(908\) −1.57895 29.5113i −0.0523994 0.979368i
\(909\) 0.688006i 0.0228197i
\(910\) 0 0
\(911\) 10.8437i 0.359267i −0.983734 0.179634i \(-0.942509\pi\)
0.983734 0.179634i \(-0.0574912\pi\)
\(912\) −8.64626 3.82695i −0.286306 0.126723i
\(913\) −7.07841 + 12.2602i −0.234261 + 0.405752i
\(914\) 0.796292 + 29.7874i 0.0263390 + 0.985279i
\(915\) −15.9236 17.1945i −0.526418 0.568434i
\(916\) −11.4663 5.82661i −0.378858 0.192517i
\(917\) 0 0
\(918\) 6.84842 4.20187i 0.226032 0.138682i
\(919\) 13.9555 8.05723i 0.460351 0.265784i −0.251841 0.967769i \(-0.581036\pi\)
0.712192 + 0.701985i \(0.247703\pi\)
\(920\) −6.77944 + 30.3200i −0.223511 + 0.999621i
\(921\) −6.83653 + 11.8412i −0.225271 + 0.390181i
\(922\) 36.8869 + 20.0019i 1.21480 + 0.658726i
\(923\) 60.8834i 2.00400i
\(924\) 0 0
\(925\) 9.67993 + 20.1994i 0.318274 + 0.664152i
\(926\) 10.1443 18.7078i 0.333362 0.614776i
\(927\) 28.5820 + 16.5018i 0.938757 + 0.541991i
\(928\) −17.8991 23.1951i −0.587567 0.761417i
\(929\) −42.7419 + 24.6770i −1.40232 + 0.809627i −0.994630 0.103495i \(-0.966998\pi\)
−0.407686 + 0.913122i \(0.633664\pi\)
\(930\) −12.6569 + 12.3659i −0.415037 + 0.405494i
\(931\) 0 0
\(932\) 31.1502 + 15.8290i 1.02036 + 0.518496i
\(933\) −5.19390 + 2.99870i −0.170041 + 0.0981731i
\(934\) −0.194477 7.27493i −0.00636349 0.238043i
\(935\) 8.15542 + 2.52417i 0.266711 + 0.0825490i
\(936\) 15.6268 + 22.6576i 0.510779 + 0.740586i
\(937\) −31.3085 −1.02280 −0.511402 0.859342i \(-0.670874\pi\)
−0.511402 + 0.859342i \(0.670874\pi\)
\(938\) 0 0
\(939\) 17.1311i 0.559054i
\(940\) 8.02694 + 28.2444i 0.261810 + 0.921232i
\(941\) −37.9492 21.9100i −1.23711 0.714245i −0.268606 0.963250i \(-0.586563\pi\)
−0.968502 + 0.249005i \(0.919896\pi\)
\(942\) 0.532766 + 19.9295i 0.0173584 + 0.649338i
\(943\) −1.38480 + 0.799514i −0.0450952 + 0.0260358i
\(944\) 18.0047 + 24.6678i 0.586002 + 0.802867i
\(945\) 0 0
\(946\) 30.1022 18.4693i 0.978708 0.600488i
\(947\) 7.31729 + 12.6739i 0.237780 + 0.411847i 0.960077 0.279736i \(-0.0902469\pi\)
−0.722297 + 0.691583i \(0.756914\pi\)
\(948\) 9.76629 + 15.0029i 0.317194 + 0.487270i
\(949\) −2.80340 + 4.85563i −0.0910021 + 0.157620i
\(950\) 1.13956 22.7778i 0.0369721 0.739009i
\(951\) −19.2078 −0.622857
\(952\) 0 0
\(953\) 28.2044i 0.913630i −0.889562 0.456815i \(-0.848990\pi\)
0.889562 0.456815i \(-0.151010\pi\)
\(954\) 4.94763 + 2.68285i 0.160186 + 0.0868604i
\(955\) 37.2966 + 11.5436i 1.20689 + 0.373542i
\(956\) 5.40542 3.51872i 0.174824 0.113804i
\(957\) −5.10651 8.84473i −0.165070 0.285909i
\(958\) −29.5513 48.1643i −0.954759 1.55612i
\(959\) 0 0
\(960\) 4.90922 + 12.1568i 0.158444 + 0.392359i
\(961\) −13.6458 23.6352i −0.440187 0.762427i
\(962\) −0.668938 25.0234i −0.0215674 0.806785i
\(963\) 6.68534 11.5793i 0.215432 0.373139i
\(964\) −2.18913 40.9158i −0.0705072 1.31781i
\(965\) −8.52071 37.4971i −0.274291 1.20707i
\(966\) 0 0
\(967\) 8.88824 0.285827 0.142913 0.989735i \(-0.454353\pi\)
0.142913 + 0.989735i \(0.454353\pi\)
\(968\) 6.03968 + 8.75702i 0.194123 + 0.281461i
\(969\) 2.90493 + 1.67716i 0.0933198 + 0.0538782i
\(970\) 25.5871 6.53807i 0.821554 0.209925i
\(971\) −4.37105 7.57089i −0.140274 0.242961i 0.787326 0.616537i \(-0.211465\pi\)
−0.927600 + 0.373576i \(0.878132\pi\)
\(972\) −27.2367 13.8403i −0.873618 0.443929i
\(973\) 0 0
\(974\) 9.04134 + 14.7360i 0.289703 + 0.472173i
\(975\) 8.17930 11.9476i 0.261947 0.382631i
\(976\) −6.10333 56.8737i −0.195363 1.82048i
\(977\) 36.3569 + 20.9907i 1.16316 + 0.671551i 0.952059 0.305914i \(-0.0989620\pi\)
0.211100 + 0.977464i \(0.432295\pi\)
\(978\) 9.76676 + 5.29601i 0.312307 + 0.169348i
\(979\) 12.7666 0.408022
\(980\) 0 0
\(981\) 21.9613 0.701170
\(982\) −28.5334 15.4722i −0.910539 0.493738i
\(983\) −9.53036 5.50236i −0.303971 0.175498i 0.340254 0.940333i \(-0.389487\pi\)
−0.644226 + 0.764836i \(0.722820\pi\)
\(984\) −0.289497 + 0.609513i −0.00922884 + 0.0194306i
\(985\) −19.5876 + 18.1398i −0.624113 + 0.577982i
\(986\) 5.43554 + 8.85913i 0.173103 + 0.282132i
\(987\) 0 0
\(988\) −11.5462 + 22.7221i −0.367334 + 0.722885i
\(989\) −22.7975 39.4865i −0.724920 1.25560i
\(990\) −5.18764 20.3021i −0.164874 0.645245i
\(991\) −31.6799 18.2904i −1.00634 0.581013i −0.0962255 0.995360i \(-0.530677\pi\)
−0.910119 + 0.414346i \(0.864010\pi\)
\(992\) −42.8044 + 5.75429i −1.35904 + 0.182699i
\(993\) 14.3073 0.454028
\(994\) 0 0
\(995\) 33.8418 7.69010i 1.07286 0.243792i
\(996\) 7.70167 0.412065i 0.244037 0.0130568i
\(997\) −7.23204 + 12.5263i −0.229041 + 0.396711i −0.957524 0.288353i \(-0.906892\pi\)
0.728483 + 0.685064i \(0.240226\pi\)
\(998\) −0.159008 5.94811i −0.00503331 0.188284i
\(999\) 8.96801 + 15.5331i 0.283735 + 0.491444i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.s.e.619.11 32
4.3 odd 2 inner 980.2.s.e.619.16 32
5.4 even 2 inner 980.2.s.e.619.6 32
7.2 even 3 140.2.s.b.19.1 32
7.3 odd 6 980.2.c.d.979.23 32
7.4 even 3 980.2.c.d.979.24 32
7.5 odd 6 inner 980.2.s.e.19.1 32
7.6 odd 2 140.2.s.b.59.11 yes 32
20.19 odd 2 inner 980.2.s.e.619.1 32
28.3 even 6 980.2.c.d.979.12 32
28.11 odd 6 980.2.c.d.979.11 32
28.19 even 6 inner 980.2.s.e.19.6 32
28.23 odd 6 140.2.s.b.19.6 yes 32
28.27 even 2 140.2.s.b.59.16 yes 32
35.2 odd 12 700.2.p.e.551.8 32
35.4 even 6 980.2.c.d.979.9 32
35.9 even 6 140.2.s.b.19.16 yes 32
35.13 even 4 700.2.p.e.451.3 32
35.19 odd 6 inner 980.2.s.e.19.16 32
35.23 odd 12 700.2.p.e.551.9 32
35.24 odd 6 980.2.c.d.979.10 32
35.27 even 4 700.2.p.e.451.14 32
35.34 odd 2 140.2.s.b.59.6 yes 32
140.19 even 6 inner 980.2.s.e.19.11 32
140.23 even 12 700.2.p.e.551.3 32
140.27 odd 4 700.2.p.e.451.8 32
140.39 odd 6 980.2.c.d.979.22 32
140.59 even 6 980.2.c.d.979.21 32
140.79 odd 6 140.2.s.b.19.11 yes 32
140.83 odd 4 700.2.p.e.451.9 32
140.107 even 12 700.2.p.e.551.14 32
140.139 even 2 140.2.s.b.59.1 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.s.b.19.1 32 7.2 even 3
140.2.s.b.19.6 yes 32 28.23 odd 6
140.2.s.b.19.11 yes 32 140.79 odd 6
140.2.s.b.19.16 yes 32 35.9 even 6
140.2.s.b.59.1 yes 32 140.139 even 2
140.2.s.b.59.6 yes 32 35.34 odd 2
140.2.s.b.59.11 yes 32 7.6 odd 2
140.2.s.b.59.16 yes 32 28.27 even 2
700.2.p.e.451.3 32 35.13 even 4
700.2.p.e.451.8 32 140.27 odd 4
700.2.p.e.451.9 32 140.83 odd 4
700.2.p.e.451.14 32 35.27 even 4
700.2.p.e.551.3 32 140.23 even 12
700.2.p.e.551.8 32 35.2 odd 12
700.2.p.e.551.9 32 35.23 odd 12
700.2.p.e.551.14 32 140.107 even 12
980.2.c.d.979.9 32 35.4 even 6
980.2.c.d.979.10 32 35.24 odd 6
980.2.c.d.979.11 32 28.11 odd 6
980.2.c.d.979.12 32 28.3 even 6
980.2.c.d.979.21 32 140.59 even 6
980.2.c.d.979.22 32 140.39 odd 6
980.2.c.d.979.23 32 7.3 odd 6
980.2.c.d.979.24 32 7.4 even 3
980.2.s.e.19.1 32 7.5 odd 6 inner
980.2.s.e.19.6 32 28.19 even 6 inner
980.2.s.e.19.11 32 140.19 even 6 inner
980.2.s.e.19.16 32 35.19 odd 6 inner
980.2.s.e.619.1 32 20.19 odd 2 inner
980.2.s.e.619.6 32 5.4 even 2 inner
980.2.s.e.619.11 32 1.1 even 1 trivial
980.2.s.e.619.16 32 4.3 odd 2 inner