Properties

Label 980.2.s.e.19.10
Level $980$
Weight $2$
Character 980.19
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(19,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,6,6,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.10
Character \(\chi\) \(=\) 980.19
Dual form 980.2.s.e.619.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.444985 + 1.34238i) q^{2} +(-2.24836 + 1.29809i) q^{3} +(-1.60398 + 1.19468i) q^{4} +(-0.316513 - 2.21355i) q^{5} +(-2.74302 - 2.44053i) q^{6} +(-2.31746 - 1.62154i) q^{8} +(1.87009 - 3.23909i) q^{9} +(2.83059 - 1.40988i) q^{10} +(3.12008 - 1.80138i) q^{11} +(2.05552 - 4.76818i) q^{12} -0.818282 q^{13} +(3.58504 + 4.56601i) q^{15} +(1.14549 - 3.83247i) q^{16} +(3.69814 + 6.40537i) q^{17} +(5.18026 + 1.06903i) q^{18} +(1.65329 - 2.86358i) q^{19} +(3.15217 + 3.17236i) q^{20} +(3.80652 + 3.38675i) q^{22} +(-1.26758 + 2.19550i) q^{23} +(7.31540 + 0.637523i) q^{24} +(-4.79964 + 1.40124i) q^{25} +(-0.364123 - 1.09845i) q^{26} +1.92166i q^{27} -2.04334 q^{29} +(-4.53404 + 6.84429i) q^{30} +(0.955727 + 1.65537i) q^{31} +(5.65437 - 0.167714i) q^{32} +(-4.67671 + 8.10030i) q^{33} +(-6.95283 + 7.81461i) q^{34} +(0.870092 + 7.42959i) q^{36} +(6.20697 + 3.58360i) q^{37} +(4.57971 + 0.945096i) q^{38} +(1.83980 - 1.06221i) q^{39} +(-2.85585 + 5.64306i) q^{40} -2.65824i q^{41} +2.39696 q^{43} +(-2.85246 + 6.61686i) q^{44} +(-7.76182 - 3.11433i) q^{45} +(-3.51126 - 0.724604i) q^{46} +(1.15593 + 0.667376i) q^{47} +(2.39944 + 10.1037i) q^{48} +(-4.01676 - 5.81942i) q^{50} +(-16.6295 - 9.60106i) q^{51} +(1.31251 - 0.977584i) q^{52} +(-1.56838 + 0.905503i) q^{53} +(-2.57960 + 0.855108i) q^{54} +(-4.97499 - 6.33630i) q^{55} +8.58450i q^{57} +(-0.909256 - 2.74295i) q^{58} +(-0.955727 - 1.65537i) q^{59} +(-11.2052 - 3.04081i) q^{60} +(8.46625 + 4.88799i) q^{61} +(-1.79685 + 2.01956i) q^{62} +(2.74124 + 7.51569i) q^{64} +(0.258997 + 1.81131i) q^{65} +(-12.9548 - 2.67342i) q^{66} +(4.63112 + 8.02134i) q^{67} +(-13.5841 - 5.85597i) q^{68} -6.58172i q^{69} -1.38422i q^{71} +(-9.58617 + 4.47405i) q^{72} +(-3.69814 - 6.40537i) q^{73} +(-2.04855 + 9.92677i) q^{74} +(8.97240 - 9.38087i) q^{75} +(0.769222 + 6.56827i) q^{76} +(2.24457 + 1.99704i) q^{78} +(6.70979 + 3.87390i) q^{79} +(-8.84595 - 1.32257i) q^{80} +(3.11579 + 5.39670i) q^{81} +(3.56837 - 1.18287i) q^{82} +10.4973i q^{83} +(13.0081 - 10.2134i) q^{85} +(1.06661 + 3.21763i) q^{86} +(4.59418 - 2.65245i) q^{87} +(-10.1516 - 0.884696i) q^{88} +(9.19133 + 5.30662i) q^{89} +(0.726733 - 11.8052i) q^{90} +(-0.589761 - 5.03589i) q^{92} +(-4.29764 - 2.48125i) q^{93} +(-0.381503 + 1.84867i) q^{94} +(-6.86198 - 2.75329i) q^{95} +(-12.4954 + 7.71698i) q^{96} -7.32005 q^{97} -13.4750i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 6 q^{4} + 6 q^{5} + 4 q^{9} + 12 q^{10} + 18 q^{16} + 48 q^{24} - 26 q^{25} + 18 q^{26} - 26 q^{30} - 28 q^{36} - 42 q^{40} - 26 q^{44} - 36 q^{45} - 22 q^{46} + 36 q^{50} - 48 q^{54} + 4 q^{60}+ \cdots - 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.444985 + 1.34238i 0.314652 + 0.949207i
\(3\) −2.24836 + 1.29809i −1.29809 + 0.749454i −0.980075 0.198630i \(-0.936351\pi\)
−0.318019 + 0.948084i \(0.603017\pi\)
\(4\) −1.60398 + 1.19468i −0.801989 + 0.597339i
\(5\) −0.316513 2.21355i −0.141549 0.989931i
\(6\) −2.74302 2.44053i −1.11983 0.996342i
\(7\) 0 0
\(8\) −2.31746 1.62154i −0.819346 0.573300i
\(9\) 1.87009 3.23909i 0.623364 1.07970i
\(10\) 2.83059 1.40988i 0.895111 0.445843i
\(11\) 3.12008 1.80138i 0.940738 0.543136i 0.0505467 0.998722i \(-0.483904\pi\)
0.890192 + 0.455586i \(0.150570\pi\)
\(12\) 2.05552 4.76818i 0.593377 1.37646i
\(13\) −0.818282 −0.226951 −0.113475 0.993541i \(-0.536198\pi\)
−0.113475 + 0.993541i \(0.536198\pi\)
\(14\) 0 0
\(15\) 3.58504 + 4.56601i 0.925652 + 1.17894i
\(16\) 1.14549 3.83247i 0.286371 0.958119i
\(17\) 3.69814 + 6.40537i 0.896931 + 1.55353i 0.831396 + 0.555680i \(0.187542\pi\)
0.0655347 + 0.997850i \(0.479125\pi\)
\(18\) 5.18026 + 1.06903i 1.22100 + 0.251973i
\(19\) 1.65329 2.86358i 0.379291 0.656951i −0.611668 0.791114i \(-0.709501\pi\)
0.990959 + 0.134163i \(0.0428346\pi\)
\(20\) 3.15217 + 3.17236i 0.704846 + 0.709361i
\(21\) 0 0
\(22\) 3.80652 + 3.38675i 0.811553 + 0.722057i
\(23\) −1.26758 + 2.19550i −0.264308 + 0.457794i −0.967382 0.253322i \(-0.918477\pi\)
0.703074 + 0.711116i \(0.251810\pi\)
\(24\) 7.31540 + 0.637523i 1.49325 + 0.130134i
\(25\) −4.79964 + 1.40124i −0.959928 + 0.280248i
\(26\) −0.364123 1.09845i −0.0714104 0.215423i
\(27\) 1.92166i 0.369823i
\(28\) 0 0
\(29\) −2.04334 −0.379439 −0.189720 0.981838i \(-0.560758\pi\)
−0.189720 + 0.981838i \(0.560758\pi\)
\(30\) −4.53404 + 6.84429i −0.827799 + 1.24959i
\(31\) 0.955727 + 1.65537i 0.171654 + 0.297313i 0.938998 0.343922i \(-0.111756\pi\)
−0.767345 + 0.641235i \(0.778422\pi\)
\(32\) 5.65437 0.167714i 0.999560 0.0296479i
\(33\) −4.67671 + 8.10030i −0.814111 + 1.41008i
\(34\) −6.95283 + 7.81461i −1.19240 + 1.34019i
\(35\) 0 0
\(36\) 0.870092 + 7.42959i 0.145015 + 1.23827i
\(37\) 6.20697 + 3.58360i 1.02042 + 0.589140i 0.914226 0.405206i \(-0.132800\pi\)
0.106195 + 0.994345i \(0.466133\pi\)
\(38\) 4.57971 + 0.945096i 0.742927 + 0.153315i
\(39\) 1.83980 1.06221i 0.294603 0.170089i
\(40\) −2.85585 + 5.64306i −0.451550 + 0.892246i
\(41\) 2.65824i 0.415147i −0.978219 0.207573i \(-0.933443\pi\)
0.978219 0.207573i \(-0.0665566\pi\)
\(42\) 0 0
\(43\) 2.39696 0.365533 0.182766 0.983156i \(-0.441495\pi\)
0.182766 + 0.983156i \(0.441495\pi\)
\(44\) −2.85246 + 6.61686i −0.430025 + 0.997529i
\(45\) −7.76182 3.11433i −1.15706 0.464257i
\(46\) −3.51126 0.724604i −0.517707 0.106837i
\(47\) 1.15593 + 0.667376i 0.168610 + 0.0973468i 0.581930 0.813239i \(-0.302298\pi\)
−0.413320 + 0.910586i \(0.635631\pi\)
\(48\) 2.39944 + 10.1037i 0.346330 + 1.45835i
\(49\) 0 0
\(50\) −4.01676 5.81942i −0.568056 0.822990i
\(51\) −16.6295 9.60106i −2.32860 1.34442i
\(52\) 1.31251 0.977584i 0.182012 0.135567i
\(53\) −1.56838 + 0.905503i −0.215433 + 0.124380i −0.603834 0.797110i \(-0.706361\pi\)
0.388401 + 0.921491i \(0.373028\pi\)
\(54\) −2.57960 + 0.855108i −0.351039 + 0.116365i
\(55\) −4.97499 6.33630i −0.670827 0.854386i
\(56\) 0 0
\(57\) 8.58450i 1.13705i
\(58\) −0.909256 2.74295i −0.119391 0.360166i
\(59\) −0.955727 1.65537i −0.124425 0.215510i 0.797083 0.603870i \(-0.206375\pi\)
−0.921508 + 0.388359i \(0.873042\pi\)
\(60\) −11.2052 3.04081i −1.44659 0.392567i
\(61\) 8.46625 + 4.88799i 1.08399 + 0.625843i 0.931970 0.362534i \(-0.118088\pi\)
0.152021 + 0.988377i \(0.451422\pi\)
\(62\) −1.79685 + 2.01956i −0.228200 + 0.256485i
\(63\) 0 0
\(64\) 2.74124 + 7.51569i 0.342655 + 0.939461i
\(65\) 0.258997 + 1.81131i 0.0321246 + 0.224666i
\(66\) −12.9548 2.67342i −1.59462 0.329075i
\(67\) 4.63112 + 8.02134i 0.565782 + 0.979963i 0.996976 + 0.0777041i \(0.0247589\pi\)
−0.431195 + 0.902259i \(0.641908\pi\)
\(68\) −13.5841 5.85597i −1.64731 0.710141i
\(69\) 6.58172i 0.792346i
\(70\) 0 0
\(71\) 1.38422i 0.164277i −0.996621 0.0821385i \(-0.973825\pi\)
0.996621 0.0821385i \(-0.0261750\pi\)
\(72\) −9.58617 + 4.47405i −1.12974 + 0.527272i
\(73\) −3.69814 6.40537i −0.432835 0.749692i 0.564281 0.825583i \(-0.309153\pi\)
−0.997116 + 0.0758908i \(0.975820\pi\)
\(74\) −2.04855 + 9.92677i −0.238139 + 1.15396i
\(75\) 8.97240 9.38087i 1.03604 1.08321i
\(76\) 0.769222 + 6.56827i 0.0882358 + 0.753433i
\(77\) 0 0
\(78\) 2.24457 + 1.99704i 0.254147 + 0.226121i
\(79\) 6.70979 + 3.87390i 0.754910 + 0.435848i 0.827465 0.561517i \(-0.189782\pi\)
−0.0725552 + 0.997364i \(0.523115\pi\)
\(80\) −8.84595 1.32257i −0.989007 0.147867i
\(81\) 3.11579 + 5.39670i 0.346199 + 0.599634i
\(82\) 3.56837 1.18287i 0.394060 0.130627i
\(83\) 10.4973i 1.15223i 0.817370 + 0.576113i \(0.195431\pi\)
−0.817370 + 0.576113i \(0.804569\pi\)
\(84\) 0 0
\(85\) 13.0081 10.2134i 1.41093 1.10780i
\(86\) 1.06661 + 3.21763i 0.115015 + 0.346966i
\(87\) 4.59418 2.65245i 0.492547 0.284372i
\(88\) −10.1516 0.884696i −1.08217 0.0943090i
\(89\) 9.19133 + 5.30662i 0.974279 + 0.562500i 0.900538 0.434777i \(-0.143173\pi\)
0.0737410 + 0.997277i \(0.476506\pi\)
\(90\) 0.726733 11.8052i 0.0766044 1.24437i
\(91\) 0 0
\(92\) −0.589761 5.03589i −0.0614868 0.525027i
\(93\) −4.29764 2.48125i −0.445645 0.257293i
\(94\) −0.381503 + 1.84867i −0.0393490 + 0.190676i
\(95\) −6.86198 2.75329i −0.704025 0.282481i
\(96\) −12.4954 + 7.71698i −1.27530 + 0.787611i
\(97\) −7.32005 −0.743239 −0.371619 0.928385i \(-0.621197\pi\)
−0.371619 + 0.928385i \(0.621197\pi\)
\(98\) 0 0
\(99\) 13.4750i 1.35428i
\(100\) 6.02448 7.98158i 0.602448 0.798158i
\(101\) 5.50608 3.17894i 0.547875 0.316316i −0.200389 0.979716i \(-0.564221\pi\)
0.748265 + 0.663400i \(0.230887\pi\)
\(102\) 5.48841 26.5955i 0.543433 2.63335i
\(103\) 0.885144 + 0.511038i 0.0872158 + 0.0503541i 0.542974 0.839750i \(-0.317298\pi\)
−0.455758 + 0.890104i \(0.650632\pi\)
\(104\) 1.89634 + 1.32687i 0.185951 + 0.130111i
\(105\) 0 0
\(106\) −1.91343 1.70243i −0.185849 0.165354i
\(107\) 3.62578 6.28003i 0.350517 0.607114i −0.635823 0.771835i \(-0.719339\pi\)
0.986340 + 0.164721i \(0.0526724\pi\)
\(108\) −2.29576 3.08229i −0.220910 0.296594i
\(109\) 3.98588 + 6.90375i 0.381778 + 0.661259i 0.991316 0.131498i \(-0.0419786\pi\)
−0.609538 + 0.792756i \(0.708645\pi\)
\(110\) 6.29193 9.49789i 0.599912 0.905588i
\(111\) −18.6074 −1.76613
\(112\) 0 0
\(113\) 7.61610i 0.716462i 0.933633 + 0.358231i \(0.116620\pi\)
−0.933633 + 0.358231i \(0.883380\pi\)
\(114\) −11.5237 + 3.81997i −1.07929 + 0.357773i
\(115\) 5.26107 + 2.11094i 0.490597 + 0.196846i
\(116\) 3.27747 2.44114i 0.304306 0.226654i
\(117\) −1.53026 + 2.65049i −0.141473 + 0.245038i
\(118\) 1.79685 2.01956i 0.165414 0.185916i
\(119\) 0 0
\(120\) −0.904229 16.3948i −0.0825444 1.49663i
\(121\) 0.989917 1.71459i 0.0899925 0.155872i
\(122\) −2.79420 + 13.5400i −0.252975 + 1.22586i
\(123\) 3.45064 + 5.97668i 0.311134 + 0.538899i
\(124\) −3.51060 1.51339i −0.315261 0.135906i
\(125\) 4.62086 + 10.1807i 0.413303 + 0.910594i
\(126\) 0 0
\(127\) 8.78136 0.779220 0.389610 0.920980i \(-0.372610\pi\)
0.389610 + 0.920980i \(0.372610\pi\)
\(128\) −8.86911 + 7.02416i −0.783926 + 0.620854i
\(129\) −5.38923 + 3.11147i −0.474495 + 0.273950i
\(130\) −2.31622 + 1.15368i −0.203146 + 0.101184i
\(131\) −6.69467 + 11.5955i −0.584916 + 1.01310i 0.409970 + 0.912099i \(0.365539\pi\)
−0.994886 + 0.101005i \(0.967794\pi\)
\(132\) −2.17592 18.5799i −0.189389 1.61717i
\(133\) 0 0
\(134\) −8.70692 + 9.78611i −0.752164 + 0.845391i
\(135\) 4.25369 0.608229i 0.366099 0.0523481i
\(136\) 1.81624 20.8409i 0.155741 1.78709i
\(137\) −4.52425 + 2.61208i −0.386533 + 0.223165i −0.680657 0.732602i \(-0.738306\pi\)
0.294124 + 0.955767i \(0.404972\pi\)
\(138\) 8.83519 2.92877i 0.752101 0.249313i
\(139\) 21.9442 1.86128 0.930641 0.365933i \(-0.119250\pi\)
0.930641 + 0.365933i \(0.119250\pi\)
\(140\) 0 0
\(141\) −3.46527 −0.291828
\(142\) 1.85816 0.615958i 0.155933 0.0516901i
\(143\) −2.55310 + 1.47403i −0.213501 + 0.123265i
\(144\) −10.2716 10.8774i −0.855965 0.906451i
\(145\) 0.646745 + 4.52305i 0.0537092 + 0.375619i
\(146\) 6.95283 7.81461i 0.575421 0.646742i
\(147\) 0 0
\(148\) −14.2371 + 1.66733i −1.17028 + 0.137054i
\(149\) 11.9749 20.7411i 0.981019 1.69917i 0.322575 0.946544i \(-0.395452\pi\)
0.658444 0.752630i \(-0.271215\pi\)
\(150\) 16.5853 + 7.87004i 1.35418 + 0.642586i
\(151\) −6.06876 + 3.50380i −0.493869 + 0.285135i −0.726178 0.687507i \(-0.758705\pi\)
0.232309 + 0.972642i \(0.425372\pi\)
\(152\) −8.47484 + 3.95537i −0.687400 + 0.320823i
\(153\) 27.6635 2.23646
\(154\) 0 0
\(155\) 3.36174 2.63950i 0.270022 0.212010i
\(156\) −1.68200 + 3.90172i −0.134667 + 0.312388i
\(157\) 3.21277 + 5.56468i 0.256407 + 0.444110i 0.965277 0.261229i \(-0.0841279\pi\)
−0.708870 + 0.705340i \(0.750795\pi\)
\(158\) −2.21450 + 10.7309i −0.176176 + 0.853706i
\(159\) 2.35085 4.07180i 0.186435 0.322915i
\(160\) −2.16092 12.4632i −0.170836 0.985299i
\(161\) 0 0
\(162\) −5.85796 + 6.58403i −0.460245 + 0.517290i
\(163\) 9.23950 16.0033i 0.723693 1.25347i −0.235816 0.971798i \(-0.575776\pi\)
0.959510 0.281676i \(-0.0908903\pi\)
\(164\) 3.17574 + 4.26375i 0.247983 + 0.332943i
\(165\) 19.4107 + 7.78830i 1.51112 + 0.606318i
\(166\) −14.0913 + 4.67113i −1.09370 + 0.362550i
\(167\) 1.82894i 0.141527i 0.997493 + 0.0707637i \(0.0225436\pi\)
−0.997493 + 0.0707637i \(0.977456\pi\)
\(168\) 0 0
\(169\) −12.3304 −0.948493
\(170\) 19.4987 + 12.9170i 1.49548 + 0.990692i
\(171\) −6.18361 10.7103i −0.472873 0.819039i
\(172\) −3.84466 + 2.86359i −0.293153 + 0.218347i
\(173\) 7.62476 13.2065i 0.579700 1.00407i −0.415814 0.909450i \(-0.636503\pi\)
0.995514 0.0946193i \(-0.0301634\pi\)
\(174\) 5.60494 + 4.98684i 0.424909 + 0.378051i
\(175\) 0 0
\(176\) −3.32973 14.0211i −0.250988 1.05688i
\(177\) 4.29764 + 2.48125i 0.323031 + 0.186502i
\(178\) −3.03350 + 14.6996i −0.227371 + 1.10178i
\(179\) 10.8572 6.26844i 0.811509 0.468525i −0.0359707 0.999353i \(-0.511452\pi\)
0.847480 + 0.530828i \(0.178119\pi\)
\(180\) 16.1704 4.27756i 1.20527 0.318830i
\(181\) 8.01839i 0.596002i 0.954566 + 0.298001i \(0.0963199\pi\)
−0.954566 + 0.298001i \(0.903680\pi\)
\(182\) 0 0
\(183\) −25.3803 −1.87616
\(184\) 6.49765 3.03258i 0.479013 0.223564i
\(185\) 5.96790 14.8737i 0.438769 1.09354i
\(186\) 1.41839 6.87319i 0.104002 0.503967i
\(187\) 23.0770 + 13.3235i 1.68755 + 0.974310i
\(188\) −2.65139 + 0.310508i −0.193372 + 0.0226461i
\(189\) 0 0
\(190\) 0.642483 10.4366i 0.0466106 0.757148i
\(191\) −5.85379 3.37969i −0.423565 0.244546i 0.273036 0.962004i \(-0.411972\pi\)
−0.696602 + 0.717458i \(0.745305\pi\)
\(192\) −15.9194 13.3396i −1.14888 0.962704i
\(193\) 2.04384 1.18001i 0.147119 0.0849392i −0.424634 0.905365i \(-0.639597\pi\)
0.571753 + 0.820426i \(0.306264\pi\)
\(194\) −3.25731 9.82631i −0.233861 0.705488i
\(195\) −2.93357 3.73628i −0.210077 0.267561i
\(196\) 0 0
\(197\) 20.3205i 1.44777i −0.689918 0.723887i \(-0.742353\pi\)
0.689918 0.723887i \(-0.257647\pi\)
\(198\) 18.0885 5.99615i 1.28550 0.426128i
\(199\) 5.72909 + 9.92308i 0.406125 + 0.703429i 0.994452 0.105195i \(-0.0335465\pi\)
−0.588327 + 0.808623i \(0.700213\pi\)
\(200\) 13.3951 + 4.53547i 0.947179 + 0.320706i
\(201\) −20.8249 12.0233i −1.46888 0.848056i
\(202\) 6.71746 + 5.97668i 0.472639 + 0.420518i
\(203\) 0 0
\(204\) 38.1436 4.46706i 2.67058 0.312757i
\(205\) −5.88415 + 0.841366i −0.410967 + 0.0587636i
\(206\) −0.292133 + 1.41560i −0.0203538 + 0.0986298i
\(207\) 4.74097 + 8.21159i 0.329520 + 0.570745i
\(208\) −0.937331 + 3.13605i −0.0649922 + 0.217446i
\(209\) 11.9128i 0.824026i
\(210\) 0 0
\(211\) 22.0647i 1.51900i 0.650510 + 0.759498i \(0.274555\pi\)
−0.650510 + 0.759498i \(0.725445\pi\)
\(212\) 1.43386 3.32611i 0.0984776 0.228438i
\(213\) 1.79685 + 3.11224i 0.123118 + 0.213247i
\(214\) 10.0436 + 2.07266i 0.686568 + 0.141684i
\(215\) −0.758668 5.30579i −0.0517408 0.361852i
\(216\) 3.11603 4.45336i 0.212019 0.303013i
\(217\) 0 0
\(218\) −7.49381 + 8.42263i −0.507545 + 0.570453i
\(219\) 16.6295 + 9.60106i 1.12372 + 0.648780i
\(220\) 15.5496 + 4.21976i 1.04835 + 0.284496i
\(221\) −3.02612 5.24140i −0.203559 0.352575i
\(222\) −8.28000 24.9782i −0.555717 1.67643i
\(223\) 23.5776i 1.57887i −0.613833 0.789436i \(-0.710373\pi\)
0.613833 0.789436i \(-0.289627\pi\)
\(224\) 0 0
\(225\) −4.43703 + 18.1669i −0.295802 + 1.21113i
\(226\) −10.2237 + 3.38905i −0.680071 + 0.225436i
\(227\) 18.1231 10.4634i 1.20287 0.694478i 0.241678 0.970356i \(-0.422302\pi\)
0.961192 + 0.275879i \(0.0889689\pi\)
\(228\) −10.2557 13.7693i −0.679202 0.911897i
\(229\) −4.48735 2.59077i −0.296533 0.171203i 0.344352 0.938841i \(-0.388099\pi\)
−0.640884 + 0.767638i \(0.721432\pi\)
\(230\) −0.492590 + 8.00170i −0.0324804 + 0.527617i
\(231\) 0 0
\(232\) 4.73536 + 3.31335i 0.310892 + 0.217532i
\(233\) 17.9868 + 10.3847i 1.17836 + 0.680324i 0.955634 0.294558i \(-0.0951724\pi\)
0.222722 + 0.974882i \(0.428506\pi\)
\(234\) −4.23892 0.874768i −0.277107 0.0571854i
\(235\) 1.11141 2.76995i 0.0725002 0.180691i
\(236\) 3.51060 + 1.51339i 0.228520 + 0.0985130i
\(237\) −20.1147 −1.30659
\(238\) 0 0
\(239\) 21.1286i 1.36670i −0.730092 0.683349i \(-0.760523\pi\)
0.730092 0.683349i \(-0.239477\pi\)
\(240\) 21.6057 8.50926i 1.39464 0.549270i
\(241\) −1.57448 + 0.909029i −0.101421 + 0.0585557i −0.549853 0.835262i \(-0.685316\pi\)
0.448431 + 0.893817i \(0.351983\pi\)
\(242\) 2.74213 + 0.565882i 0.176271 + 0.0363763i
\(243\) −19.0035 10.9716i −1.21907 0.703832i
\(244\) −19.4192 + 2.27422i −1.24319 + 0.145592i
\(245\) 0 0
\(246\) −6.48750 + 7.29160i −0.413628 + 0.464896i
\(247\) −1.35286 + 2.34322i −0.0860803 + 0.149095i
\(248\) 0.469379 5.38599i 0.0298056 0.342011i
\(249\) −13.6264 23.6017i −0.863540 1.49570i
\(250\) −11.6102 + 10.7332i −0.734296 + 0.678830i
\(251\) 14.0187 0.884856 0.442428 0.896804i \(-0.354117\pi\)
0.442428 + 0.896804i \(0.354117\pi\)
\(252\) 0 0
\(253\) 9.13352i 0.574220i
\(254\) 3.90757 + 11.7879i 0.245183 + 0.739641i
\(255\) −15.9890 + 39.8492i −1.00127 + 2.49546i
\(256\) −13.3757 8.78009i −0.835983 0.548756i
\(257\) −8.93624 + 15.4780i −0.557427 + 0.965492i 0.440283 + 0.897859i \(0.354878\pi\)
−0.997710 + 0.0676333i \(0.978455\pi\)
\(258\) −6.57491 5.84985i −0.409336 0.364196i
\(259\) 0 0
\(260\) −2.57936 2.59588i −0.159965 0.160990i
\(261\) −3.82124 + 6.61858i −0.236529 + 0.409680i
\(262\) −18.5446 3.82698i −1.14569 0.236432i
\(263\) −10.9482 18.9629i −0.675097 1.16930i −0.976440 0.215787i \(-0.930768\pi\)
0.301343 0.953516i \(-0.402565\pi\)
\(264\) 23.9730 11.1887i 1.47544 0.688615i
\(265\) 2.50079 + 3.18508i 0.153622 + 0.195658i
\(266\) 0 0
\(267\) −27.5539 −1.68627
\(268\) −17.0111 7.33335i −1.03912 0.447955i
\(269\) −2.49661 + 1.44142i −0.152221 + 0.0878847i −0.574176 0.818732i \(-0.694677\pi\)
0.421955 + 0.906617i \(0.361344\pi\)
\(270\) 2.70930 + 5.43942i 0.164883 + 0.331033i
\(271\) −8.47793 + 14.6842i −0.514997 + 0.892002i 0.484851 + 0.874597i \(0.338874\pi\)
−0.999849 + 0.0174049i \(0.994460\pi\)
\(272\) 28.7846 6.83578i 1.74532 0.414480i
\(273\) 0 0
\(274\) −5.51963 4.91094i −0.333453 0.296681i
\(275\) −12.4511 + 13.0179i −0.750829 + 0.785010i
\(276\) 7.86305 + 10.5569i 0.473300 + 0.635453i
\(277\) −23.2541 + 13.4258i −1.39720 + 0.806677i −0.994099 0.108477i \(-0.965403\pi\)
−0.403106 + 0.915153i \(0.632069\pi\)
\(278\) 9.76483 + 29.4575i 0.585656 + 1.76674i
\(279\) 7.14919 0.428011
\(280\) 0 0
\(281\) 24.9497 1.48838 0.744188 0.667971i \(-0.232837\pi\)
0.744188 + 0.667971i \(0.232837\pi\)
\(282\) −1.54199 4.65171i −0.0918242 0.277005i
\(283\) −8.52014 + 4.91910i −0.506470 + 0.292410i −0.731381 0.681969i \(-0.761124\pi\)
0.224912 + 0.974379i \(0.427791\pi\)
\(284\) 1.65370 + 2.22026i 0.0981292 + 0.131748i
\(285\) 19.0023 2.71711i 1.12560 0.160948i
\(286\) −3.11481 2.77132i −0.184183 0.163871i
\(287\) 0 0
\(288\) 10.0309 18.6287i 0.591079 1.09770i
\(289\) −18.8525 + 32.6535i −1.10897 + 1.92079i
\(290\) −5.78387 + 2.88087i −0.339640 + 0.169170i
\(291\) 16.4581 9.50211i 0.964793 0.557024i
\(292\) 13.5841 + 5.85597i 0.794949 + 0.342695i
\(293\) −23.4039 −1.36727 −0.683636 0.729823i \(-0.739602\pi\)
−0.683636 + 0.729823i \(0.739602\pi\)
\(294\) 0 0
\(295\) −3.36174 + 2.63950i −0.195728 + 0.153678i
\(296\) −8.57348 18.3697i −0.498323 1.06772i
\(297\) 3.46163 + 5.99571i 0.200864 + 0.347907i
\(298\) 33.1710 + 6.84537i 1.92155 + 0.396542i
\(299\) 1.03723 1.79654i 0.0599848 0.103897i
\(300\) −3.18439 + 25.7658i −0.183851 + 1.48759i
\(301\) 0 0
\(302\) −7.40395 6.58746i −0.426049 0.379066i
\(303\) −8.25311 + 14.2948i −0.474129 + 0.821215i
\(304\) −9.08079 9.61639i −0.520819 0.551538i
\(305\) 8.14015 20.2876i 0.466104 1.16166i
\(306\) 12.3098 + 37.1349i 0.703705 + 2.12286i
\(307\) 2.18529i 0.124721i −0.998054 0.0623606i \(-0.980137\pi\)
0.998054 0.0623606i \(-0.0198629\pi\)
\(308\) 0 0
\(309\) −2.65350 −0.150952
\(310\) 5.03914 + 3.33821i 0.286204 + 0.189597i
\(311\) −14.4501 25.0282i −0.819388 1.41922i −0.906134 0.422991i \(-0.860980\pi\)
0.0867457 0.996230i \(-0.472353\pi\)
\(312\) −5.98606 0.521673i −0.338894 0.0295339i
\(313\) −3.17652 + 5.50189i −0.179548 + 0.310985i −0.941726 0.336382i \(-0.890797\pi\)
0.762178 + 0.647367i \(0.224130\pi\)
\(314\) −6.04030 + 6.78897i −0.340874 + 0.383124i
\(315\) 0 0
\(316\) −15.3904 + 1.80240i −0.865778 + 0.101393i
\(317\) −16.2839 9.40153i −0.914597 0.528043i −0.0326894 0.999466i \(-0.510407\pi\)
−0.881907 + 0.471423i \(0.843741\pi\)
\(318\) 6.51200 + 1.34386i 0.365175 + 0.0753597i
\(319\) −6.37538 + 3.68083i −0.356953 + 0.206087i
\(320\) 15.7687 8.44670i 0.881499 0.472185i
\(321\) 18.8264i 1.05079i
\(322\) 0 0
\(323\) 24.4564 1.36079
\(324\) −11.4450 4.93382i −0.635832 0.274101i
\(325\) 3.92746 1.14661i 0.217856 0.0636024i
\(326\) 25.5939 + 5.28172i 1.41752 + 0.292527i
\(327\) −17.9234 10.3481i −0.991167 0.572250i
\(328\) −4.31042 + 6.16035i −0.238003 + 0.340149i
\(329\) 0 0
\(330\) −1.81741 + 29.5222i −0.100045 + 1.62514i
\(331\) 11.3353 + 6.54441i 0.623042 + 0.359713i 0.778052 0.628199i \(-0.216208\pi\)
−0.155010 + 0.987913i \(0.549541\pi\)
\(332\) −12.5409 16.8374i −0.688269 0.924071i
\(333\) 23.2152 13.4033i 1.27219 0.734497i
\(334\) −2.45513 + 0.813849i −0.134339 + 0.0445318i
\(335\) 16.2899 12.7901i 0.890010 0.698798i
\(336\) 0 0
\(337\) 11.7319i 0.639079i −0.947573 0.319539i \(-0.896472\pi\)
0.947573 0.319539i \(-0.103528\pi\)
\(338\) −5.48685 16.5521i −0.298445 0.900317i
\(339\) −9.88640 17.1238i −0.536956 0.930035i
\(340\) −8.66297 + 31.9226i −0.469816 + 1.73125i
\(341\) 5.96388 + 3.44325i 0.322962 + 0.186462i
\(342\) 11.6257 13.0667i 0.628648 0.706566i
\(343\) 0 0
\(344\) −5.55485 3.88675i −0.299498 0.209560i
\(345\) −14.5690 + 2.08320i −0.784369 + 0.112156i
\(346\) 21.1210 + 4.35866i 1.13547 + 0.234323i
\(347\) −2.20585 3.82065i −0.118416 0.205103i 0.800724 0.599034i \(-0.204448\pi\)
−0.919140 + 0.393930i \(0.871115\pi\)
\(348\) −4.20013 + 9.74303i −0.225151 + 0.522281i
\(349\) 18.3479i 0.982142i −0.871120 0.491071i \(-0.836606\pi\)
0.871120 0.491071i \(-0.163394\pi\)
\(350\) 0 0
\(351\) 1.57246i 0.0839316i
\(352\) 17.3399 10.7089i 0.924222 0.570788i
\(353\) 5.87406 + 10.1742i 0.312645 + 0.541516i 0.978934 0.204177i \(-0.0654518\pi\)
−0.666289 + 0.745693i \(0.732118\pi\)
\(354\) −1.41839 + 6.87319i −0.0753867 + 0.365306i
\(355\) −3.06405 + 0.438125i −0.162623 + 0.0232533i
\(356\) −21.0824 + 2.46899i −1.11736 + 0.130856i
\(357\) 0 0
\(358\) 13.2459 + 11.7852i 0.700070 + 0.622868i
\(359\) 0.171388 + 0.0989510i 0.00904552 + 0.00522243i 0.504516 0.863402i \(-0.331671\pi\)
−0.495470 + 0.868625i \(0.665004\pi\)
\(360\) 12.9377 + 19.8034i 0.681877 + 1.04373i
\(361\) 4.03326 + 6.98581i 0.212277 + 0.367674i
\(362\) −10.7637 + 3.56806i −0.565730 + 0.187533i
\(363\) 5.14002i 0.269781i
\(364\) 0 0
\(365\) −13.0081 + 10.2134i −0.680876 + 0.534595i
\(366\) −11.2938 34.0700i −0.590338 1.78087i
\(367\) −6.51964 + 3.76412i −0.340323 + 0.196485i −0.660415 0.750901i \(-0.729619\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(368\) 6.96223 + 7.37287i 0.362931 + 0.384337i
\(369\) −8.61028 4.97115i −0.448233 0.258787i
\(370\) 22.6218 + 1.39262i 1.17605 + 0.0723987i
\(371\) 0 0
\(372\) 9.85761 1.15444i 0.511093 0.0598550i
\(373\) −26.9674 15.5696i −1.39632 0.806164i −0.402312 0.915503i \(-0.631793\pi\)
−0.994005 + 0.109339i \(0.965127\pi\)
\(374\) −7.61632 + 36.9068i −0.393830 + 1.90841i
\(375\) −23.6049 16.8917i −1.21895 0.872284i
\(376\) −1.59665 3.42100i −0.0823408 0.176425i
\(377\) 1.67203 0.0861140
\(378\) 0 0
\(379\) 16.3396i 0.839307i 0.907684 + 0.419654i \(0.137848\pi\)
−0.907684 + 0.419654i \(0.862152\pi\)
\(380\) 14.2958 3.78166i 0.733357 0.193995i
\(381\) −19.7437 + 11.3990i −1.01150 + 0.583990i
\(382\) 1.93198 9.36193i 0.0988489 0.478998i
\(383\) 7.66318 + 4.42434i 0.391570 + 0.226073i 0.682840 0.730568i \(-0.260744\pi\)
−0.291270 + 0.956641i \(0.594078\pi\)
\(384\) 10.8230 27.3058i 0.552307 1.39344i
\(385\) 0 0
\(386\) 2.49351 + 2.21853i 0.126916 + 0.112920i
\(387\) 4.48253 7.76397i 0.227860 0.394665i
\(388\) 11.7412 8.74511i 0.596069 0.443966i
\(389\) −4.67264 8.09325i −0.236912 0.410344i 0.722915 0.690937i \(-0.242802\pi\)
−0.959827 + 0.280594i \(0.909469\pi\)
\(390\) 3.71013 5.60056i 0.187870 0.283595i
\(391\) −18.7507 −0.948263
\(392\) 0 0
\(393\) 34.7612i 1.75347i
\(394\) 27.2779 9.04231i 1.37424 0.455545i
\(395\) 6.45134 16.0786i 0.324602 0.809003i
\(396\) 16.0983 + 21.6135i 0.808968 + 1.08612i
\(397\) 10.1513 17.5826i 0.509480 0.882446i −0.490459 0.871464i \(-0.663171\pi\)
0.999940 0.0109817i \(-0.00349564\pi\)
\(398\) −10.7712 + 12.1063i −0.539912 + 0.606831i
\(399\) 0 0
\(400\) −0.127710 + 19.9996i −0.00638551 + 0.999980i
\(401\) 5.54334 9.60135i 0.276821 0.479469i −0.693772 0.720195i \(-0.744052\pi\)
0.970593 + 0.240726i \(0.0773857\pi\)
\(402\) 6.87304 33.3051i 0.342796 1.66111i
\(403\) −0.782054 1.35456i −0.0389569 0.0674753i
\(404\) −5.03382 + 11.6769i −0.250442 + 0.580949i
\(405\) 10.9597 8.60509i 0.544592 0.427590i
\(406\) 0 0
\(407\) 25.8216 1.27993
\(408\) 22.9698 + 49.2155i 1.13717 + 2.43653i
\(409\) −5.09812 + 2.94340i −0.252086 + 0.145542i −0.620719 0.784033i \(-0.713159\pi\)
0.368633 + 0.929575i \(0.379826\pi\)
\(410\) −3.74779 7.52438i −0.185090 0.371602i
\(411\) 6.78145 11.7458i 0.334504 0.579378i
\(412\) −2.03028 + 0.237769i −0.100025 + 0.0117140i
\(413\) 0 0
\(414\) −8.91343 + 10.0182i −0.438071 + 0.492369i
\(415\) 23.2363 3.32252i 1.14062 0.163096i
\(416\) −4.62687 + 0.137237i −0.226851 + 0.00672860i
\(417\) −49.3385 + 28.4856i −2.41612 + 1.39495i
\(418\) 15.9915 5.30101i 0.782171 0.259281i
\(419\) −16.7262 −0.817126 −0.408563 0.912730i \(-0.633970\pi\)
−0.408563 + 0.912730i \(0.633970\pi\)
\(420\) 0 0
\(421\) −1.18823 −0.0579109 −0.0289555 0.999581i \(-0.509218\pi\)
−0.0289555 + 0.999581i \(0.509218\pi\)
\(422\) −29.6192 + 9.81845i −1.44184 + 0.477955i
\(423\) 4.32339 2.49611i 0.210210 0.121365i
\(424\) 5.10296 + 0.444713i 0.247822 + 0.0215972i
\(425\) −26.7252 25.5615i −1.29636 1.23991i
\(426\) −3.37824 + 3.79696i −0.163676 + 0.183963i
\(427\) 0 0
\(428\) 1.68696 + 14.4047i 0.0815421 + 0.696276i
\(429\) 3.82687 6.62833i 0.184763 0.320019i
\(430\) 6.78480 3.37942i 0.327192 0.162970i
\(431\) −20.8669 + 12.0475i −1.00512 + 0.580307i −0.909760 0.415135i \(-0.863734\pi\)
−0.0953622 + 0.995443i \(0.530401\pi\)
\(432\) 7.36470 + 2.20123i 0.354334 + 0.105907i
\(433\) −14.9805 −0.719916 −0.359958 0.932968i \(-0.617209\pi\)
−0.359958 + 0.932968i \(0.617209\pi\)
\(434\) 0 0
\(435\) −7.32546 9.32992i −0.351229 0.447335i
\(436\) −14.6410 6.31161i −0.701178 0.302271i
\(437\) 4.19134 + 7.25962i 0.200499 + 0.347275i
\(438\) −5.48841 + 26.5955i −0.262246 + 1.27078i
\(439\) −8.66266 + 15.0042i −0.413446 + 0.716110i −0.995264 0.0972091i \(-0.969008\pi\)
0.581818 + 0.813319i \(0.302342\pi\)
\(440\) 1.25481 + 22.7512i 0.0598206 + 1.08462i
\(441\) 0 0
\(442\) 5.68938 6.39456i 0.270616 0.304158i
\(443\) −12.6162 + 21.8520i −0.599416 + 1.03822i 0.393492 + 0.919328i \(0.371267\pi\)
−0.992907 + 0.118890i \(0.962066\pi\)
\(444\) 29.8458 22.2298i 1.41642 1.05498i
\(445\) 8.83730 22.0251i 0.418928 1.04409i
\(446\) 31.6501 10.4917i 1.49868 0.496795i
\(447\) 62.1779i 2.94091i
\(448\) 0 0
\(449\) 7.06145 0.333251 0.166625 0.986020i \(-0.446713\pi\)
0.166625 + 0.986020i \(0.446713\pi\)
\(450\) −26.3614 + 2.12782i −1.24269 + 0.100307i
\(451\) −4.78848 8.29390i −0.225481 0.390544i
\(452\) −9.09879 12.2160i −0.427971 0.574594i
\(453\) 9.09653 15.7556i 0.427392 0.740265i
\(454\) 22.1103 + 19.6720i 1.03769 + 0.923255i
\(455\) 0 0
\(456\) 13.9201 19.8942i 0.651867 0.931633i
\(457\) 16.3519 + 9.44078i 0.764910 + 0.441621i 0.831056 0.556189i \(-0.187737\pi\)
−0.0661459 + 0.997810i \(0.521070\pi\)
\(458\) 1.48100 7.17660i 0.0692028 0.335340i
\(459\) −12.3089 + 7.10656i −0.574531 + 0.331706i
\(460\) −10.9605 + 2.89939i −0.511038 + 0.135185i
\(461\) 34.6087i 1.61189i −0.591992 0.805944i \(-0.701658\pi\)
0.591992 0.805944i \(-0.298342\pi\)
\(462\) 0 0
\(463\) 15.0235 0.698202 0.349101 0.937085i \(-0.386487\pi\)
0.349101 + 0.937085i \(0.386487\pi\)
\(464\) −2.34062 + 7.83106i −0.108661 + 0.363548i
\(465\) −4.13211 + 10.2984i −0.191622 + 0.477577i
\(466\) −5.93636 + 28.7662i −0.274997 + 1.33257i
\(467\) −22.0309 12.7195i −1.01947 0.588590i −0.105518 0.994417i \(-0.533650\pi\)
−0.913950 + 0.405828i \(0.866983\pi\)
\(468\) −0.711981 6.07950i −0.0329113 0.281025i
\(469\) 0 0
\(470\) 4.21288 + 0.259348i 0.194326 + 0.0119628i
\(471\) −14.4470 8.34096i −0.665681 0.384331i
\(472\) −0.469379 + 5.38599i −0.0216049 + 0.247910i
\(473\) 7.47869 4.31782i 0.343871 0.198534i
\(474\) −8.95074 27.0016i −0.411121 1.24023i
\(475\) −3.92264 + 16.0608i −0.179983 + 0.736921i
\(476\) 0 0
\(477\) 6.77350i 0.310137i
\(478\) 28.3627 9.40192i 1.29728 0.430034i
\(479\) 10.2844 + 17.8131i 0.469905 + 0.813900i 0.999408 0.0344084i \(-0.0109547\pi\)
−0.529502 + 0.848308i \(0.677621\pi\)
\(480\) 21.0369 + 25.2166i 0.960198 + 1.15098i
\(481\) −5.07906 2.93239i −0.231585 0.133706i
\(482\) −1.92089 1.70906i −0.0874939 0.0778453i
\(483\) 0 0
\(484\) 0.460576 + 3.93279i 0.0209353 + 0.178763i
\(485\) 2.31689 + 16.2033i 0.105205 + 0.735755i
\(486\) 6.27189 30.3921i 0.284499 1.37861i
\(487\) 14.5295 + 25.1658i 0.658394 + 1.14037i 0.981031 + 0.193849i \(0.0620971\pi\)
−0.322638 + 0.946522i \(0.604570\pi\)
\(488\) −11.6941 25.0560i −0.529369 1.13423i
\(489\) 47.9749i 2.16950i
\(490\) 0 0
\(491\) 9.51815i 0.429548i 0.976664 + 0.214774i \(0.0689015\pi\)
−0.976664 + 0.214774i \(0.931098\pi\)
\(492\) −12.6750 5.46405i −0.571431 0.246339i
\(493\) −7.55657 13.0884i −0.340331 0.589470i
\(494\) −3.74750 0.773356i −0.168608 0.0347949i
\(495\) −29.8276 + 4.26500i −1.34065 + 0.191698i
\(496\) 7.43893 1.76660i 0.334018 0.0793226i
\(497\) 0 0
\(498\) 25.6189 28.7943i 1.14801 1.29030i
\(499\) −17.4855 10.0953i −0.782760 0.451927i 0.0546477 0.998506i \(-0.482596\pi\)
−0.837407 + 0.546579i \(0.815930\pi\)
\(500\) −19.5745 10.8092i −0.875397 0.483404i
\(501\) −2.37413 4.11211i −0.106068 0.183716i
\(502\) 6.23813 + 18.8185i 0.278421 + 0.839911i
\(503\) 13.3134i 0.593616i −0.954937 0.296808i \(-0.904078\pi\)
0.954937 0.296808i \(-0.0959221\pi\)
\(504\) 0 0
\(505\) −8.77949 11.1818i −0.390682 0.497585i
\(506\) −12.2607 + 4.06428i −0.545053 + 0.180679i
\(507\) 27.7233 16.0060i 1.23123 0.710853i
\(508\) −14.0851 + 10.4909i −0.624926 + 0.465459i
\(509\) −12.4294 7.17613i −0.550925 0.318077i 0.198570 0.980087i \(-0.436370\pi\)
−0.749495 + 0.662010i \(0.769704\pi\)
\(510\) −60.6077 3.73105i −2.68376 0.165214i
\(511\) 0 0
\(512\) 5.83424 21.8623i 0.257839 0.966188i
\(513\) 5.50282 + 3.17706i 0.242956 + 0.140270i
\(514\) −24.7539 5.10836i −1.09185 0.225320i
\(515\) 0.851050 2.12106i 0.0375018 0.0934652i
\(516\) 4.92699 11.4291i 0.216899 0.503140i
\(517\) 4.80879 0.211490
\(518\) 0 0
\(519\) 39.5906i 1.73783i
\(520\) 2.33689 4.61762i 0.102479 0.202496i
\(521\) 31.9571 18.4505i 1.40007 0.808330i 0.405669 0.914020i \(-0.367039\pi\)
0.994399 + 0.105690i \(0.0337053\pi\)
\(522\) −10.5851 2.18439i −0.463295 0.0956083i
\(523\) 15.7185 + 9.07509i 0.687323 + 0.396826i 0.802608 0.596506i \(-0.203445\pi\)
−0.115285 + 0.993332i \(0.536778\pi\)
\(524\) −3.11481 26.5969i −0.136071 1.16189i
\(525\) 0 0
\(526\) 20.5837 23.1349i 0.897490 1.00873i
\(527\) −7.06883 + 12.2436i −0.307923 + 0.533338i
\(528\) 25.6871 + 27.2022i 1.11789 + 1.18382i
\(529\) 8.28651 + 14.3526i 0.360283 + 0.624028i
\(530\) −3.16278 + 4.77433i −0.137383 + 0.207384i
\(531\) −7.14919 −0.310248
\(532\) 0 0
\(533\) 2.17519i 0.0942178i
\(534\) −12.2611 36.9879i −0.530589 1.60062i
\(535\) −15.0488 6.03814i −0.650616 0.261052i
\(536\) 2.27445 26.0987i 0.0982412 1.12729i
\(537\) −16.2740 + 28.1874i −0.702276 + 1.21638i
\(538\) −3.04588 2.70999i −0.131317 0.116836i
\(539\) 0 0
\(540\) −6.09618 + 6.05738i −0.262338 + 0.260668i
\(541\) 9.37629 16.2402i 0.403118 0.698221i −0.590982 0.806685i \(-0.701260\pi\)
0.994100 + 0.108463i \(0.0345930\pi\)
\(542\) −23.4843 4.84637i −1.00874 0.208169i
\(543\) −10.4086 18.0283i −0.446677 0.773667i
\(544\) 21.9849 + 35.5981i 0.942596 + 1.52626i
\(545\) 14.0202 11.0081i 0.600561 0.471535i
\(546\) 0 0
\(547\) −34.1580 −1.46049 −0.730246 0.683185i \(-0.760594\pi\)
−0.730246 + 0.683185i \(0.760594\pi\)
\(548\) 4.13621 9.59475i 0.176690 0.409867i
\(549\) 31.6653 18.2820i 1.35144 0.780256i
\(550\) −23.0156 10.9213i −0.981387 0.465687i
\(551\) −3.37824 + 5.85128i −0.143918 + 0.249273i
\(552\) −10.6725 + 15.2529i −0.454252 + 0.649206i
\(553\) 0 0
\(554\) −28.3702 25.2416i −1.20534 1.07241i
\(555\) 5.88948 + 41.1884i 0.249994 + 1.74835i
\(556\) −35.1980 + 26.2163i −1.49273 + 1.11182i
\(557\) 35.0192 20.2183i 1.48381 0.856679i 0.483980 0.875079i \(-0.339191\pi\)
0.999831 + 0.0184005i \(0.00585738\pi\)
\(558\) 3.18128 + 9.59694i 0.134674 + 0.406271i
\(559\) −1.96139 −0.0829579
\(560\) 0 0
\(561\) −69.1805 −2.92080
\(562\) 11.1022 + 33.4920i 0.468320 + 1.41278i
\(563\) −0.276201 + 0.159465i −0.0116405 + 0.00672065i −0.505809 0.862646i \(-0.668806\pi\)
0.494168 + 0.869366i \(0.335473\pi\)
\(564\) 5.55821 4.13988i 0.234043 0.174320i
\(565\) 16.8586 2.41059i 0.709248 0.101414i
\(566\) −10.3946 9.24835i −0.436920 0.388737i
\(567\) 0 0
\(568\) −2.24457 + 3.20788i −0.0941800 + 0.134600i
\(569\) −15.3058 + 26.5104i −0.641651 + 1.11137i 0.343413 + 0.939184i \(0.388417\pi\)
−0.985064 + 0.172188i \(0.944916\pi\)
\(570\) 12.1031 + 24.2992i 0.506943 + 1.01778i
\(571\) −7.35081 + 4.24399i −0.307622 + 0.177606i −0.645862 0.763454i \(-0.723502\pi\)
0.338240 + 0.941060i \(0.390168\pi\)
\(572\) 2.33412 5.41446i 0.0975945 0.226390i
\(573\) 17.5486 0.733103
\(574\) 0 0
\(575\) 3.00748 12.3138i 0.125421 0.513521i
\(576\) 29.4704 + 5.17589i 1.22793 + 0.215662i
\(577\) 1.68251 + 2.91419i 0.0700438 + 0.121319i 0.898920 0.438112i \(-0.144353\pi\)
−0.828876 + 0.559432i \(0.811019\pi\)
\(578\) −52.2225 10.7769i −2.17217 0.448262i
\(579\) −3.06354 + 5.30620i −0.127316 + 0.220518i
\(580\) −6.44095 6.48221i −0.267446 0.269159i
\(581\) 0 0
\(582\) 20.0791 + 17.8648i 0.832305 + 0.740520i
\(583\) −3.26230 + 5.65048i −0.135111 + 0.234019i
\(584\) −1.81624 + 20.8409i −0.0751565 + 0.862401i
\(585\) 6.35136 + 2.54840i 0.262596 + 0.105364i
\(586\) −10.4144 31.4170i −0.430215 1.29782i
\(587\) 2.02359i 0.0835225i −0.999128 0.0417613i \(-0.986703\pi\)
0.999128 0.0417613i \(-0.0132969\pi\)
\(588\) 0 0
\(589\) 6.32038 0.260427
\(590\) −5.03914 3.33821i −0.207458 0.137432i
\(591\) 26.3779 + 45.6878i 1.08504 + 1.87935i
\(592\) 20.8440 19.6831i 0.856685 0.808971i
\(593\) 13.4129 23.2318i 0.550802 0.954016i −0.447415 0.894326i \(-0.647655\pi\)
0.998217 0.0596901i \(-0.0190113\pi\)
\(594\) −6.50817 + 7.31483i −0.267033 + 0.300131i
\(595\) 0 0
\(596\) 5.57151 + 47.5743i 0.228218 + 1.94872i
\(597\) −25.7622 14.8738i −1.05438 0.608744i
\(598\) 2.87320 + 0.592930i 0.117494 + 0.0242467i
\(599\) −32.0964 + 18.5309i −1.31143 + 0.757152i −0.982332 0.187146i \(-0.940076\pi\)
−0.329093 + 0.944297i \(0.606743\pi\)
\(600\) −36.0046 + 7.19073i −1.46988 + 0.293560i
\(601\) 1.27911i 0.0521761i −0.999660 0.0260880i \(-0.991695\pi\)
0.999660 0.0260880i \(-0.00830503\pi\)
\(602\) 0 0
\(603\) 34.6425 1.41075
\(604\) 5.54824 12.8702i 0.225755 0.523683i
\(605\) −4.10865 1.64855i −0.167040 0.0670229i
\(606\) −22.8616 4.71785i −0.928689 0.191650i
\(607\) 19.5800 + 11.3045i 0.794727 + 0.458836i 0.841624 0.540064i \(-0.181600\pi\)
−0.0468970 + 0.998900i \(0.514933\pi\)
\(608\) 8.86805 16.4690i 0.359647 0.667907i
\(609\) 0 0
\(610\) 30.8560 + 1.89951i 1.24932 + 0.0769091i
\(611\) −0.945877 0.546102i −0.0382661 0.0220929i
\(612\) −44.3716 + 33.0489i −1.79361 + 1.33592i
\(613\) 2.61492 1.50973i 0.105616 0.0609773i −0.446262 0.894903i \(-0.647245\pi\)
0.551877 + 0.833925i \(0.313912\pi\)
\(614\) 2.93350 0.972422i 0.118386 0.0392437i
\(615\) 12.1375 9.52987i 0.489432 0.384281i
\(616\) 0 0
\(617\) 14.3344i 0.577081i 0.957468 + 0.288540i \(0.0931700\pi\)
−0.957468 + 0.288540i \(0.906830\pi\)
\(618\) −1.18077 3.56201i −0.0474974 0.143285i
\(619\) 10.8987 + 18.8771i 0.438055 + 0.758733i 0.997539 0.0701078i \(-0.0223343\pi\)
−0.559485 + 0.828841i \(0.689001\pi\)
\(620\) −2.23881 + 8.24990i −0.0899127 + 0.331324i
\(621\) −4.21901 2.43584i −0.169303 0.0977471i
\(622\) 27.1674 30.5347i 1.08931 1.22433i
\(623\) 0 0
\(624\) −1.96342 8.26771i −0.0785997 0.330973i
\(625\) 21.0731 13.4509i 0.842923 0.538035i
\(626\) −8.79915 1.81584i −0.351685 0.0725757i
\(627\) 15.4639 + 26.7843i 0.617570 + 1.06966i
\(628\) −11.8012 5.08740i −0.470920 0.203009i
\(629\) 53.0106i 2.11367i
\(630\) 0 0
\(631\) 15.1512i 0.603160i −0.953441 0.301580i \(-0.902486\pi\)
0.953441 0.301580i \(-0.0975140\pi\)
\(632\) −9.26800 19.8578i −0.368661 0.789899i
\(633\) −28.6420 49.6094i −1.13842 1.97180i
\(634\) 5.37434 26.0428i 0.213442 1.03429i
\(635\) −2.77942 19.4380i −0.110298 0.771374i
\(636\) 1.09378 + 9.33959i 0.0433710 + 0.370339i
\(637\) 0 0
\(638\) −7.77803 6.92029i −0.307935 0.273977i
\(639\) −4.48363 2.58863i −0.177370 0.102404i
\(640\) 18.3555 + 17.4090i 0.725567 + 0.688152i
\(641\) −14.9960 25.9739i −0.592308 1.02591i −0.993921 0.110098i \(-0.964884\pi\)
0.401613 0.915809i \(-0.368450\pi\)
\(642\) −25.2722 + 8.37746i −0.997415 + 0.330632i
\(643\) 1.63196i 0.0643583i −0.999482 0.0321792i \(-0.989755\pi\)
0.999482 0.0321792i \(-0.0102447\pi\)
\(644\) 0 0
\(645\) 8.59318 + 10.9445i 0.338356 + 0.430940i
\(646\) 10.8827 + 32.8298i 0.428175 + 1.29167i
\(647\) 28.3765 16.3832i 1.11560 0.644090i 0.175323 0.984511i \(-0.443903\pi\)
0.940273 + 0.340421i \(0.110570\pi\)
\(648\) 1.53023 17.5590i 0.0601132 0.689783i
\(649\) −5.96388 3.44325i −0.234103 0.135159i
\(650\) 3.28684 + 4.76193i 0.128921 + 0.186778i
\(651\) 0 0
\(652\) 4.29883 + 36.7071i 0.168355 + 1.43756i
\(653\) −19.5109 11.2646i −0.763521 0.440819i 0.0670377 0.997750i \(-0.478645\pi\)
−0.830558 + 0.556932i \(0.811979\pi\)
\(654\) 5.91544 28.6648i 0.231312 1.12088i
\(655\) 27.7862 + 11.1489i 1.08570 + 0.435623i
\(656\) −10.1876 3.04497i −0.397760 0.118886i
\(657\) −27.6635 −1.07925
\(658\) 0 0
\(659\) 19.2525i 0.749969i 0.927031 + 0.374985i \(0.122352\pi\)
−0.927031 + 0.374985i \(0.877648\pi\)
\(660\) −40.4388 + 10.6973i −1.57408 + 0.416391i
\(661\) −30.1079 + 17.3828i −1.17106 + 0.676113i −0.953930 0.300030i \(-0.903003\pi\)
−0.217132 + 0.976142i \(0.569670\pi\)
\(662\) −3.74108 + 18.1284i −0.145401 + 0.704580i
\(663\) 13.6077 + 7.85638i 0.528477 + 0.305117i
\(664\) 17.0217 24.3270i 0.660570 0.944071i
\(665\) 0 0
\(666\) 28.3228 + 25.1994i 1.09749 + 0.976458i
\(667\) 2.59009 4.48617i 0.100289 0.173705i
\(668\) −2.18499 2.93357i −0.0845398 0.113503i
\(669\) 30.6059 + 53.0110i 1.18329 + 2.04952i
\(670\) 24.4179 + 16.1758i 0.943347 + 0.624926i
\(671\) 35.2205 1.35967
\(672\) 0 0
\(673\) 42.6368i 1.64353i 0.569827 + 0.821764i \(0.307010\pi\)
−0.569827 + 0.821764i \(0.692990\pi\)
\(674\) 15.7487 5.22053i 0.606618 0.201087i
\(675\) −2.69270 9.22326i −0.103642 0.355003i
\(676\) 19.7777 14.7309i 0.760681 0.566572i
\(677\) −0.892648 + 1.54611i −0.0343073 + 0.0594219i −0.882669 0.469995i \(-0.844256\pi\)
0.848362 + 0.529417i \(0.177589\pi\)
\(678\) 18.5873 20.8911i 0.713842 0.802319i
\(679\) 0 0
\(680\) −46.7072 + 2.57606i −1.79114 + 0.0987874i
\(681\) −27.1648 + 47.0509i −1.04096 + 1.80299i
\(682\) −1.96832 + 9.53800i −0.0753708 + 0.365229i
\(683\) 4.30263 + 7.45237i 0.164636 + 0.285157i 0.936526 0.350599i \(-0.114022\pi\)
−0.771890 + 0.635756i \(0.780689\pi\)
\(684\) 22.7138 + 9.79170i 0.868483 + 0.374395i
\(685\) 7.21396 + 9.18792i 0.275631 + 0.351052i
\(686\) 0 0
\(687\) 13.4523 0.513236
\(688\) 2.74568 9.18628i 0.104678 0.350224i
\(689\) 1.28338 0.740957i 0.0488927 0.0282282i
\(690\) −9.27943 18.6302i −0.353262 0.709238i
\(691\) −20.1511 + 34.9027i −0.766583 + 1.32776i 0.172822 + 0.984953i \(0.444711\pi\)
−0.939405 + 0.342808i \(0.888622\pi\)
\(692\) 3.54755 + 30.2920i 0.134858 + 1.15153i
\(693\) 0 0
\(694\) 4.14720 4.66123i 0.157426 0.176938i
\(695\) −6.94562 48.5746i −0.263463 1.84254i
\(696\) −14.9479 1.30268i −0.566597 0.0493778i
\(697\) 17.0270 9.83053i 0.644943 0.372358i
\(698\) 24.6299 8.16454i 0.932256 0.309033i
\(699\) −53.9212 −2.03949
\(700\) 0 0
\(701\) 37.3051 1.40899 0.704497 0.709707i \(-0.251172\pi\)
0.704497 + 0.709707i \(0.251172\pi\)
\(702\) 2.11084 0.699719i 0.0796684 0.0264092i
\(703\) 20.5239 11.8495i 0.774072 0.446911i
\(704\) 22.0915 + 18.5115i 0.832604 + 0.697679i
\(705\) 1.09680 + 7.67055i 0.0413080 + 0.288890i
\(706\) −11.0438 + 12.4126i −0.415637 + 0.467154i
\(707\) 0 0
\(708\) −9.85761 + 1.15444i −0.370472 + 0.0433866i
\(709\) 4.02866 6.97784i 0.151299 0.262058i −0.780406 0.625273i \(-0.784988\pi\)
0.931705 + 0.363215i \(0.118321\pi\)
\(710\) −1.95159 3.91817i −0.0732418 0.147046i
\(711\) 25.0958 14.4891i 0.941168 0.543383i
\(712\) −12.6957 27.2019i −0.475790 1.01944i
\(713\) −4.84582 −0.181477
\(714\) 0 0
\(715\) 4.07095 + 5.18488i 0.152245 + 0.193903i
\(716\) −9.92601 + 23.0254i −0.370953 + 0.860498i
\(717\) 27.4269 + 47.5049i 1.02428 + 1.77410i
\(718\) −0.0565649 + 0.274100i −0.00211098 + 0.0102293i
\(719\) 5.87241 10.1713i 0.219004 0.379326i −0.735500 0.677525i \(-0.763053\pi\)
0.954504 + 0.298199i \(0.0963859\pi\)
\(720\) −20.8267 + 26.1795i −0.776164 + 0.975654i
\(721\) 0 0
\(722\) −7.58289 + 8.52275i −0.282206 + 0.317184i
\(723\) 2.36001 4.08766i 0.0877697 0.152022i
\(724\) −9.57940 12.8613i −0.356016 0.477987i
\(725\) 9.80731 2.86321i 0.364234 0.106337i
\(726\) −6.89987 + 2.28723i −0.256078 + 0.0848871i
\(727\) 33.3549i 1.23706i 0.785760 + 0.618532i \(0.212272\pi\)
−0.785760 + 0.618532i \(0.787728\pi\)
\(728\) 0 0
\(729\) 38.2742 1.41756
\(730\) −19.4987 12.9170i −0.721680 0.478081i
\(731\) 8.86429 + 15.3534i 0.327857 + 0.567866i
\(732\) 40.7094 30.3213i 1.50466 1.12071i
\(733\) −5.75003 + 9.95934i −0.212382 + 0.367856i −0.952460 0.304665i \(-0.901455\pi\)
0.740077 + 0.672522i \(0.234789\pi\)
\(734\) −7.95403 7.07688i −0.293588 0.261212i
\(735\) 0 0
\(736\) −6.79912 + 12.6268i −0.250619 + 0.465429i
\(737\) 28.8989 + 16.6848i 1.06451 + 0.614593i
\(738\) 2.84173 13.7704i 0.104606 0.506894i
\(739\) 9.70301 5.60203i 0.356931 0.206074i −0.310803 0.950474i \(-0.600598\pi\)
0.667734 + 0.744400i \(0.267265\pi\)
\(740\) 8.19695 + 30.9868i 0.301326 + 1.13910i
\(741\) 7.02455i 0.258053i
\(742\) 0 0
\(743\) −43.7950 −1.60668 −0.803341 0.595520i \(-0.796946\pi\)
−0.803341 + 0.595520i \(0.796946\pi\)
\(744\) 5.93619 + 12.7190i 0.217631 + 0.466300i
\(745\) −49.7016 19.9422i −1.82093 0.730625i
\(746\) 8.90030 43.1287i 0.325863 1.57905i
\(747\) 34.0017 + 19.6309i 1.24406 + 0.718256i
\(748\) −52.9322 + 6.19898i −1.93539 + 0.226657i
\(749\) 0 0
\(750\) 12.1713 39.2034i 0.444432 1.43151i
\(751\) 44.5322 + 25.7107i 1.62500 + 0.938196i 0.985554 + 0.169364i \(0.0541714\pi\)
0.639450 + 0.768832i \(0.279162\pi\)
\(752\) 3.88180 3.66560i 0.141555 0.133671i
\(753\) −31.5192 + 18.1976i −1.14862 + 0.663159i
\(754\) 0.744028 + 2.24450i 0.0270959 + 0.0817400i
\(755\) 9.67670 + 12.3245i 0.352171 + 0.448536i
\(756\) 0 0
\(757\) 18.1453i 0.659502i −0.944068 0.329751i \(-0.893035\pi\)
0.944068 0.329751i \(-0.106965\pi\)
\(758\) −21.9339 + 7.27086i −0.796676 + 0.264089i
\(759\) −11.8562 20.5355i −0.430352 0.745391i
\(760\) 11.4378 + 17.5076i 0.414893 + 0.635067i
\(761\) 28.4860 + 16.4464i 1.03262 + 0.596181i 0.917733 0.397198i \(-0.130017\pi\)
0.114883 + 0.993379i \(0.463351\pi\)
\(762\) −24.0875 21.4312i −0.872598 0.776370i
\(763\) 0 0
\(764\) 13.4270 1.57246i 0.485771 0.0568895i
\(765\) −8.75585 61.2346i −0.316568 2.21394i
\(766\) −2.52915 + 12.2557i −0.0913821 + 0.442816i
\(767\) 0.782054 + 1.35456i 0.0282383 + 0.0489102i
\(768\) 41.4709 + 2.37790i 1.49645 + 0.0858049i
\(769\) 20.8502i 0.751876i −0.926645 0.375938i \(-0.877321\pi\)
0.926645 0.375938i \(-0.122679\pi\)
\(770\) 0 0
\(771\) 46.4003i 1.67107i
\(772\) −1.86854 + 4.33445i −0.0672503 + 0.156000i
\(773\) 4.34380 + 7.52368i 0.156236 + 0.270608i 0.933508 0.358556i \(-0.116731\pi\)
−0.777273 + 0.629164i \(0.783397\pi\)
\(774\) 12.4169 + 2.56242i 0.446315 + 0.0921042i
\(775\) −6.90671 6.60597i −0.248096 0.237293i
\(776\) 16.9639 + 11.8697i 0.608970 + 0.426099i
\(777\) 0 0
\(778\) 8.78497 9.87384i 0.314957 0.353994i
\(779\) −7.61208 4.39484i −0.272731 0.157461i
\(780\) 9.16904 + 2.48824i 0.328304 + 0.0890933i
\(781\) −2.49351 4.31888i −0.0892247 0.154542i
\(782\) −8.34377 25.1706i −0.298373 0.900098i
\(783\) 3.92660i 0.140325i
\(784\) 0 0
\(785\) 11.3008 8.87294i 0.403344 0.316689i
\(786\) 46.6628 15.4682i 1.66441 0.551733i
\(787\) −32.2270 + 18.6062i −1.14877 + 0.663241i −0.948586 0.316518i \(-0.897486\pi\)
−0.200180 + 0.979759i \(0.564153\pi\)
\(788\) 24.2765 + 32.5936i 0.864813 + 1.16110i
\(789\) 49.2312 + 28.4237i 1.75268 + 1.01191i
\(790\) 24.4544 + 1.50543i 0.870048 + 0.0535608i
\(791\) 0 0
\(792\) −21.8501 + 31.2277i −0.776411 + 1.10963i
\(793\) −6.92778 3.99976i −0.246013 0.142036i
\(794\) 28.1198 + 5.80296i 0.997933 + 0.205939i
\(795\) −9.75722 3.91496i −0.346053 0.138849i
\(796\) −21.0442 9.07197i −0.745893 0.321547i
\(797\) −21.3900 −0.757671 −0.378835 0.925464i \(-0.623675\pi\)
−0.378835 + 0.925464i \(0.623675\pi\)
\(798\) 0 0
\(799\) 9.87221i 0.349254i
\(800\) −26.9039 + 8.72808i −0.951197 + 0.308584i
\(801\) 34.3773 19.8477i 1.21466 0.701285i
\(802\) 15.3554 + 3.16883i 0.542217 + 0.111895i
\(803\) −23.0770 13.3235i −0.814368 0.470176i
\(804\) 47.7666 5.59403i 1.68460 0.197286i
\(805\) 0 0
\(806\) 1.47033 1.65257i 0.0517902 0.0582094i
\(807\) 3.74219 6.48166i 0.131731 0.228165i
\(808\) −17.9149 1.56125i −0.630243 0.0549244i
\(809\) −12.1707 21.0803i −0.427900 0.741144i 0.568787 0.822485i \(-0.307413\pi\)
−0.996686 + 0.0813411i \(0.974080\pi\)
\(810\) 16.4282 + 10.8830i 0.577229 + 0.382389i
\(811\) 31.3778 1.10183 0.550913 0.834563i \(-0.314280\pi\)
0.550913 + 0.834563i \(0.314280\pi\)
\(812\) 0 0
\(813\) 44.0206i 1.54387i
\(814\) 11.4902 + 34.6625i 0.402733 + 1.21492i
\(815\) −38.3485 15.3869i −1.34329 0.538979i
\(816\) −55.8447 + 52.7344i −1.95496 + 1.84607i
\(817\) 3.96287 6.86389i 0.138643 0.240137i
\(818\) −6.21976 5.53386i −0.217469 0.193487i
\(819\) 0 0
\(820\) 8.43287 8.37920i 0.294489 0.292614i
\(821\) −0.0785681 + 0.136084i −0.00274204 + 0.00474936i −0.867393 0.497623i \(-0.834206\pi\)
0.864651 + 0.502373i \(0.167539\pi\)
\(822\) 18.7850 + 3.87658i 0.655202 + 0.135211i
\(823\) 9.34753 + 16.1904i 0.325835 + 0.564362i 0.981681 0.190532i \(-0.0610214\pi\)
−0.655846 + 0.754894i \(0.727688\pi\)
\(824\) −1.22262 2.61960i −0.0425919 0.0912582i
\(825\) 11.0961 45.4317i 0.386316 1.58173i
\(826\) 0 0
\(827\) −35.2960 −1.22736 −0.613681 0.789554i \(-0.710312\pi\)
−0.613681 + 0.789554i \(0.710312\pi\)
\(828\) −17.4146 7.50728i −0.605200 0.260896i
\(829\) 14.2590 8.23245i 0.495237 0.285925i −0.231508 0.972833i \(-0.574366\pi\)
0.726744 + 0.686908i \(0.241033\pi\)
\(830\) 14.7999 + 29.7135i 0.513711 + 1.03137i
\(831\) 34.8558 60.3720i 1.20913 2.09428i
\(832\) −2.24311 6.14996i −0.0777659 0.213211i
\(833\) 0 0
\(834\) −60.1934 53.5555i −2.08433 1.85447i
\(835\) 4.04845 0.578882i 0.140102 0.0200330i
\(836\) 14.2320 + 19.1079i 0.492223 + 0.660859i
\(837\) −3.18105 + 1.83658i −0.109953 + 0.0634814i
\(838\) −7.44288 22.4529i −0.257110 0.775622i
\(839\) −54.8000 −1.89191 −0.945953 0.324303i \(-0.894870\pi\)
−0.945953 + 0.324303i \(0.894870\pi\)
\(840\) 0 0
\(841\) −24.8248 −0.856026
\(842\) −0.528745 1.59506i −0.0182218 0.0549694i
\(843\) −56.0960 + 32.3871i −1.93205 + 1.11547i
\(844\) −26.3602 35.3913i −0.907356 1.21822i
\(845\) 3.90274 + 27.2940i 0.134258 + 0.938943i
\(846\) 5.27458 + 4.69291i 0.181344 + 0.161346i
\(847\) 0 0
\(848\) 1.67376 + 7.04801i 0.0574773 + 0.242030i
\(849\) 12.7709 22.1199i 0.438297 0.759152i
\(850\) 22.4210 47.2499i 0.769033 1.62066i
\(851\) −15.7356 + 9.08496i −0.539410 + 0.311428i
\(852\) −6.60023 2.84530i −0.226120 0.0974783i
\(853\) 38.9225 1.33268 0.666340 0.745648i \(-0.267860\pi\)
0.666340 + 0.745648i \(0.267860\pi\)
\(854\) 0 0
\(855\) −21.7507 + 17.0777i −0.743858 + 0.584046i
\(856\) −18.5859 + 8.67440i −0.635253 + 0.296485i
\(857\) 14.6766 + 25.4206i 0.501342 + 0.868350i 0.999999 + 0.00155047i \(0.000493529\pi\)
−0.498657 + 0.866800i \(0.666173\pi\)
\(858\) 10.6006 + 2.18761i 0.361900 + 0.0746839i
\(859\) 23.6874 41.0277i 0.808202 1.39985i −0.105905 0.994376i \(-0.533774\pi\)
0.914108 0.405471i \(-0.132893\pi\)
\(860\) 7.55561 + 7.60401i 0.257644 + 0.259294i
\(861\) 0 0
\(862\) −25.4578 22.6504i −0.867095 0.771474i
\(863\) 11.8505 20.5257i 0.403397 0.698704i −0.590737 0.806865i \(-0.701163\pi\)
0.994133 + 0.108161i \(0.0344961\pi\)
\(864\) 0.322288 + 10.8658i 0.0109645 + 0.369660i
\(865\) −31.6466 12.6978i −1.07602 0.431738i
\(866\) −6.66609 20.1095i −0.226523 0.683350i
\(867\) 97.8892i 3.32449i
\(868\) 0 0
\(869\) 27.9134 0.946897
\(870\) 9.26460 13.9852i 0.314099 0.474144i
\(871\) −3.78957 6.56372i −0.128405 0.222403i
\(872\) 1.95755 22.4624i 0.0662912 0.760673i
\(873\) −13.6892 + 23.7103i −0.463308 + 0.802474i
\(874\) −7.88009 + 8.85680i −0.266548 + 0.299586i
\(875\) 0 0
\(876\) −38.1436 + 4.46706i −1.28875 + 0.150928i
\(877\) 28.7555 + 16.6020i 0.971004 + 0.560610i 0.899542 0.436834i \(-0.143900\pi\)
0.0714621 + 0.997443i \(0.477234\pi\)
\(878\) −23.9961 4.95197i −0.809829 0.167121i
\(879\) 52.6205 30.3805i 1.77485 1.02471i
\(880\) −29.9825 + 11.8084i −1.01071 + 0.398061i
\(881\) 19.2043i 0.647008i 0.946227 + 0.323504i \(0.104861\pi\)
−0.946227 + 0.323504i \(0.895139\pi\)
\(882\) 0 0
\(883\) 8.57526 0.288581 0.144290 0.989535i \(-0.453910\pi\)
0.144290 + 0.989535i \(0.453910\pi\)
\(884\) 11.1156 + 4.79184i 0.373859 + 0.161167i
\(885\) 4.13211 10.2984i 0.138899 0.346177i
\(886\) −34.9477 7.21202i −1.17409 0.242292i
\(887\) −12.7746 7.37543i −0.428930 0.247643i 0.269961 0.962871i \(-0.412989\pi\)
−0.698891 + 0.715229i \(0.746323\pi\)
\(888\) 43.1219 + 30.1725i 1.44707 + 1.01252i
\(889\) 0 0
\(890\) 33.4986 + 2.06220i 1.12287 + 0.0691250i
\(891\) 19.4430 + 11.2254i 0.651365 + 0.376066i
\(892\) 28.1676 + 37.8179i 0.943122 + 1.26624i
\(893\) 3.82218 2.20673i 0.127904 0.0738455i
\(894\) −83.4665 + 27.6682i −2.79154 + 0.925364i
\(895\) −17.3120 22.0491i −0.578676 0.737019i
\(896\) 0 0
\(897\) 5.38571i 0.179824i
\(898\) 3.14224 + 9.47917i 0.104858 + 0.316324i
\(899\) −1.95288 3.38248i −0.0651321 0.112812i
\(900\) −14.5868 34.4402i −0.486225 1.14801i
\(901\) −11.6002 6.69736i −0.386457 0.223121i
\(902\) 9.00277 10.1186i 0.299760 0.336914i
\(903\) 0 0
\(904\) 12.3498 17.6500i 0.410747 0.587030i
\(905\) 17.7491 2.53793i 0.590001 0.0843635i
\(906\) 25.1979 + 5.19999i 0.837144 + 0.172758i
\(907\) −23.7946 41.2134i −0.790085 1.36847i −0.925914 0.377736i \(-0.876703\pi\)
0.135828 0.990732i \(-0.456631\pi\)
\(908\) −16.5686 + 38.4342i −0.549850 + 1.27548i
\(909\) 23.7796i 0.788720i
\(910\) 0 0
\(911\) 34.7074i 1.14991i −0.818186 0.574954i \(-0.805020\pi\)
0.818186 0.574954i \(-0.194980\pi\)
\(912\) 32.8999 + 9.83342i 1.08942 + 0.325617i
\(913\) 18.9095 + 32.7523i 0.625814 + 1.08394i
\(914\) −5.39678 + 26.1515i −0.178510 + 0.865015i
\(915\) 8.03319 + 56.1806i 0.265569 + 1.85727i
\(916\) 10.2928 1.20540i 0.340082 0.0398276i
\(917\) 0 0
\(918\) −15.0170 13.3610i −0.495635 0.440977i
\(919\) −44.9270 25.9386i −1.48200 0.855635i −0.482212 0.876055i \(-0.660167\pi\)
−0.999792 + 0.0204194i \(0.993500\pi\)
\(920\) −8.76936 13.4230i −0.289117 0.442544i
\(921\) 2.83671 + 4.91333i 0.0934729 + 0.161900i
\(922\) 46.4581 15.4003i 1.53001 0.507183i
\(923\) 1.13269i 0.0372828i
\(924\) 0 0
\(925\) −34.8127 8.50253i −1.14463 0.279562i
\(926\) 6.68524 + 20.1673i 0.219690 + 0.662738i
\(927\) 3.31060 1.91138i 0.108734 0.0627778i
\(928\) −11.5538 + 0.342696i −0.379272 + 0.0112496i
\(929\) −37.9198 21.8930i −1.24411 0.718286i −0.274180 0.961678i \(-0.588406\pi\)
−0.969928 + 0.243393i \(0.921740\pi\)
\(930\) −15.6631 0.964232i −0.513614 0.0316184i
\(931\) 0 0
\(932\) −41.2568 + 4.83166i −1.35141 + 0.158266i
\(933\) 64.9780 + 37.5151i 2.12728 + 1.22819i
\(934\) 7.27106 35.2338i 0.237916 1.15289i
\(935\) 22.1881 55.2992i 0.725629 1.80848i
\(936\) 7.84419 3.66104i 0.256396 0.119665i
\(937\) 14.2224 0.464624 0.232312 0.972641i \(-0.425371\pi\)
0.232312 + 0.972641i \(0.425371\pi\)
\(938\) 0 0
\(939\) 16.4937i 0.538251i
\(940\) 1.52652 + 5.77070i 0.0497897 + 0.188220i
\(941\) −4.80070 + 2.77169i −0.156498 + 0.0903544i −0.576204 0.817306i \(-0.695467\pi\)
0.419706 + 0.907660i \(0.362133\pi\)
\(942\) 4.76807 23.1049i 0.155352 0.752799i
\(943\) 5.83617 + 3.36951i 0.190052 + 0.109726i
\(944\) −7.43893 + 1.76660i −0.242116 + 0.0574979i
\(945\) 0 0
\(946\) 9.12407 + 8.11789i 0.296649 + 0.263935i
\(947\) 29.7881 51.5945i 0.967983 1.67660i 0.266607 0.963805i \(-0.414098\pi\)
0.701377 0.712791i \(-0.252569\pi\)
\(948\) 32.2636 24.0306i 1.04787 0.780479i
\(949\) 3.02612 + 5.24140i 0.0982321 + 0.170143i
\(950\) −23.3053 + 1.88114i −0.756123 + 0.0610323i
\(951\) 48.8163 1.58298
\(952\) 0 0
\(953\) 12.2577i 0.397065i 0.980094 + 0.198532i \(0.0636175\pi\)
−0.980094 + 0.198532i \(0.936383\pi\)
\(954\) −9.09262 + 3.01410i −0.294384 + 0.0975852i
\(955\) −5.62832 + 14.0274i −0.182128 + 0.453916i
\(956\) 25.2419 + 33.8899i 0.816383 + 1.09608i
\(957\) 9.55612 16.5517i 0.308906 0.535040i
\(958\) −19.3355 + 21.7321i −0.624703 + 0.702133i
\(959\) 0 0
\(960\) −24.4893 + 39.4606i −0.790387 + 1.27358i
\(961\) 13.6732 23.6826i 0.441070 0.763956i
\(962\) 1.67629 8.12290i 0.0540458 0.261893i
\(963\) −13.5611 23.4885i −0.437000 0.756906i
\(964\) 1.43944 3.33907i 0.0463612 0.107544i
\(965\) −3.25893 4.15067i −0.104909 0.133615i
\(966\) 0 0
\(967\) 53.4551 1.71900 0.859499 0.511137i \(-0.170775\pi\)
0.859499 + 0.511137i \(0.170775\pi\)
\(968\) −5.07436 + 2.36830i −0.163096 + 0.0761201i
\(969\) −54.9869 + 31.7467i −1.76643 + 1.01985i
\(970\) −20.7201 + 10.3204i −0.665282 + 0.331368i
\(971\) 11.1284 19.2749i 0.357126 0.618561i −0.630353 0.776308i \(-0.717090\pi\)
0.987479 + 0.157748i \(0.0504232\pi\)
\(972\) 43.5887 5.10475i 1.39811 0.163735i
\(973\) 0 0
\(974\) −27.3167 + 30.7025i −0.875284 + 0.983772i
\(975\) −7.34195 + 7.67620i −0.235131 + 0.245835i
\(976\) 28.4311 26.8476i 0.910056 0.859369i
\(977\) −27.5351 + 15.8974i −0.880926 + 0.508603i −0.870964 0.491347i \(-0.836505\pi\)
−0.00996251 + 0.999950i \(0.503171\pi\)
\(978\) −64.4006 + 21.3481i −2.05931 + 0.682637i
\(979\) 38.2369 1.22206
\(980\) 0 0
\(981\) 29.8158 0.951947
\(982\) −12.7770 + 4.23543i −0.407730 + 0.135158i
\(983\) 17.8275 10.2927i 0.568609 0.328287i −0.187985 0.982172i \(-0.560195\pi\)
0.756594 + 0.653885i \(0.226862\pi\)
\(984\) 1.69469 19.4460i 0.0540246 0.619917i
\(985\) −44.9805 + 6.43170i −1.43320 + 0.204931i
\(986\) 14.2070 15.9679i 0.452444 0.508522i
\(987\) 0 0
\(988\) −0.629440 5.37470i −0.0200252 0.170992i
\(989\) −3.03832 + 5.26253i −0.0966131 + 0.167339i
\(990\) −18.9981 38.1421i −0.603798 1.21224i
\(991\) 32.2836 18.6390i 1.02552 0.592086i 0.109824 0.993951i \(-0.464971\pi\)
0.915699 + 0.401865i \(0.131638\pi\)
\(992\) 5.68166 + 9.19977i 0.180393 + 0.292093i
\(993\) −33.9810 −1.07836
\(994\) 0 0
\(995\) 20.1519 15.8224i 0.638859 0.501605i
\(996\) 50.0529 + 21.5773i 1.58599 + 0.683704i
\(997\) −6.32111 10.9485i −0.200191 0.346742i 0.748399 0.663249i \(-0.230823\pi\)
−0.948590 + 0.316508i \(0.897490\pi\)
\(998\) 5.77092 27.9645i 0.182675 0.885201i
\(999\) −6.88644 + 11.9277i −0.217877 + 0.377375i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.s.e.19.10 32
4.3 odd 2 inner 980.2.s.e.19.15 32
5.4 even 2 inner 980.2.s.e.19.7 32
7.2 even 3 980.2.c.d.979.25 32
7.3 odd 6 inner 980.2.s.e.619.2 32
7.4 even 3 140.2.s.b.59.2 yes 32
7.5 odd 6 980.2.c.d.979.26 32
7.6 odd 2 140.2.s.b.19.10 yes 32
20.19 odd 2 inner 980.2.s.e.19.2 32
28.3 even 6 inner 980.2.s.e.619.7 32
28.11 odd 6 140.2.s.b.59.7 yes 32
28.19 even 6 980.2.c.d.979.5 32
28.23 odd 6 980.2.c.d.979.6 32
28.27 even 2 140.2.s.b.19.15 yes 32
35.4 even 6 140.2.s.b.59.15 yes 32
35.9 even 6 980.2.c.d.979.8 32
35.13 even 4 700.2.p.e.551.15 32
35.18 odd 12 700.2.p.e.451.7 32
35.19 odd 6 980.2.c.d.979.7 32
35.24 odd 6 inner 980.2.s.e.619.15 32
35.27 even 4 700.2.p.e.551.2 32
35.32 odd 12 700.2.p.e.451.10 32
35.34 odd 2 140.2.s.b.19.7 yes 32
140.19 even 6 980.2.c.d.979.28 32
140.27 odd 4 700.2.p.e.551.10 32
140.39 odd 6 140.2.s.b.59.10 yes 32
140.59 even 6 inner 980.2.s.e.619.10 32
140.67 even 12 700.2.p.e.451.2 32
140.79 odd 6 980.2.c.d.979.27 32
140.83 odd 4 700.2.p.e.551.7 32
140.123 even 12 700.2.p.e.451.15 32
140.139 even 2 140.2.s.b.19.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.s.b.19.2 32 140.139 even 2
140.2.s.b.19.7 yes 32 35.34 odd 2
140.2.s.b.19.10 yes 32 7.6 odd 2
140.2.s.b.19.15 yes 32 28.27 even 2
140.2.s.b.59.2 yes 32 7.4 even 3
140.2.s.b.59.7 yes 32 28.11 odd 6
140.2.s.b.59.10 yes 32 140.39 odd 6
140.2.s.b.59.15 yes 32 35.4 even 6
700.2.p.e.451.2 32 140.67 even 12
700.2.p.e.451.7 32 35.18 odd 12
700.2.p.e.451.10 32 35.32 odd 12
700.2.p.e.451.15 32 140.123 even 12
700.2.p.e.551.2 32 35.27 even 4
700.2.p.e.551.7 32 140.83 odd 4
700.2.p.e.551.10 32 140.27 odd 4
700.2.p.e.551.15 32 35.13 even 4
980.2.c.d.979.5 32 28.19 even 6
980.2.c.d.979.6 32 28.23 odd 6
980.2.c.d.979.7 32 35.19 odd 6
980.2.c.d.979.8 32 35.9 even 6
980.2.c.d.979.25 32 7.2 even 3
980.2.c.d.979.26 32 7.5 odd 6
980.2.c.d.979.27 32 140.79 odd 6
980.2.c.d.979.28 32 140.19 even 6
980.2.s.e.19.2 32 20.19 odd 2 inner
980.2.s.e.19.7 32 5.4 even 2 inner
980.2.s.e.19.10 32 1.1 even 1 trivial
980.2.s.e.19.15 32 4.3 odd 2 inner
980.2.s.e.619.2 32 7.3 odd 6 inner
980.2.s.e.619.7 32 28.3 even 6 inner
980.2.s.e.619.10 32 140.59 even 6 inner
980.2.s.e.619.15 32 35.24 odd 6 inner