Properties

Label 980.2.q.g
Level $980$
Weight $2$
Character orbit 980.q
Analytic conductor $7.825$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
Defining polynomial: \(x^{4} - x^{3} - 4 x^{2} - 5 x + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 - \beta_{2} ) q^{3} + \beta_{3} q^{5} +O(q^{10})\) \( q + ( 2 - \beta_{2} ) q^{3} + \beta_{3} q^{5} + ( 1 - 2 \beta_{1} + \beta_{2} + \beta_{3} ) q^{11} + ( 2 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{13} + ( -\beta_{1} + 2 \beta_{3} ) q^{15} + ( -3 + \beta_{2} - \beta_{3} ) q^{17} + ( 1 - \beta_{1} + 2 \beta_{3} ) q^{19} + ( -3 + 2 \beta_{1} - \beta_{2} ) q^{23} + ( 5 - \beta_{1} - 5 \beta_{2} ) q^{25} + ( -3 + 6 \beta_{2} ) q^{27} + ( -1 + \beta_{1} + \beta_{2} + \beta_{3} ) q^{29} + ( 1 - 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{31} + ( 3 - 3 \beta_{1} ) q^{33} + ( 5 - \beta_{1} + 4 \beta_{2} ) q^{37} + ( 2 - 4 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} ) q^{39} + ( 7 + \beta_{1} + \beta_{2} + \beta_{3} ) q^{41} + ( -3 + \beta_{1} + 5 \beta_{2} - \beta_{3} ) q^{43} + ( 3 - \beta_{1} + 2 \beta_{2} ) q^{47} + ( -5 + \beta_{1} + 4 \beta_{2} - 2 \beta_{3} ) q^{51} + ( -1 - \beta_{2} - 3 \beta_{3} ) q^{53} + ( -5 + 2 \beta_{1} - 5 \beta_{2} - \beta_{3} ) q^{55} + ( 2 - 3 \beta_{1} - \beta_{2} + 3 \beta_{3} ) q^{57} + ( 1 - 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{59} + ( -5 - 2 \beta_{1} + 7 \beta_{2} + 4 \beta_{3} ) q^{61} + ( -2 \beta_{1} - 10 \beta_{2} ) q^{65} + ( -6 + \beta_{2} - 4 \beta_{3} ) q^{67} + ( -7 + 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{69} + ( 2 + 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{71} + ( 5 - 3 \beta_{2} - \beta_{3} ) q^{73} + ( 5 - \beta_{1} - 10 \beta_{2} - \beta_{3} ) q^{75} + ( 3 + \beta_{1} - 4 \beta_{2} - 2 \beta_{3} ) q^{79} + 9 \beta_{2} q^{81} + ( -1 + 3 \beta_{1} - \beta_{2} - 3 \beta_{3} ) q^{83} + ( -5 + 2 \beta_{1} + 5 \beta_{2} - 3 \beta_{3} ) q^{85} + ( -1 + 2 \beta_{2} + 3 \beta_{3} ) q^{87} + ( 7 - 7 \beta_{2} ) q^{89} + ( 1 - 3 \beta_{1} - 2 \beta_{2} ) q^{93} + ( 5 - \beta_{1} - 10 \beta_{2} ) q^{95} + ( -4 + 8 \beta_{2} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} - q^{5} + O(q^{10}) \) \( 4 q + 6 q^{3} - q^{5} + 3 q^{11} - 3 q^{15} - 9 q^{17} + q^{19} - 12 q^{23} + 9 q^{25} - 2 q^{29} - q^{31} + 9 q^{33} + 27 q^{37} - 6 q^{39} + 30 q^{41} + 15 q^{47} - 9 q^{51} - 3 q^{53} - 27 q^{55} - q^{59} - 12 q^{61} - 22 q^{65} - 18 q^{67} - 24 q^{69} + 12 q^{71} + 15 q^{73} + 7 q^{79} + 18 q^{81} - 5 q^{85} - 3 q^{87} + 14 q^{89} - 3 q^{93} - q^{95} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - x^{3} - 4 x^{2} - 5 x + 25\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 4 \nu^{2} - 4 \nu - 5 \)\()/20\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{3} + 4 \nu + 5 \)\()/4\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} + 5 \beta_{2}\)
\(\nu^{3}\)\(=\)\(-4 \beta_{3} + 4 \beta_{1} + 5\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-1 + \beta_{2}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
569.1
−1.63746 1.52274i
2.13746 + 0.656712i
−1.63746 + 1.52274i
2.13746 0.656712i
0 1.50000 0.866025i 0 −2.13746 + 0.656712i 0 0 0 0 0
569.2 0 1.50000 0.866025i 0 1.63746 1.52274i 0 0 0 0 0
949.1 0 1.50000 + 0.866025i 0 −2.13746 0.656712i 0 0 0 0 0
949.2 0 1.50000 + 0.866025i 0 1.63746 + 1.52274i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.2.q.g 4
5.b even 2 1 980.2.q.b 4
7.b odd 2 1 140.2.q.a 4
7.c even 3 1 980.2.e.c 4
7.c even 3 1 980.2.q.b 4
7.d odd 6 1 140.2.q.b yes 4
7.d odd 6 1 980.2.e.f 4
21.c even 2 1 1260.2.bm.a 4
21.g even 6 1 1260.2.bm.b 4
28.d even 2 1 560.2.bw.e 4
28.f even 6 1 560.2.bw.a 4
35.c odd 2 1 140.2.q.b yes 4
35.f even 4 2 700.2.i.f 8
35.i odd 6 1 140.2.q.a 4
35.i odd 6 1 980.2.e.f 4
35.j even 6 1 980.2.e.c 4
35.j even 6 1 inner 980.2.q.g 4
35.k even 12 2 700.2.i.f 8
35.k even 12 2 4900.2.a.be 4
35.l odd 12 2 4900.2.a.bf 4
105.g even 2 1 1260.2.bm.b 4
105.p even 6 1 1260.2.bm.a 4
140.c even 2 1 560.2.bw.a 4
140.s even 6 1 560.2.bw.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.q.a 4 7.b odd 2 1
140.2.q.a 4 35.i odd 6 1
140.2.q.b yes 4 7.d odd 6 1
140.2.q.b yes 4 35.c odd 2 1
560.2.bw.a 4 28.f even 6 1
560.2.bw.a 4 140.c even 2 1
560.2.bw.e 4 28.d even 2 1
560.2.bw.e 4 140.s even 6 1
700.2.i.f 8 35.f even 4 2
700.2.i.f 8 35.k even 12 2
980.2.e.c 4 7.c even 3 1
980.2.e.c 4 35.j even 6 1
980.2.e.f 4 7.d odd 6 1
980.2.e.f 4 35.i odd 6 1
980.2.q.b 4 5.b even 2 1
980.2.q.b 4 7.c even 3 1
980.2.q.g 4 1.a even 1 1 trivial
980.2.q.g 4 35.j even 6 1 inner
1260.2.bm.a 4 21.c even 2 1
1260.2.bm.a 4 105.p even 6 1
1260.2.bm.b 4 21.g even 6 1
1260.2.bm.b 4 105.g even 2 1
4900.2.a.be 4 35.k even 12 2
4900.2.a.bf 4 35.l odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(980, [\chi])\):

\( T_{3}^{2} - 3 T_{3} + 3 \)
\( T_{11}^{4} - 3 T_{11}^{3} + 21 T_{11}^{2} + 36 T_{11} + 144 \)
\( T_{19}^{4} - T_{19}^{3} + 15 T_{19}^{2} + 14 T_{19} + 196 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( ( 3 - 3 T + T^{2} )^{2} \)
$5$ \( 25 + 5 T - 4 T^{2} + T^{3} + T^{4} \)
$7$ \( T^{4} \)
$11$ \( 144 + 36 T + 21 T^{2} - 3 T^{3} + T^{4} \)
$13$ \( 256 + 44 T^{2} + T^{4} \)
$17$ \( 4 + 18 T + 29 T^{2} + 9 T^{3} + T^{4} \)
$19$ \( 196 + 14 T + 15 T^{2} - T^{3} + T^{4} \)
$23$ \( 49 - 84 T + 41 T^{2} + 12 T^{3} + T^{4} \)
$29$ \( ( -14 + T + T^{2} )^{2} \)
$31$ \( 196 - 14 T + 15 T^{2} + T^{3} + T^{4} \)
$37$ \( 3136 - 1512 T + 299 T^{2} - 27 T^{3} + T^{4} \)
$41$ \( ( 42 - 15 T + T^{2} )^{2} \)
$43$ \( 196 + 47 T^{2} + T^{4} \)
$47$ \( 196 - 210 T + 89 T^{2} - 15 T^{3} + T^{4} \)
$53$ \( 1764 - 126 T - 39 T^{2} + 3 T^{3} + T^{4} \)
$59$ \( 196 - 14 T + 15 T^{2} + T^{3} + T^{4} \)
$61$ \( 441 - 252 T + 165 T^{2} + 12 T^{3} + T^{4} \)
$67$ \( 2401 - 882 T + 59 T^{2} + 18 T^{3} + T^{4} \)
$71$ \( ( -48 - 6 T + T^{2} )^{2} \)
$73$ \( 196 - 210 T + 89 T^{2} - 15 T^{3} + T^{4} \)
$79$ \( 4 + 14 T + 51 T^{2} - 7 T^{3} + T^{4} \)
$83$ \( 1764 + 87 T^{2} + T^{4} \)
$89$ \( ( 49 - 7 T + T^{2} )^{2} \)
$97$ \( ( 48 + T^{2} )^{2} \)
show more
show less