Properties

Label 980.2.q.c.949.2
Level $980$
Weight $2$
Character 980.949
Analytic conductor $7.825$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 949.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 980.949
Dual form 980.2.q.c.569.2

$q$-expansion

\(f(q)\) \(=\) \(q+(2.59808 + 1.50000i) q^{3} +(-1.86603 - 1.23205i) q^{5} +(3.00000 + 5.19615i) q^{9} +O(q^{10})\) \(q+(2.59808 + 1.50000i) q^{3} +(-1.86603 - 1.23205i) q^{5} +(3.00000 + 5.19615i) q^{9} +(-1.50000 + 2.59808i) q^{11} -1.00000i q^{13} +(-3.00000 - 6.00000i) q^{15} +(4.33013 + 2.50000i) q^{17} +(4.00000 + 6.92820i) q^{19} +(1.73205 - 1.00000i) q^{23} +(1.96410 + 4.59808i) q^{25} +9.00000i q^{27} +1.00000 q^{29} +(-1.00000 + 1.73205i) q^{31} +(-7.79423 + 4.50000i) q^{33} +(-8.66025 + 5.00000i) q^{37} +(1.50000 - 2.59808i) q^{39} +6.00000 q^{41} -4.00000i q^{43} +(0.803848 - 13.3923i) q^{45} +(9.52628 - 5.50000i) q^{47} +(7.50000 + 12.9904i) q^{51} +(-5.19615 - 3.00000i) q^{53} +(6.00000 - 3.00000i) q^{55} +24.0000i q^{57} +(5.00000 - 8.66025i) q^{59} +(-1.23205 + 1.86603i) q^{65} +(-8.66025 - 5.00000i) q^{67} +6.00000 q^{69} +(-8.66025 - 5.00000i) q^{73} +(-1.79423 + 14.8923i) q^{75} +(-3.50000 - 6.06218i) q^{79} +(-4.50000 + 7.79423i) q^{81} -12.0000i q^{83} +(-5.00000 - 10.0000i) q^{85} +(2.59808 + 1.50000i) q^{87} +(-4.00000 - 6.92820i) q^{89} +(-5.19615 + 3.00000i) q^{93} +(1.07180 - 17.8564i) q^{95} +3.00000i q^{97} -18.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{5} + 12 q^{9} - 6 q^{11} - 12 q^{15} + 16 q^{19} - 6 q^{25} + 4 q^{29} - 4 q^{31} + 6 q^{39} + 24 q^{41} + 24 q^{45} + 30 q^{51} + 24 q^{55} + 20 q^{59} + 2 q^{65} + 24 q^{69} + 24 q^{75} - 14 q^{79} - 18 q^{81} - 20 q^{85} - 16 q^{89} + 32 q^{95} - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.59808 + 1.50000i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(4\) 0 0
\(5\) −1.86603 1.23205i −0.834512 0.550990i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 3.00000 + 5.19615i 1.00000 + 1.73205i
\(10\) 0 0
\(11\) −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i \(-0.982718\pi\)
0.546259 + 0.837616i \(0.316051\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i −0.990338 0.138675i \(-0.955716\pi\)
0.990338 0.138675i \(-0.0442844\pi\)
\(14\) 0 0
\(15\) −3.00000 6.00000i −0.774597 1.54919i
\(16\) 0 0
\(17\) 4.33013 + 2.50000i 1.05021 + 0.606339i 0.922708 0.385499i \(-0.125971\pi\)
0.127502 + 0.991838i \(0.459304\pi\)
\(18\) 0 0
\(19\) 4.00000 + 6.92820i 0.917663 + 1.58944i 0.802955 + 0.596040i \(0.203260\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.73205 1.00000i 0.361158 0.208514i −0.308431 0.951247i \(-0.599804\pi\)
0.669588 + 0.742732i \(0.266471\pi\)
\(24\) 0 0
\(25\) 1.96410 + 4.59808i 0.392820 + 0.919615i
\(26\) 0 0
\(27\) 9.00000i 1.73205i
\(28\) 0 0
\(29\) 1.00000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) 0 0
\(31\) −1.00000 + 1.73205i −0.179605 + 0.311086i −0.941745 0.336327i \(-0.890815\pi\)
0.762140 + 0.647412i \(0.224149\pi\)
\(32\) 0 0
\(33\) −7.79423 + 4.50000i −1.35680 + 0.783349i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.66025 + 5.00000i −1.42374 + 0.821995i −0.996616 0.0821995i \(-0.973806\pi\)
−0.427121 + 0.904194i \(0.640472\pi\)
\(38\) 0 0
\(39\) 1.50000 2.59808i 0.240192 0.416025i
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) 0.803848 13.3923i 0.119831 1.99641i
\(46\) 0 0
\(47\) 9.52628 5.50000i 1.38955 0.802257i 0.396286 0.918127i \(-0.370299\pi\)
0.993264 + 0.115870i \(0.0369655\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 7.50000 + 12.9904i 1.05021 + 1.81902i
\(52\) 0 0
\(53\) −5.19615 3.00000i −0.713746 0.412082i 0.0987002 0.995117i \(-0.468532\pi\)
−0.812447 + 0.583036i \(0.801865\pi\)
\(54\) 0 0
\(55\) 6.00000 3.00000i 0.809040 0.404520i
\(56\) 0 0
\(57\) 24.0000i 3.17888i
\(58\) 0 0
\(59\) 5.00000 8.66025i 0.650945 1.12747i −0.331949 0.943297i \(-0.607706\pi\)
0.982894 0.184172i \(-0.0589603\pi\)
\(60\) 0 0
\(61\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.23205 + 1.86603i −0.152817 + 0.231452i
\(66\) 0 0
\(67\) −8.66025 5.00000i −1.05802 0.610847i −0.133135 0.991098i \(-0.542504\pi\)
−0.924883 + 0.380251i \(0.875838\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −8.66025 5.00000i −1.01361 0.585206i −0.101361 0.994850i \(-0.532320\pi\)
−0.912245 + 0.409644i \(0.865653\pi\)
\(74\) 0 0
\(75\) −1.79423 + 14.8923i −0.207180 + 1.71962i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.50000 6.06218i −0.393781 0.682048i 0.599164 0.800626i \(-0.295500\pi\)
−0.992945 + 0.118578i \(0.962166\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 12.0000i 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 0 0
\(85\) −5.00000 10.0000i −0.542326 1.08465i
\(86\) 0 0
\(87\) 2.59808 + 1.50000i 0.278543 + 0.160817i
\(88\) 0 0
\(89\) −4.00000 6.92820i −0.423999 0.734388i 0.572327 0.820025i \(-0.306041\pi\)
−0.996326 + 0.0856373i \(0.972707\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −5.19615 + 3.00000i −0.538816 + 0.311086i
\(94\) 0 0
\(95\) 1.07180 17.8564i 0.109964 1.83203i
\(96\) 0 0
\(97\) 3.00000i 0.304604i 0.988334 + 0.152302i \(0.0486686\pi\)
−0.988334 + 0.152302i \(0.951331\pi\)
\(98\) 0 0
\(99\) −18.0000 −1.80907
\(100\) 0 0
\(101\) −6.00000 + 10.3923i −0.597022 + 1.03407i 0.396236 + 0.918149i \(0.370316\pi\)
−0.993258 + 0.115924i \(0.963017\pi\)
\(102\) 0 0
\(103\) 4.33013 2.50000i 0.426660 0.246332i −0.271263 0.962505i \(-0.587441\pi\)
0.697923 + 0.716173i \(0.254108\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.92820 + 4.00000i −0.669775 + 0.386695i −0.795991 0.605308i \(-0.793050\pi\)
0.126217 + 0.992003i \(0.459717\pi\)
\(108\) 0 0
\(109\) −3.50000 + 6.06218i −0.335239 + 0.580651i −0.983531 0.180741i \(-0.942150\pi\)
0.648292 + 0.761392i \(0.275484\pi\)
\(110\) 0 0
\(111\) −30.0000 −2.84747
\(112\) 0 0
\(113\) 10.0000i 0.940721i −0.882474 0.470360i \(-0.844124\pi\)
0.882474 0.470360i \(-0.155876\pi\)
\(114\) 0 0
\(115\) −4.46410 0.267949i −0.416280 0.0249864i
\(116\) 0 0
\(117\) 5.19615 3.00000i 0.480384 0.277350i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 0 0
\(123\) 15.5885 + 9.00000i 1.40556 + 0.811503i
\(124\) 0 0
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) 2.00000i 0.177471i 0.996055 + 0.0887357i \(0.0282826\pi\)
−0.996055 + 0.0887357i \(0.971717\pi\)
\(128\) 0 0
\(129\) 6.00000 10.3923i 0.528271 0.914991i
\(130\) 0 0
\(131\) 1.00000 + 1.73205i 0.0873704 + 0.151330i 0.906399 0.422423i \(-0.138820\pi\)
−0.819028 + 0.573753i \(0.805487\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 11.0885 16.7942i 0.954342 1.44542i
\(136\) 0 0
\(137\) 3.46410 + 2.00000i 0.295958 + 0.170872i 0.640626 0.767853i \(-0.278675\pi\)
−0.344668 + 0.938725i \(0.612008\pi\)
\(138\) 0 0
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 0 0
\(141\) 33.0000 2.77910
\(142\) 0 0
\(143\) 2.59808 + 1.50000i 0.217262 + 0.125436i
\(144\) 0 0
\(145\) −1.86603 1.23205i −0.154965 0.102316i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) −4.50000 + 7.79423i −0.366205 + 0.634285i −0.988969 0.148124i \(-0.952676\pi\)
0.622764 + 0.782410i \(0.286010\pi\)
\(152\) 0 0
\(153\) 30.0000i 2.42536i
\(154\) 0 0
\(155\) 4.00000 2.00000i 0.321288 0.160644i
\(156\) 0 0
\(157\) 15.5885 + 9.00000i 1.24409 + 0.718278i 0.969925 0.243403i \(-0.0782638\pi\)
0.274169 + 0.961681i \(0.411597\pi\)
\(158\) 0 0
\(159\) −9.00000 15.5885i −0.713746 1.23625i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 5.19615 3.00000i 0.406994 0.234978i −0.282503 0.959266i \(-0.591165\pi\)
0.689497 + 0.724288i \(0.257831\pi\)
\(164\) 0 0
\(165\) 20.0885 + 1.20577i 1.56388 + 0.0938692i
\(166\) 0 0
\(167\) 3.00000i 0.232147i 0.993241 + 0.116073i \(0.0370308\pi\)
−0.993241 + 0.116073i \(0.962969\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) −24.0000 + 41.5692i −1.83533 + 3.17888i
\(172\) 0 0
\(173\) 7.79423 4.50000i 0.592584 0.342129i −0.173534 0.984828i \(-0.555519\pi\)
0.766119 + 0.642699i \(0.222185\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 25.9808 15.0000i 1.95283 1.12747i
\(178\) 0 0
\(179\) 2.00000 3.46410i 0.149487 0.258919i −0.781551 0.623841i \(-0.785571\pi\)
0.931038 + 0.364922i \(0.118904\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 22.3205 + 1.33975i 1.64104 + 0.0985001i
\(186\) 0 0
\(187\) −12.9904 + 7.50000i −0.949951 + 0.548454i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.50000 6.06218i −0.253251 0.438644i 0.711168 0.703022i \(-0.248167\pi\)
−0.964419 + 0.264378i \(0.914833\pi\)
\(192\) 0 0
\(193\) −6.92820 4.00000i −0.498703 0.287926i 0.229475 0.973315i \(-0.426299\pi\)
−0.728178 + 0.685388i \(0.759632\pi\)
\(194\) 0 0
\(195\) −6.00000 + 3.00000i −0.429669 + 0.214834i
\(196\) 0 0
\(197\) 10.0000i 0.712470i −0.934396 0.356235i \(-0.884060\pi\)
0.934396 0.356235i \(-0.115940\pi\)
\(198\) 0 0
\(199\) −9.00000 + 15.5885i −0.637993 + 1.10504i 0.347879 + 0.937539i \(0.386902\pi\)
−0.985873 + 0.167497i \(0.946431\pi\)
\(200\) 0 0
\(201\) −15.0000 25.9808i −1.05802 1.83254i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −11.1962 7.39230i −0.781973 0.516301i
\(206\) 0 0
\(207\) 10.3923 + 6.00000i 0.722315 + 0.417029i
\(208\) 0 0
\(209\) −24.0000 −1.66011
\(210\) 0 0
\(211\) −3.00000 −0.206529 −0.103264 0.994654i \(-0.532929\pi\)
−0.103264 + 0.994654i \(0.532929\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.92820 + 7.46410i −0.336101 + 0.509048i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −15.0000 25.9808i −1.01361 1.75562i
\(220\) 0 0
\(221\) 2.50000 4.33013i 0.168168 0.291276i
\(222\) 0 0
\(223\) 19.0000i 1.27233i −0.771551 0.636167i \(-0.780519\pi\)
0.771551 0.636167i \(-0.219481\pi\)
\(224\) 0 0
\(225\) −18.0000 + 24.0000i −1.20000 + 1.60000i
\(226\) 0 0
\(227\) −23.3827 13.5000i −1.55196 0.896026i −0.997982 0.0634974i \(-0.979775\pi\)
−0.553981 0.832529i \(-0.686892\pi\)
\(228\) 0 0
\(229\) 13.0000 + 22.5167i 0.859064 + 1.48794i 0.872823 + 0.488037i \(0.162287\pi\)
−0.0137585 + 0.999905i \(0.504380\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.8564 8.00000i 0.907763 0.524097i 0.0280525 0.999606i \(-0.491069\pi\)
0.879711 + 0.475509i \(0.157736\pi\)
\(234\) 0 0
\(235\) −24.5526 1.47372i −1.60163 0.0961349i
\(236\) 0 0
\(237\) 21.0000i 1.36410i
\(238\) 0 0
\(239\) −5.00000 −0.323423 −0.161712 0.986838i \(-0.551701\pi\)
−0.161712 + 0.986838i \(0.551701\pi\)
\(240\) 0 0
\(241\) −9.00000 + 15.5885i −0.579741 + 1.00414i 0.415768 + 0.909471i \(0.363513\pi\)
−0.995509 + 0.0946700i \(0.969820\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.92820 4.00000i 0.440831 0.254514i
\(248\) 0 0
\(249\) 18.0000 31.1769i 1.14070 1.97576i
\(250\) 0 0
\(251\) −2.00000 −0.126239 −0.0631194 0.998006i \(-0.520105\pi\)
−0.0631194 + 0.998006i \(0.520105\pi\)
\(252\) 0 0
\(253\) 6.00000i 0.377217i
\(254\) 0 0
\(255\) 2.00962 33.4808i 0.125847 2.09665i
\(256\) 0 0
\(257\) 5.19615 3.00000i 0.324127 0.187135i −0.329104 0.944294i \(-0.606747\pi\)
0.653231 + 0.757159i \(0.273413\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 3.00000 + 5.19615i 0.185695 + 0.321634i
\(262\) 0 0
\(263\) 20.7846 + 12.0000i 1.28163 + 0.739952i 0.977147 0.212565i \(-0.0681817\pi\)
0.304487 + 0.952517i \(0.401515\pi\)
\(264\) 0 0
\(265\) 6.00000 + 12.0000i 0.368577 + 0.737154i
\(266\) 0 0
\(267\) 24.0000i 1.46878i
\(268\) 0 0
\(269\) −1.00000 + 1.73205i −0.0609711 + 0.105605i −0.894900 0.446267i \(-0.852753\pi\)
0.833929 + 0.551872i \(0.186086\pi\)
\(270\) 0 0
\(271\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −14.8923 1.79423i −0.898040 0.108196i
\(276\) 0 0
\(277\) −12.1244 7.00000i −0.728482 0.420589i 0.0893846 0.995997i \(-0.471510\pi\)
−0.817867 + 0.575408i \(0.804843\pi\)
\(278\) 0 0
\(279\) −12.0000 −0.718421
\(280\) 0 0
\(281\) 15.0000 0.894825 0.447412 0.894328i \(-0.352346\pi\)
0.447412 + 0.894328i \(0.352346\pi\)
\(282\) 0 0
\(283\) −6.06218 3.50000i −0.360359 0.208053i 0.308879 0.951101i \(-0.400046\pi\)
−0.669238 + 0.743048i \(0.733379\pi\)
\(284\) 0 0
\(285\) 29.5692 44.7846i 1.75153 2.65281i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) −4.50000 + 7.79423i −0.263795 + 0.456906i
\(292\) 0 0
\(293\) 15.0000i 0.876309i −0.898900 0.438155i \(-0.855632\pi\)
0.898900 0.438155i \(-0.144368\pi\)
\(294\) 0 0
\(295\) −20.0000 + 10.0000i −1.16445 + 0.582223i
\(296\) 0 0
\(297\) −23.3827 13.5000i −1.35680 0.783349i
\(298\) 0 0
\(299\) −1.00000 1.73205i −0.0578315 0.100167i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −31.1769 + 18.0000i −1.79107 + 1.03407i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 19.0000i 1.08439i −0.840254 0.542194i \(-0.817594\pi\)
0.840254 0.542194i \(-0.182406\pi\)
\(308\) 0 0
\(309\) 15.0000 0.853320
\(310\) 0 0
\(311\) 6.00000 10.3923i 0.340229 0.589294i −0.644246 0.764818i \(-0.722829\pi\)
0.984475 + 0.175525i \(0.0561621\pi\)
\(312\) 0 0
\(313\) 6.06218 3.50000i 0.342655 0.197832i −0.318791 0.947825i \(-0.603277\pi\)
0.661445 + 0.749993i \(0.269943\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −24.2487 + 14.0000i −1.36194 + 0.786318i −0.989882 0.141890i \(-0.954682\pi\)
−0.372061 + 0.928208i \(0.621349\pi\)
\(318\) 0 0
\(319\) −1.50000 + 2.59808i −0.0839839 + 0.145464i
\(320\) 0 0
\(321\) −24.0000 −1.33955
\(322\) 0 0
\(323\) 40.0000i 2.22566i
\(324\) 0 0
\(325\) 4.59808 1.96410i 0.255055 0.108949i
\(326\) 0 0
\(327\) −18.1865 + 10.5000i −1.00572 + 0.580651i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −10.0000 17.3205i −0.549650 0.952021i −0.998298 0.0583130i \(-0.981428\pi\)
0.448649 0.893708i \(-0.351905\pi\)
\(332\) 0 0
\(333\) −51.9615 30.0000i −2.84747 1.64399i
\(334\) 0 0
\(335\) 10.0000 + 20.0000i 0.546358 + 1.09272i
\(336\) 0 0
\(337\) 22.0000i 1.19842i −0.800593 0.599208i \(-0.795482\pi\)
0.800593 0.599208i \(-0.204518\pi\)
\(338\) 0 0
\(339\) 15.0000 25.9808i 0.814688 1.41108i
\(340\) 0 0
\(341\) −3.00000 5.19615i −0.162459 0.281387i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −11.1962 7.39230i −0.602781 0.397988i
\(346\) 0 0
\(347\) 15.5885 + 9.00000i 0.836832 + 0.483145i 0.856186 0.516667i \(-0.172828\pi\)
−0.0193540 + 0.999813i \(0.506161\pi\)
\(348\) 0 0
\(349\) 36.0000 1.92704 0.963518 0.267644i \(-0.0862451\pi\)
0.963518 + 0.267644i \(0.0862451\pi\)
\(350\) 0 0
\(351\) 9.00000 0.480384
\(352\) 0 0
\(353\) −7.79423 4.50000i −0.414845 0.239511i 0.278024 0.960574i \(-0.410320\pi\)
−0.692869 + 0.721063i \(0.743654\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.0000 + 24.2487i 0.738892 + 1.27980i 0.952995 + 0.302987i \(0.0979839\pi\)
−0.214103 + 0.976811i \(0.568683\pi\)
\(360\) 0 0
\(361\) −22.5000 + 38.9711i −1.18421 + 2.05111i
\(362\) 0 0
\(363\) 6.00000i 0.314918i
\(364\) 0 0
\(365\) 10.0000 + 20.0000i 0.523424 + 1.04685i
\(366\) 0 0
\(367\) −16.4545 9.50000i −0.858917 0.495896i 0.00473247 0.999989i \(-0.498494\pi\)
−0.863649 + 0.504093i \(0.831827\pi\)
\(368\) 0 0
\(369\) 18.0000 + 31.1769i 0.937043 + 1.62301i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 27.7128 16.0000i 1.43492 0.828449i 0.437425 0.899255i \(-0.355891\pi\)
0.997490 + 0.0708063i \(0.0225572\pi\)
\(374\) 0 0
\(375\) 21.6962 25.5788i 1.12038 1.32089i
\(376\) 0 0
\(377\) 1.00000i 0.0515026i
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) −3.00000 + 5.19615i −0.153695 + 0.266207i
\(382\) 0 0
\(383\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 20.7846 12.0000i 1.05654 0.609994i
\(388\) 0 0
\(389\) 4.50000 7.79423i 0.228159 0.395183i −0.729103 0.684403i \(-0.760063\pi\)
0.957263 + 0.289220i \(0.0933960\pi\)
\(390\) 0 0
\(391\) 10.0000 0.505722
\(392\) 0 0
\(393\) 6.00000i 0.302660i
\(394\) 0 0
\(395\) −0.937822 + 15.6244i −0.0471870 + 0.786147i
\(396\) 0 0
\(397\) −14.7224 + 8.50000i −0.738898 + 0.426603i −0.821668 0.569966i \(-0.806956\pi\)
0.0827707 + 0.996569i \(0.473623\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.5000 + 23.3827i 0.674158 + 1.16768i 0.976714 + 0.214544i \(0.0688266\pi\)
−0.302556 + 0.953131i \(0.597840\pi\)
\(402\) 0 0
\(403\) 1.73205 + 1.00000i 0.0862796 + 0.0498135i
\(404\) 0 0
\(405\) 18.0000 9.00000i 0.894427 0.447214i
\(406\) 0 0
\(407\) 30.0000i 1.48704i
\(408\) 0 0
\(409\) −2.00000 + 3.46410i −0.0988936 + 0.171289i −0.911227 0.411905i \(-0.864864\pi\)
0.812333 + 0.583193i \(0.198197\pi\)
\(410\) 0 0
\(411\) 6.00000 + 10.3923i 0.295958 + 0.512615i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −14.7846 + 22.3923i −0.725748 + 1.09920i
\(416\) 0 0
\(417\) 25.9808 + 15.0000i 1.27228 + 0.734553i
\(418\) 0 0
\(419\) 2.00000 0.0977064 0.0488532 0.998806i \(-0.484443\pi\)
0.0488532 + 0.998806i \(0.484443\pi\)
\(420\) 0 0
\(421\) −23.0000 −1.12095 −0.560476 0.828171i \(-0.689382\pi\)
−0.560476 + 0.828171i \(0.689382\pi\)
\(422\) 0 0
\(423\) 57.1577 + 33.0000i 2.77910 + 1.60451i
\(424\) 0 0
\(425\) −2.99038 + 24.8205i −0.145055 + 1.20397i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 4.50000 + 7.79423i 0.217262 + 0.376309i
\(430\) 0 0
\(431\) 18.5000 32.0429i 0.891114 1.54345i 0.0525716 0.998617i \(-0.483258\pi\)
0.838542 0.544837i \(-0.183408\pi\)
\(432\) 0 0
\(433\) 38.0000i 1.82616i 0.407777 + 0.913082i \(0.366304\pi\)
−0.407777 + 0.913082i \(0.633696\pi\)
\(434\) 0 0
\(435\) −3.00000 6.00000i −0.143839 0.287678i
\(436\) 0 0
\(437\) 13.8564 + 8.00000i 0.662842 + 0.382692i
\(438\) 0 0
\(439\) −13.0000 22.5167i −0.620456 1.07466i −0.989401 0.145210i \(-0.953614\pi\)
0.368945 0.929451i \(-0.379719\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.3923 6.00000i 0.493753 0.285069i −0.232377 0.972626i \(-0.574650\pi\)
0.726130 + 0.687557i \(0.241317\pi\)
\(444\) 0 0
\(445\) −1.07180 + 17.8564i −0.0508080 + 0.846475i
\(446\) 0 0
\(447\) 18.0000i 0.851371i
\(448\) 0 0
\(449\) −11.0000 −0.519122 −0.259561 0.965727i \(-0.583578\pi\)
−0.259561 + 0.965727i \(0.583578\pi\)
\(450\) 0 0
\(451\) −9.00000 + 15.5885i −0.423793 + 0.734032i
\(452\) 0 0
\(453\) −23.3827 + 13.5000i −1.09861 + 0.634285i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.0526 11.0000i 0.891241 0.514558i 0.0168929 0.999857i \(-0.494623\pi\)
0.874348 + 0.485299i \(0.161289\pi\)
\(458\) 0 0
\(459\) −22.5000 + 38.9711i −1.05021 + 1.81902i
\(460\) 0 0
\(461\) −28.0000 −1.30409 −0.652045 0.758180i \(-0.726089\pi\)
−0.652045 + 0.758180i \(0.726089\pi\)
\(462\) 0 0
\(463\) 4.00000i 0.185896i 0.995671 + 0.0929479i \(0.0296290\pi\)
−0.995671 + 0.0929479i \(0.970371\pi\)
\(464\) 0 0
\(465\) 13.3923 + 0.803848i 0.621053 + 0.0372775i
\(466\) 0 0
\(467\) −19.9186 + 11.5000i −0.921722 + 0.532157i −0.884184 0.467139i \(-0.845285\pi\)
−0.0375381 + 0.999295i \(0.511952\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 27.0000 + 46.7654i 1.24409 + 2.15483i
\(472\) 0 0
\(473\) 10.3923 + 6.00000i 0.477839 + 0.275880i
\(474\) 0 0
\(475\) −24.0000 + 32.0000i −1.10120 + 1.46826i
\(476\) 0 0
\(477\) 36.0000i 1.64833i
\(478\) 0 0
\(479\) 9.00000 15.5885i 0.411220 0.712255i −0.583803 0.811895i \(-0.698436\pi\)
0.995023 + 0.0996406i \(0.0317693\pi\)
\(480\) 0 0
\(481\) 5.00000 + 8.66025i 0.227980 + 0.394874i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.69615 5.59808i 0.167834 0.254196i
\(486\) 0 0
\(487\) −22.5167 13.0000i −1.02033 0.589086i −0.106129 0.994352i \(-0.533846\pi\)
−0.914199 + 0.405266i \(0.867179\pi\)
\(488\) 0 0
\(489\) 18.0000 0.813988
\(490\) 0 0
\(491\) 33.0000 1.48927 0.744635 0.667472i \(-0.232624\pi\)
0.744635 + 0.667472i \(0.232624\pi\)
\(492\) 0 0
\(493\) 4.33013 + 2.50000i 0.195019 + 0.112594i
\(494\) 0 0
\(495\) 33.5885 + 22.1769i 1.50969 + 0.996778i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −14.5000 25.1147i −0.649109 1.12429i −0.983336 0.181797i \(-0.941809\pi\)
0.334227 0.942493i \(-0.391525\pi\)
\(500\) 0 0
\(501\) −4.50000 + 7.79423i −0.201045 + 0.348220i
\(502\) 0 0
\(503\) 1.00000i 0.0445878i −0.999751 0.0222939i \(-0.992903\pi\)
0.999751 0.0222939i \(-0.00709696\pi\)
\(504\) 0 0
\(505\) 24.0000 12.0000i 1.06799 0.533993i
\(506\) 0 0
\(507\) 31.1769 + 18.0000i 1.38462 + 0.799408i
\(508\) 0 0
\(509\) −13.0000 22.5167i −0.576215 0.998033i −0.995908 0.0903676i \(-0.971196\pi\)
0.419694 0.907666i \(-0.362138\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −62.3538 + 36.0000i −2.75299 + 1.58944i
\(514\) 0 0
\(515\) −11.1603 0.669873i −0.491780 0.0295181i
\(516\) 0 0
\(517\) 33.0000i 1.45134i
\(518\) 0 0
\(519\) 27.0000 1.18517
\(520\) 0 0
\(521\) 6.00000 10.3923i 0.262865 0.455295i −0.704137 0.710064i \(-0.748666\pi\)
0.967002 + 0.254769i \(0.0819994\pi\)
\(522\) 0 0
\(523\) 17.3205 10.0000i 0.757373 0.437269i −0.0709788 0.997478i \(-0.522612\pi\)
0.828352 + 0.560208i \(0.189279\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.66025 + 5.00000i −0.377247 + 0.217803i
\(528\) 0 0
\(529\) −9.50000 + 16.4545i −0.413043 + 0.715412i
\(530\) 0 0
\(531\) 60.0000 2.60378
\(532\) 0 0
\(533\) 6.00000i 0.259889i
\(534\) 0 0
\(535\) 17.8564 + 1.07180i 0.772000 + 0.0463378i
\(536\) 0 0
\(537\) 10.3923 6.00000i 0.448461 0.258919i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 12.5000 + 21.6506i 0.537417 + 0.930834i 0.999042 + 0.0437584i \(0.0139332\pi\)
−0.461625 + 0.887075i \(0.652733\pi\)
\(542\) 0 0
\(543\) 25.9808 + 15.0000i 1.11494 + 0.643712i
\(544\) 0 0
\(545\) 14.0000 7.00000i 0.599694 0.299847i
\(546\) 0 0
\(547\) 8.00000i 0.342055i 0.985266 + 0.171028i \(0.0547087\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.00000 + 6.92820i 0.170406 + 0.295151i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 55.9808 + 36.9615i 2.37625 + 1.56893i
\(556\) 0 0
\(557\) 17.3205 + 10.0000i 0.733893 + 0.423714i 0.819845 0.572586i \(-0.194060\pi\)
−0.0859514 + 0.996299i \(0.527393\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) −45.0000 −1.89990
\(562\) 0 0
\(563\) −13.8564 8.00000i −0.583978 0.337160i 0.178735 0.983897i \(-0.442800\pi\)
−0.762713 + 0.646737i \(0.776133\pi\)
\(564\) 0 0
\(565\) −12.3205 + 18.6603i −0.518328 + 0.785043i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.00000 + 15.5885i 0.377300 + 0.653502i 0.990668 0.136295i \(-0.0435194\pi\)
−0.613369 + 0.789797i \(0.710186\pi\)
\(570\) 0 0
\(571\) −10.0000 + 17.3205i −0.418487 + 0.724841i −0.995788 0.0916910i \(-0.970773\pi\)
0.577301 + 0.816532i \(0.304106\pi\)
\(572\) 0 0
\(573\) 21.0000i 0.877288i
\(574\) 0 0
\(575\) 8.00000 + 6.00000i 0.333623 + 0.250217i
\(576\) 0 0
\(577\) −14.7224 8.50000i −0.612903 0.353860i 0.161198 0.986922i \(-0.448464\pi\)
−0.774101 + 0.633062i \(0.781798\pi\)
\(578\) 0 0
\(579\) −12.0000 20.7846i −0.498703 0.863779i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 15.5885 9.00000i 0.645608 0.372742i
\(584\) 0 0
\(585\) −13.3923 0.803848i −0.553704 0.0332350i
\(586\) 0 0
\(587\) 28.0000i 1.15568i 0.816149 + 0.577842i \(0.196105\pi\)
−0.816149 + 0.577842i \(0.803895\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 15.0000 25.9808i 0.617018 1.06871i
\(592\) 0 0
\(593\) 2.59808 1.50000i 0.106690 0.0615976i −0.445705 0.895180i \(-0.647047\pi\)
0.552396 + 0.833582i \(0.313714\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −46.7654 + 27.0000i −1.91398 + 1.10504i
\(598\) 0 0
\(599\) −10.5000 + 18.1865i −0.429018 + 0.743082i −0.996786 0.0801071i \(-0.974474\pi\)
0.567768 + 0.823189i \(0.307807\pi\)
\(600\) 0 0
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 0 0
\(603\) 60.0000i 2.44339i
\(604\) 0 0
\(605\) 0.267949 4.46410i 0.0108937 0.181492i
\(606\) 0 0
\(607\) 4.33013 2.50000i 0.175754 0.101472i −0.409542 0.912291i \(-0.634311\pi\)
0.585296 + 0.810819i \(0.300978\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.50000 9.52628i −0.222506 0.385392i
\(612\) 0 0
\(613\) 10.3923 + 6.00000i 0.419741 + 0.242338i 0.694967 0.719042i \(-0.255419\pi\)
−0.275225 + 0.961380i \(0.588752\pi\)
\(614\) 0 0
\(615\) −18.0000 36.0000i −0.725830 1.45166i
\(616\) 0 0
\(617\) 34.0000i 1.36879i 0.729112 + 0.684394i \(0.239933\pi\)
−0.729112 + 0.684394i \(0.760067\pi\)
\(618\) 0 0
\(619\) 1.00000 1.73205i 0.0401934 0.0696170i −0.845229 0.534404i \(-0.820536\pi\)
0.885422 + 0.464787i \(0.153869\pi\)
\(620\) 0 0
\(621\) 9.00000 + 15.5885i 0.361158 + 0.625543i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −17.2846 + 18.0622i −0.691384 + 0.722487i
\(626\) 0 0
\(627\) −62.3538 36.0000i −2.49017 1.43770i
\(628\) 0 0
\(629\) −50.0000 −1.99363
\(630\) 0 0
\(631\) 15.0000 0.597141 0.298570 0.954388i \(-0.403490\pi\)
0.298570 + 0.954388i \(0.403490\pi\)
\(632\) 0 0
\(633\) −7.79423 4.50000i −0.309793 0.178859i
\(634\) 0 0
\(635\) 2.46410 3.73205i 0.0977849 0.148102i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 13.0000 22.5167i 0.513469 0.889355i −0.486409 0.873731i \(-0.661693\pi\)
0.999878 0.0156233i \(-0.00497325\pi\)
\(642\) 0 0
\(643\) 5.00000i 0.197181i 0.995128 + 0.0985904i \(0.0314334\pi\)
−0.995128 + 0.0985904i \(0.968567\pi\)
\(644\) 0 0
\(645\) −24.0000 + 12.0000i −0.944999 + 0.472500i
\(646\) 0 0
\(647\) 20.7846 + 12.0000i 0.817127 + 0.471769i 0.849425 0.527710i \(-0.176949\pi\)
−0.0322975 + 0.999478i \(0.510282\pi\)
\(648\) 0 0
\(649\) 15.0000 + 25.9808i 0.588802 + 1.01983i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 31.1769 18.0000i 1.22005 0.704394i 0.255119 0.966910i \(-0.417885\pi\)
0.964928 + 0.262515i \(0.0845520\pi\)
\(654\) 0 0
\(655\) 0.267949 4.46410i 0.0104696 0.174427i
\(656\) 0 0
\(657\) 60.0000i 2.34082i
\(658\) 0 0
\(659\) −39.0000 −1.51922 −0.759612 0.650376i \(-0.774611\pi\)
−0.759612 + 0.650376i \(0.774611\pi\)
\(660\) 0 0
\(661\) 14.0000 24.2487i 0.544537 0.943166i −0.454099 0.890951i \(-0.650039\pi\)
0.998636 0.0522143i \(-0.0166279\pi\)
\(662\) 0 0
\(663\) 12.9904 7.50000i 0.504505 0.291276i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.73205 1.00000i 0.0670653 0.0387202i
\(668\) 0 0
\(669\) 28.5000 49.3634i 1.10187 1.90850i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 16.0000i 0.616755i −0.951264 0.308377i \(-0.900214\pi\)
0.951264 0.308377i \(-0.0997859\pi\)
\(674\) 0 0
\(675\) −41.3827 + 17.6769i −1.59282 + 0.680385i
\(676\) 0 0
\(677\) −9.52628 + 5.50000i −0.366125 + 0.211382i −0.671764 0.740765i \(-0.734463\pi\)
0.305639 + 0.952147i \(0.401130\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −40.5000 70.1481i −1.55196 2.68808i
\(682\) 0 0
\(683\) −34.6410 20.0000i −1.32550 0.765279i −0.340901 0.940099i \(-0.610732\pi\)
−0.984600 + 0.174820i \(0.944066\pi\)
\(684\) 0 0
\(685\) −4.00000 8.00000i −0.152832 0.305664i
\(686\) 0 0
\(687\) 78.0000i 2.97589i
\(688\) 0 0
\(689\) −3.00000 + 5.19615i −0.114291 + 0.197958i
\(690\) 0 0
\(691\) 20.0000 + 34.6410i 0.760836 + 1.31781i 0.942420 + 0.334431i \(0.108544\pi\)
−0.181584 + 0.983375i \(0.558123\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −18.6603 12.3205i −0.707824 0.467344i
\(696\) 0 0
\(697\) 25.9808 + 15.0000i 0.984092 + 0.568166i
\(698\) 0 0
\(699\) 48.0000 1.81553
\(700\) 0 0
\(701\) −25.0000 −0.944237 −0.472118 0.881535i \(-0.656511\pi\)
−0.472118 + 0.881535i \(0.656511\pi\)
\(702\) 0 0
\(703\) −69.2820 40.0000i −2.61302 1.50863i
\(704\) 0 0
\(705\) −61.5788 40.6577i −2.31919 1.53126i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 7.50000 + 12.9904i 0.281668 + 0.487864i 0.971796 0.235824i \(-0.0757789\pi\)
−0.690127 + 0.723688i \(0.742446\pi\)
\(710\) 0 0
\(711\) 21.0000 36.3731i 0.787562 1.36410i
\(712\) 0 0
\(713\) 4.00000i 0.149801i
\(714\) 0 0
\(715\) −3.00000 6.00000i −0.112194 0.224387i
\(716\) 0 0
\(717\) −12.9904 7.50000i −0.485135 0.280093i
\(718\) 0 0
\(719\) −1.00000 1.73205i −0.0372937 0.0645946i 0.846776 0.531949i \(-0.178540\pi\)
−0.884070 + 0.467355i \(0.845207\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −46.7654 + 27.0000i −1.73922 + 1.00414i
\(724\) 0 0
\(725\) 1.96410 + 4.59808i 0.0729449 + 0.170768i
\(726\) 0 0
\(727\) 28.0000i 1.03846i 0.854634 + 0.519231i \(0.173782\pi\)
−0.854634 + 0.519231i \(0.826218\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 10.0000 17.3205i 0.369863 0.640622i
\(732\) 0 0
\(733\) −35.5070 + 20.5000i −1.31148 + 0.757185i −0.982342 0.187096i \(-0.940092\pi\)
−0.329141 + 0.944281i \(0.606759\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 25.9808 15.0000i 0.957014 0.552532i
\(738\) 0 0
\(739\) −2.50000 + 4.33013i −0.0919640 + 0.159286i −0.908337 0.418238i \(-0.862648\pi\)
0.816373 + 0.577524i \(0.195981\pi\)
\(740\) 0 0
\(741\) 24.0000 0.881662
\(742\) 0 0
\(743\) 30.0000i 1.10059i 0.834969 + 0.550297i \(0.185485\pi\)
−0.834969 + 0.550297i \(0.814515\pi\)
\(744\) 0 0
\(745\) −0.803848 + 13.3923i −0.0294507 + 0.490656i
\(746\) 0 0
\(747\) 62.3538 36.0000i 2.28141 1.31717i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −6.50000 11.2583i −0.237188 0.410822i 0.722718 0.691143i \(-0.242893\pi\)
−0.959906 + 0.280321i \(0.909559\pi\)
\(752\) 0 0
\(753\) −5.19615 3.00000i −0.189358 0.109326i
\(754\) 0 0
\(755\) 18.0000 9.00000i 0.655087 0.327544i
\(756\) 0 0
\(757\) 48.0000i 1.74459i 0.488980 + 0.872295i \(0.337369\pi\)
−0.488980 + 0.872295i \(0.662631\pi\)
\(758\) 0 0
\(759\) −9.00000 + 15.5885i −0.326679 + 0.565825i
\(760\) 0 0
\(761\) −19.0000 32.9090i −0.688749 1.19295i −0.972243 0.233975i \(-0.924827\pi\)
0.283493 0.958974i \(-0.408507\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 36.9615 55.9808i 1.33635 2.02399i
\(766\) 0 0
\(767\) −8.66025 5.00000i −0.312704 0.180540i
\(768\) 0 0
\(769\) 16.0000 0.576975 0.288487 0.957484i \(-0.406848\pi\)
0.288487 + 0.957484i \(0.406848\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 0 0
\(773\) −23.3827 13.5000i −0.841017 0.485561i 0.0165929 0.999862i \(-0.494718\pi\)
−0.857610 + 0.514301i \(0.828051\pi\)
\(774\) 0 0
\(775\) −9.92820 1.19615i −0.356632 0.0429671i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24.0000 + 41.5692i 0.859889 + 1.48937i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 9.00000i 0.321634i
\(784\) 0 0
\(785\) −18.0000 36.0000i −0.642448 1.28490i
\(786\) 0 0
\(787\) −2.59808 1.50000i −0.0926114 0.0534692i 0.452979 0.891521i \(-0.350361\pi\)
−0.545590 + 0.838052i \(0.683695\pi\)
\(788\) 0 0
\(789\) 36.0000 + 62.3538i 1.28163 + 2.21986i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −2.41154 + 40.1769i −0.0855286 + 1.42493i
\(796\) 0 0
\(797\) 43.0000i 1.52314i