Properties

Label 980.2.q.b.949.2
Level $980$
Weight $2$
Character 980.949
Analytic conductor $7.825$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 949.2
Root \(2.13746 - 0.656712i\) of defining polynomial
Character \(\chi\) \(=\) 980.949
Dual form 980.2.q.b.569.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{3} +(0.500000 + 2.17945i) q^{5} +O(q^{10})\) \(q+(-1.50000 - 0.866025i) q^{3} +(0.500000 + 2.17945i) q^{5} +(-1.13746 + 1.97014i) q^{11} -6.09095i q^{13} +(1.13746 - 3.70219i) q^{15} +(4.13746 + 2.38876i) q^{17} +(2.13746 + 3.70219i) q^{19} +(-0.774917 + 0.447399i) q^{23} +(-4.50000 + 2.17945i) q^{25} +5.19615i q^{27} +3.27492 q^{29} +(-2.13746 + 3.70219i) q^{31} +(3.41238 - 1.97014i) q^{33} +(-4.86254 + 2.80739i) q^{37} +(-5.27492 + 9.13642i) q^{39} +11.2749 q^{41} +6.50958i q^{43} +(-1.86254 + 1.07534i) q^{47} +(-4.13746 - 7.16629i) q^{51} +(6.41238 + 3.70219i) q^{53} +(-4.86254 - 1.49397i) q^{55} -7.40437i q^{57} +(-2.13746 + 3.70219i) q^{59} +(0.774917 + 1.34220i) q^{61} +(13.2749 - 3.04547i) q^{65} +(12.0498 + 6.95698i) q^{67} +1.54983 q^{69} +10.5498 q^{71} +(-1.86254 - 1.07534i) q^{73} +(8.63746 + 0.627940i) q^{75} +(-0.137459 - 0.238085i) q^{79} +(4.50000 - 7.79423i) q^{81} +5.67232i q^{83} +(-3.13746 + 10.2118i) q^{85} +(-4.91238 - 2.83616i) q^{87} +(3.50000 + 6.06218i) q^{89} +(6.41238 - 3.70219i) q^{93} +(-7.00000 + 6.50958i) q^{95} +6.92820i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} + 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 6 q^{3} + 2 q^{5} + 3 q^{11} - 3 q^{15} + 9 q^{17} + q^{19} + 12 q^{23} - 18 q^{25} - 2 q^{29} - q^{31} - 9 q^{33} - 27 q^{37} - 6 q^{39} + 30 q^{41} - 15 q^{47} - 9 q^{51} + 3 q^{53} - 27 q^{55} - q^{59} - 12 q^{61} + 38 q^{65} + 18 q^{67} - 24 q^{69} + 12 q^{71} - 15 q^{73} + 27 q^{75} + 7 q^{79} + 18 q^{81} - 5 q^{85} + 3 q^{87} + 14 q^{89} + 3 q^{93} - 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 0.866025i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) 0.500000 + 2.17945i 0.223607 + 0.974679i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.13746 + 1.97014i −0.342957 + 0.594018i −0.984980 0.172666i \(-0.944762\pi\)
0.642024 + 0.766685i \(0.278095\pi\)
\(12\) 0 0
\(13\) 6.09095i 1.68933i −0.535299 0.844663i \(-0.679801\pi\)
0.535299 0.844663i \(-0.320199\pi\)
\(14\) 0 0
\(15\) 1.13746 3.70219i 0.293691 0.955901i
\(16\) 0 0
\(17\) 4.13746 + 2.38876i 1.00348 + 0.579360i 0.909276 0.416193i \(-0.136636\pi\)
0.0942047 + 0.995553i \(0.469969\pi\)
\(18\) 0 0
\(19\) 2.13746 + 3.70219i 0.490367 + 0.849340i 0.999939 0.0110882i \(-0.00352954\pi\)
−0.509572 + 0.860428i \(0.670196\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.774917 + 0.447399i −0.161581 + 0.0932891i −0.578610 0.815604i \(-0.696405\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −4.50000 + 2.17945i −0.900000 + 0.435890i
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 3.27492 0.608137 0.304068 0.952650i \(-0.401655\pi\)
0.304068 + 0.952650i \(0.401655\pi\)
\(30\) 0 0
\(31\) −2.13746 + 3.70219i −0.383899 + 0.664932i −0.991616 0.129221i \(-0.958752\pi\)
0.607717 + 0.794154i \(0.292086\pi\)
\(32\) 0 0
\(33\) 3.41238 1.97014i 0.594018 0.342957i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.86254 + 2.80739i −0.799397 + 0.461532i −0.843260 0.537506i \(-0.819367\pi\)
0.0438633 + 0.999038i \(0.486033\pi\)
\(38\) 0 0
\(39\) −5.27492 + 9.13642i −0.844663 + 1.46300i
\(40\) 0 0
\(41\) 11.2749 1.76085 0.880423 0.474189i \(-0.157259\pi\)
0.880423 + 0.474189i \(0.157259\pi\)
\(42\) 0 0
\(43\) 6.50958i 0.992701i 0.868122 + 0.496351i \(0.165327\pi\)
−0.868122 + 0.496351i \(0.834673\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.86254 + 1.07534i −0.271680 + 0.156854i −0.629651 0.776878i \(-0.716802\pi\)
0.357971 + 0.933733i \(0.383469\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −4.13746 7.16629i −0.579360 1.00348i
\(52\) 0 0
\(53\) 6.41238 + 3.70219i 0.880808 + 0.508534i 0.870925 0.491417i \(-0.163521\pi\)
0.00988297 + 0.999951i \(0.496854\pi\)
\(54\) 0 0
\(55\) −4.86254 1.49397i −0.655665 0.201446i
\(56\) 0 0
\(57\) 7.40437i 0.980733i
\(58\) 0 0
\(59\) −2.13746 + 3.70219i −0.278273 + 0.481984i −0.970956 0.239259i \(-0.923095\pi\)
0.692682 + 0.721243i \(0.256429\pi\)
\(60\) 0 0
\(61\) 0.774917 + 1.34220i 0.0992180 + 0.171851i 0.911361 0.411608i \(-0.135033\pi\)
−0.812143 + 0.583458i \(0.801699\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 13.2749 3.04547i 1.64655 0.377745i
\(66\) 0 0
\(67\) 12.0498 + 6.95698i 1.47212 + 0.849930i 0.999509 0.0313404i \(-0.00997759\pi\)
0.472613 + 0.881270i \(0.343311\pi\)
\(68\) 0 0
\(69\) 1.54983 0.186578
\(70\) 0 0
\(71\) 10.5498 1.25204 0.626018 0.779809i \(-0.284684\pi\)
0.626018 + 0.779809i \(0.284684\pi\)
\(72\) 0 0
\(73\) −1.86254 1.07534i −0.217994 0.125859i 0.387027 0.922068i \(-0.373502\pi\)
−0.605021 + 0.796209i \(0.706835\pi\)
\(74\) 0 0
\(75\) 8.63746 + 0.627940i 0.997368 + 0.0725083i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.137459 0.238085i −0.0154653 0.0267867i 0.858189 0.513334i \(-0.171590\pi\)
−0.873654 + 0.486547i \(0.838256\pi\)
\(80\) 0 0
\(81\) 4.50000 7.79423i 0.500000 0.866025i
\(82\) 0 0
\(83\) 5.67232i 0.622618i 0.950309 + 0.311309i \(0.100767\pi\)
−0.950309 + 0.311309i \(0.899233\pi\)
\(84\) 0 0
\(85\) −3.13746 + 10.2118i −0.340305 + 1.10762i
\(86\) 0 0
\(87\) −4.91238 2.83616i −0.526662 0.304068i
\(88\) 0 0
\(89\) 3.50000 + 6.06218i 0.370999 + 0.642590i 0.989720 0.143022i \(-0.0456819\pi\)
−0.618720 + 0.785611i \(0.712349\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.41238 3.70219i 0.664932 0.383899i
\(94\) 0 0
\(95\) −7.00000 + 6.50958i −0.718185 + 0.667868i
\(96\) 0 0
\(97\) 6.92820i 0.703452i 0.936103 + 0.351726i \(0.114405\pi\)
−0.936103 + 0.351726i \(0.885595\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.774917 1.34220i 0.0771071 0.133553i −0.824894 0.565288i \(-0.808765\pi\)
0.902001 + 0.431735i \(0.142098\pi\)
\(102\) 0 0
\(103\) 2.22508 1.28465i 0.219244 0.126581i −0.386356 0.922350i \(-0.626266\pi\)
0.605600 + 0.795769i \(0.292933\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0498 + 6.95698i −1.16490 + 0.672556i −0.952474 0.304621i \(-0.901470\pi\)
−0.212428 + 0.977177i \(0.568137\pi\)
\(108\) 0 0
\(109\) 1.77492 3.07425i 0.170006 0.294459i −0.768416 0.639951i \(-0.778955\pi\)
0.938422 + 0.345492i \(0.112288\pi\)
\(110\) 0 0
\(111\) 9.72508 0.923064
\(112\) 0 0
\(113\) 13.0192i 1.22474i −0.790572 0.612369i \(-0.790217\pi\)
0.790572 0.612369i \(-0.209783\pi\)
\(114\) 0 0
\(115\) −1.36254 1.46519i −0.127058 0.136630i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.91238 + 5.04438i 0.264761 + 0.458580i
\(122\) 0 0
\(123\) −16.9124 9.76436i −1.52494 0.880423i
\(124\) 0 0
\(125\) −7.00000 8.71780i −0.626099 0.779744i
\(126\) 0 0
\(127\) 1.78959i 0.158801i 0.996843 + 0.0794004i \(0.0253006\pi\)
−0.996843 + 0.0794004i \(0.974699\pi\)
\(128\) 0 0
\(129\) 5.63746 9.76436i 0.496351 0.859704i
\(130\) 0 0
\(131\) −9.13746 15.8265i −0.798343 1.38277i −0.920694 0.390285i \(-0.872377\pi\)
0.122351 0.992487i \(-0.460957\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −11.3248 + 2.59808i −0.974679 + 0.223607i
\(136\) 0 0
\(137\) −7.96221 4.59698i −0.680258 0.392747i 0.119695 0.992811i \(-0.461808\pi\)
−0.799952 + 0.600064i \(0.795142\pi\)
\(138\) 0 0
\(139\) −17.0997 −1.45037 −0.725187 0.688551i \(-0.758247\pi\)
−0.725187 + 0.688551i \(0.758247\pi\)
\(140\) 0 0
\(141\) 3.72508 0.313709
\(142\) 0 0
\(143\) 12.0000 + 6.92820i 1.00349 + 0.579365i
\(144\) 0 0
\(145\) 1.63746 + 7.13752i 0.135984 + 0.592738i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.77492 + 6.53835i 0.309253 + 0.535642i 0.978199 0.207669i \(-0.0665876\pi\)
−0.668946 + 0.743311i \(0.733254\pi\)
\(150\) 0 0
\(151\) 10.1375 17.5586i 0.824975 1.42890i −0.0769640 0.997034i \(-0.524523\pi\)
0.901939 0.431864i \(-0.142144\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.13746 2.80739i −0.733938 0.225495i
\(156\) 0 0
\(157\) 9.41238 + 5.43424i 0.751189 + 0.433699i 0.826123 0.563489i \(-0.190541\pi\)
−0.0749341 + 0.997188i \(0.523875\pi\)
\(158\) 0 0
\(159\) −6.41238 11.1066i −0.508534 0.880808i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.41238 3.70219i 0.502256 0.289978i −0.227389 0.973804i \(-0.573019\pi\)
0.729645 + 0.683826i \(0.239685\pi\)
\(164\) 0 0
\(165\) 6.00000 + 6.45203i 0.467099 + 0.502290i
\(166\) 0 0
\(167\) 12.6005i 0.975058i −0.873107 0.487529i \(-0.837898\pi\)
0.873107 0.487529i \(-0.162102\pi\)
\(168\) 0 0
\(169\) −24.0997 −1.85382
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −16.2371 + 9.37451i −1.23449 + 0.712731i −0.967962 0.251097i \(-0.919209\pi\)
−0.266524 + 0.963828i \(0.585875\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.41238 3.70219i 0.481984 0.278273i
\(178\) 0 0
\(179\) 0.137459 0.238085i 0.0102741 0.0177953i −0.860843 0.508871i \(-0.830063\pi\)
0.871117 + 0.491076i \(0.163396\pi\)
\(180\) 0 0
\(181\) 16.7251 1.24317 0.621583 0.783348i \(-0.286490\pi\)
0.621583 + 0.783348i \(0.286490\pi\)
\(182\) 0 0
\(183\) 2.68439i 0.198436i
\(184\) 0 0
\(185\) −8.54983 9.19397i −0.628596 0.675954i
\(186\) 0 0
\(187\) −9.41238 + 5.43424i −0.688301 + 0.397391i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.4124 19.7668i −0.825771 1.43028i −0.901329 0.433135i \(-0.857407\pi\)
0.0755585 0.997141i \(-0.475926\pi\)
\(192\) 0 0
\(193\) −7.96221 4.59698i −0.573132 0.330898i 0.185267 0.982688i \(-0.440685\pi\)
−0.758399 + 0.651790i \(0.774018\pi\)
\(194\) 0 0
\(195\) −22.5498 6.92820i −1.61483 0.496139i
\(196\) 0 0
\(197\) 26.0383i 1.85515i 0.373634 + 0.927576i \(0.378112\pi\)
−0.373634 + 0.927576i \(0.621888\pi\)
\(198\) 0 0
\(199\) −4.86254 + 8.42217i −0.344696 + 0.597032i −0.985299 0.170841i \(-0.945351\pi\)
0.640602 + 0.767873i \(0.278685\pi\)
\(200\) 0 0
\(201\) −12.0498 20.8709i −0.849930 1.47212i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.63746 + 24.5731i 0.393737 + 1.71626i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.72508 −0.672698
\(210\) 0 0
\(211\) −19.6495 −1.35273 −0.676364 0.736568i \(-0.736445\pi\)
−0.676364 + 0.736568i \(0.736445\pi\)
\(212\) 0 0
\(213\) −15.8248 9.13642i −1.08429 0.626018i
\(214\) 0 0
\(215\) −14.1873 + 3.25479i −0.967565 + 0.221975i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1.86254 + 3.22602i 0.125859 + 0.217994i
\(220\) 0 0
\(221\) 14.5498 25.2011i 0.978728 1.69521i
\(222\) 0 0
\(223\) 8.71780i 0.583787i 0.956451 + 0.291893i \(0.0942853\pi\)
−0.956451 + 0.291893i \(0.905715\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.58762 3.22602i −0.370864 0.214118i 0.302972 0.952999i \(-0.402021\pi\)
−0.673836 + 0.738881i \(0.735354\pi\)
\(228\) 0 0
\(229\) 2.13746 + 3.70219i 0.141247 + 0.244647i 0.927967 0.372663i \(-0.121555\pi\)
−0.786719 + 0.617311i \(0.788222\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.1375 + 9.31697i −1.05720 + 0.610375i −0.924656 0.380802i \(-0.875648\pi\)
−0.132544 + 0.991177i \(0.542314\pi\)
\(234\) 0 0
\(235\) −3.27492 3.52165i −0.213632 0.229727i
\(236\) 0 0
\(237\) 0.476171i 0.0309306i
\(238\) 0 0
\(239\) 14.5498 0.941151 0.470575 0.882360i \(-0.344046\pi\)
0.470575 + 0.882360i \(0.344046\pi\)
\(240\) 0 0
\(241\) −6.41238 + 11.1066i −0.413057 + 0.715436i −0.995222 0.0976343i \(-0.968872\pi\)
0.582165 + 0.813071i \(0.302206\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 22.5498 13.0192i 1.43481 0.828389i
\(248\) 0 0
\(249\) 4.91238 8.50848i 0.311309 0.539203i
\(250\) 0 0
\(251\) 5.45017 0.344011 0.172006 0.985096i \(-0.444975\pi\)
0.172006 + 0.985096i \(0.444975\pi\)
\(252\) 0 0
\(253\) 2.03559i 0.127976i
\(254\) 0 0
\(255\) 13.5498 12.6005i 0.848524 0.789076i
\(256\) 0 0
\(257\) 21.4124 12.3624i 1.33567 0.771148i 0.349506 0.936934i \(-0.386350\pi\)
0.986162 + 0.165786i \(0.0530162\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 23.3248 + 13.4666i 1.43827 + 0.830383i 0.997729 0.0673516i \(-0.0214549\pi\)
0.440536 + 0.897735i \(0.354788\pi\)
\(264\) 0 0
\(265\) −4.86254 + 15.8265i −0.298704 + 0.972217i
\(266\) 0 0
\(267\) 12.1244i 0.741999i
\(268\) 0 0
\(269\) 14.7749 25.5909i 0.900843 1.56031i 0.0744400 0.997225i \(-0.476283\pi\)
0.826403 0.563080i \(-0.190384\pi\)
\(270\) 0 0
\(271\) −6.41238 11.1066i −0.389524 0.674676i 0.602861 0.797846i \(-0.294027\pi\)
−0.992386 + 0.123170i \(0.960694\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.824752 11.3446i 0.0497344 0.684108i
\(276\) 0 0
\(277\) −16.1375 9.31697i −0.969606 0.559802i −0.0704898 0.997512i \(-0.522456\pi\)
−0.899116 + 0.437710i \(0.855790\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 16.9622 + 9.79314i 1.00830 + 0.582142i 0.910693 0.413084i \(-0.135548\pi\)
0.0976056 + 0.995225i \(0.468882\pi\)
\(284\) 0 0
\(285\) 16.1375 3.70219i 0.955901 0.219299i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2.91238 + 5.04438i 0.171316 + 0.296728i
\(290\) 0 0
\(291\) 6.00000 10.3923i 0.351726 0.609208i
\(292\) 0 0
\(293\) 6.92820i 0.404750i 0.979308 + 0.202375i \(0.0648660\pi\)
−0.979308 + 0.202375i \(0.935134\pi\)
\(294\) 0 0
\(295\) −9.13746 2.80739i −0.532003 0.163453i
\(296\) 0 0
\(297\) −10.2371 5.91041i −0.594018 0.342957i
\(298\) 0 0
\(299\) 2.72508 + 4.71998i 0.157596 + 0.272964i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −2.32475 + 1.34220i −0.133553 + 0.0771071i
\(304\) 0 0
\(305\) −2.53779 + 2.35999i −0.145313 + 0.135133i
\(306\) 0 0
\(307\) 3.99782i 0.228167i 0.993471 + 0.114084i \(0.0363932\pi\)
−0.993471 + 0.114084i \(0.963607\pi\)
\(308\) 0 0
\(309\) −4.45017 −0.253161
\(310\) 0 0
\(311\) 6.41238 11.1066i 0.363612 0.629795i −0.624940 0.780673i \(-0.714877\pi\)
0.988552 + 0.150878i \(0.0482099\pi\)
\(312\) 0 0
\(313\) 12.5120 7.22383i 0.707223 0.408315i −0.102809 0.994701i \(-0.532783\pi\)
0.810032 + 0.586386i \(0.199450\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.31271 1.91259i 0.186060 0.107422i −0.404077 0.914725i \(-0.632407\pi\)
0.590137 + 0.807303i \(0.299074\pi\)
\(318\) 0 0
\(319\) −3.72508 + 6.45203i −0.208565 + 0.361244i
\(320\) 0 0
\(321\) 24.0997 1.34511
\(322\) 0 0
\(323\) 20.4235i 1.13640i
\(324\) 0 0
\(325\) 13.2749 + 27.4093i 0.736360 + 1.52039i
\(326\) 0 0
\(327\) −5.32475 + 3.07425i −0.294459 + 0.170006i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.41238 + 4.17836i 0.132596 + 0.229663i 0.924677 0.380753i \(-0.124335\pi\)
−0.792080 + 0.610417i \(0.791002\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.13746 + 29.7405i −0.499233 + 1.62490i
\(336\) 0 0
\(337\) 13.0192i 0.709198i −0.935018 0.354599i \(-0.884617\pi\)
0.935018 0.354599i \(-0.115383\pi\)
\(338\) 0 0
\(339\) −11.2749 + 19.5287i −0.612369 + 1.06065i
\(340\) 0 0
\(341\) −4.86254 8.42217i −0.263321 0.456086i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0.774917 + 3.37779i 0.0417201 + 0.181854i
\(346\) 0 0
\(347\) −10.5000 6.06218i −0.563670 0.325435i 0.190947 0.981600i \(-0.438844\pi\)
−0.754617 + 0.656165i \(0.772177\pi\)
\(348\) 0 0
\(349\) −11.2749 −0.603532 −0.301766 0.953382i \(-0.597576\pi\)
−0.301766 + 0.953382i \(0.597576\pi\)
\(350\) 0 0
\(351\) 31.6495 1.68933
\(352\) 0 0
\(353\) −18.4124 10.6304i −0.979992 0.565799i −0.0777242 0.996975i \(-0.524765\pi\)
−0.902268 + 0.431176i \(0.858099\pi\)
\(354\) 0 0
\(355\) 5.27492 + 22.9928i 0.279964 + 1.22033i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.687293 1.19043i −0.0362739 0.0628283i 0.847318 0.531085i \(-0.178216\pi\)
−0.883592 + 0.468257i \(0.844882\pi\)
\(360\) 0 0
\(361\) 0.362541 0.627940i 0.0190811 0.0330495i
\(362\) 0 0
\(363\) 10.0888i 0.529523i
\(364\) 0 0
\(365\) 1.41238 4.59698i 0.0739271 0.240617i
\(366\) 0 0
\(367\) −12.7749 7.37560i −0.666845 0.385003i 0.128035 0.991770i \(-0.459133\pi\)
−0.794880 + 0.606766i \(0.792466\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.86254 + 2.80739i −0.251773 + 0.145361i −0.620576 0.784146i \(-0.713101\pi\)
0.368803 + 0.929508i \(0.379768\pi\)
\(374\) 0 0
\(375\) 2.95017 + 19.1389i 0.152346 + 0.988327i
\(376\) 0 0
\(377\) 19.9474i 1.02734i
\(378\) 0 0
\(379\) −23.6495 −1.21479 −0.607397 0.794399i \(-0.707786\pi\)
−0.607397 + 0.794399i \(0.707786\pi\)
\(380\) 0 0
\(381\) 1.54983 2.68439i 0.0794004 0.137526i
\(382\) 0 0
\(383\) 17.3248 10.0025i 0.885253 0.511101i 0.0128665 0.999917i \(-0.495904\pi\)
0.872387 + 0.488816i \(0.162571\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.68729 + 4.65453i −0.136251 + 0.235994i −0.926075 0.377340i \(-0.876839\pi\)
0.789824 + 0.613334i \(0.210172\pi\)
\(390\) 0 0
\(391\) −4.27492 −0.216192
\(392\) 0 0
\(393\) 31.6531i 1.59669i
\(394\) 0 0
\(395\) 0.450166 0.418627i 0.0226503 0.0210634i
\(396\) 0 0
\(397\) −13.1375 + 7.58492i −0.659350 + 0.380676i −0.792029 0.610483i \(-0.790975\pi\)
0.132679 + 0.991159i \(0.457642\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.50000 2.59808i −0.0749064 0.129742i 0.826139 0.563466i \(-0.190532\pi\)
−0.901046 + 0.433724i \(0.857199\pi\)
\(402\) 0 0
\(403\) 22.5498 + 13.0192i 1.12329 + 0.648530i
\(404\) 0 0
\(405\) 19.2371 + 5.91041i 0.955901 + 0.293691i
\(406\) 0 0
\(407\) 12.7732i 0.633142i
\(408\) 0 0
\(409\) −5.04983 + 8.74657i −0.249698 + 0.432490i −0.963442 0.267917i \(-0.913665\pi\)
0.713744 + 0.700407i \(0.246998\pi\)
\(410\) 0 0
\(411\) 7.96221 + 13.7910i 0.392747 + 0.680258i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.3625 + 2.83616i −0.606853 + 0.139222i
\(416\) 0 0
\(417\) 25.6495 + 14.8087i 1.25606 + 0.725187i
\(418\) 0 0
\(419\) 17.0997 0.835373 0.417687 0.908591i \(-0.362841\pi\)
0.417687 + 0.908591i \(0.362841\pi\)
\(420\) 0 0
\(421\) 3.27492 0.159610 0.0798048 0.996811i \(-0.474570\pi\)
0.0798048 + 0.996811i \(0.474570\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −23.8248 1.73205i −1.15567 0.0840168i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −12.0000 20.7846i −0.579365 1.00349i
\(430\) 0 0
\(431\) −9.68729 + 16.7789i −0.466620 + 0.808210i −0.999273 0.0381236i \(-0.987862\pi\)
0.532653 + 0.846334i \(0.321195\pi\)
\(432\) 0 0
\(433\) 26.8756i 1.29156i −0.763525 0.645778i \(-0.776533\pi\)
0.763525 0.645778i \(-0.223467\pi\)
\(434\) 0 0
\(435\) 3.72508 12.1244i 0.178604 0.581318i
\(436\) 0 0
\(437\) −3.31271 1.91259i −0.158468 0.0914917i
\(438\) 0 0
\(439\) −0.587624 1.01779i −0.0280458 0.0485767i 0.851662 0.524092i \(-0.175595\pi\)
−0.879708 + 0.475515i \(0.842262\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.5000 6.06218i 0.498870 0.288023i −0.229377 0.973338i \(-0.573669\pi\)
0.728247 + 0.685315i \(0.240335\pi\)
\(444\) 0 0
\(445\) −11.4622 + 10.6592i −0.543361 + 0.505293i
\(446\) 0 0
\(447\) 13.0767i 0.618507i
\(448\) 0 0
\(449\) 25.8248 1.21875 0.609373 0.792884i \(-0.291421\pi\)
0.609373 + 0.792884i \(0.291421\pi\)
\(450\) 0 0
\(451\) −12.8248 + 22.2131i −0.603894 + 1.04598i
\(452\) 0 0
\(453\) −30.4124 + 17.5586i −1.42890 + 0.824975i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 17.6873 10.2118i 0.827377 0.477686i −0.0255769 0.999673i \(-0.508142\pi\)
0.852954 + 0.521987i \(0.174809\pi\)
\(458\) 0 0
\(459\) −12.4124 + 21.4989i −0.579360 + 1.00348i
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) 6.50958i 0.302526i −0.988494 0.151263i \(-0.951666\pi\)
0.988494 0.151263i \(-0.0483340\pi\)
\(464\) 0 0
\(465\) 11.2749 + 12.1244i 0.522862 + 0.562254i
\(466\) 0 0
\(467\) 16.5997 9.58382i 0.768141 0.443486i −0.0640700 0.997945i \(-0.520408\pi\)
0.832211 + 0.554459i \(0.187075\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −9.41238 16.3027i −0.433699 0.751189i
\(472\) 0 0
\(473\) −12.8248 7.40437i −0.589683 0.340453i
\(474\) 0 0
\(475\) −17.6873 12.0014i −0.811549 0.550660i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.41238 11.1066i 0.292989 0.507472i −0.681526 0.731794i \(-0.738683\pi\)
0.974515 + 0.224322i \(0.0720168\pi\)
\(480\) 0 0
\(481\) 17.0997 + 29.6175i 0.779678 + 1.35044i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −15.0997 + 3.46410i −0.685641 + 0.157297i
\(486\) 0 0
\(487\) −28.9622 16.7213i −1.31240 0.757716i −0.329909 0.944013i \(-0.607018\pi\)
−0.982494 + 0.186296i \(0.940352\pi\)
\(488\) 0 0
\(489\) −12.8248 −0.579955
\(490\) 0 0
\(491\) −13.4502 −0.606997 −0.303499 0.952832i \(-0.598155\pi\)
−0.303499 + 0.952832i \(0.598155\pi\)
\(492\) 0 0
\(493\) 13.5498 + 7.82300i 0.610254 + 0.352330i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 19.6873 + 34.0994i 0.881324 + 1.52650i 0.849869 + 0.526993i \(0.176681\pi\)
0.0314548 + 0.999505i \(0.489986\pi\)
\(500\) 0 0
\(501\) −10.9124 + 18.9008i −0.487529 + 0.844425i
\(502\) 0 0
\(503\) 16.1797i 0.721418i −0.932678 0.360709i \(-0.882535\pi\)
0.932678 0.360709i \(-0.117465\pi\)
\(504\) 0 0
\(505\) 3.31271 + 1.01779i 0.147414 + 0.0452913i
\(506\) 0 0
\(507\) 36.1495 + 20.8709i 1.60546 + 0.926910i
\(508\) 0 0
\(509\) 14.7749 + 25.5909i 0.654887 + 1.13430i 0.981922 + 0.189285i \(0.0606170\pi\)
−0.327036 + 0.945012i \(0.606050\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −19.2371 + 11.1066i −0.849340 + 0.490367i
\(514\) 0 0
\(515\) 3.91238 + 4.20713i 0.172400 + 0.185388i
\(516\) 0 0
\(517\) 4.89261i 0.215177i
\(518\) 0 0
\(519\) 32.4743 1.42546
\(520\) 0 0
\(521\) −6.41238 + 11.1066i −0.280931 + 0.486587i −0.971614 0.236570i \(-0.923977\pi\)
0.690683 + 0.723158i \(0.257310\pi\)
\(522\) 0 0
\(523\) 10.1375 5.85286i 0.443280 0.255928i −0.261708 0.965147i \(-0.584286\pi\)
0.704988 + 0.709219i \(0.250952\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −17.6873 + 10.2118i −0.770471 + 0.444831i
\(528\) 0 0
\(529\) −11.0997 + 19.2252i −0.482594 + 0.835878i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 68.6750i 2.97464i
\(534\) 0 0
\(535\) −21.1873 22.7835i −0.916007 0.985017i
\(536\) 0 0
\(537\) −0.412376 + 0.238085i −0.0177953 + 0.0102741i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.22508 + 2.12191i 0.0526704 + 0.0912278i 0.891159 0.453692i \(-0.149893\pi\)
−0.838488 + 0.544920i \(0.816560\pi\)
\(542\) 0 0
\(543\) −25.0876 14.4843i −1.07661 0.621583i
\(544\) 0 0
\(545\) 7.58762 + 2.33122i 0.325018 + 0.0998585i
\(546\) 0 0
\(547\) 36.1271i 1.54468i 0.635208 + 0.772341i \(0.280914\pi\)
−0.635208 + 0.772341i \(0.719086\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.00000 + 12.1244i 0.298210 + 0.516515i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 4.86254 + 21.1953i 0.206403 + 0.899692i
\(556\) 0 0
\(557\) −4.86254 2.80739i −0.206032 0.118953i 0.393434 0.919353i \(-0.371287\pi\)
−0.599466 + 0.800400i \(0.704620\pi\)
\(558\) 0 0
\(559\) 39.6495 1.67700
\(560\) 0 0
\(561\) 18.8248 0.794782
\(562\) 0 0
\(563\) −10.5997 6.11972i −0.446723 0.257916i 0.259722 0.965683i \(-0.416369\pi\)
−0.706445 + 0.707768i \(0.749702\pi\)
\(564\) 0 0
\(565\) 28.3746 6.50958i 1.19373 0.273860i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14.6873 25.4391i −0.615723 1.06646i −0.990257 0.139251i \(-0.955531\pi\)
0.374534 0.927213i \(-0.377803\pi\)
\(570\) 0 0
\(571\) 0.137459 0.238085i 0.00575246 0.00996356i −0.863135 0.504974i \(-0.831502\pi\)
0.868887 + 0.495010i \(0.164836\pi\)
\(572\) 0 0
\(573\) 39.5336i 1.65154i
\(574\) 0 0
\(575\) 2.51204 3.70219i 0.104760 0.154392i
\(576\) 0 0
\(577\) −7.13746 4.12081i −0.297136 0.171552i 0.344019 0.938963i \(-0.388211\pi\)
−0.641156 + 0.767411i \(0.721545\pi\)
\(578\) 0 0
\(579\) 7.96221 + 13.7910i 0.330898 + 0.573132i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −14.5876 + 8.42217i −0.604158 + 0.348811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.9715i 0.576665i 0.957530 + 0.288333i \(0.0931009\pi\)
−0.957530 + 0.288333i \(0.906899\pi\)
\(588\) 0 0
\(589\) −18.2749 −0.753005
\(590\) 0 0
\(591\) 22.5498 39.0575i 0.927576 1.60661i
\(592\) 0 0
\(593\) 17.5876 10.1542i 0.722237 0.416984i −0.0933384 0.995634i \(-0.529754\pi\)
0.815576 + 0.578651i \(0.196421\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 14.5876 8.42217i 0.597032 0.344696i
\(598\) 0 0
\(599\) −1.13746 + 1.97014i −0.0464753 + 0.0804976i −0.888327 0.459211i \(-0.848132\pi\)
0.841852 + 0.539709i \(0.181466\pi\)
\(600\) 0 0
\(601\) −14.0000 −0.571072 −0.285536 0.958368i \(-0.592172\pi\)
−0.285536 + 0.958368i \(0.592172\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.53779 + 8.86957i −0.387766 + 0.360599i
\(606\) 0 0
\(607\) 27.8746 16.0934i 1.13139 0.653211i 0.187109 0.982339i \(-0.440088\pi\)
0.944285 + 0.329128i \(0.106755\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.54983 + 11.3446i 0.264978 + 0.458955i
\(612\) 0 0
\(613\) 32.0619 + 18.5109i 1.29497 + 0.747650i 0.979530 0.201297i \(-0.0645156\pi\)
0.315437 + 0.948947i \(0.397849\pi\)
\(614\) 0 0
\(615\) 12.8248 41.7419i 0.517144 1.68319i
\(616\) 0 0
\(617\) 3.57919i 0.144093i 0.997401 + 0.0720464i \(0.0229530\pi\)
−0.997401 + 0.0720464i \(0.977047\pi\)
\(618\) 0 0
\(619\) −21.9622 + 38.0397i −0.882736 + 1.52894i −0.0344487 + 0.999406i \(0.510968\pi\)
−0.848287 + 0.529537i \(0.822366\pi\)
\(620\) 0 0
\(621\) −2.32475 4.02659i −0.0932891 0.161581i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15.5000 19.6150i 0.620000 0.784602i
\(626\) 0 0
\(627\) 14.5876 + 8.42217i 0.582574 + 0.336349i
\(628\) 0 0
\(629\) −26.8248 −1.06957
\(630\) 0 0
\(631\) 2.90033 0.115460 0.0577302 0.998332i \(-0.481614\pi\)
0.0577302 + 0.998332i \(0.481614\pi\)
\(632\) 0 0
\(633\) 29.4743 + 17.0170i 1.17150 + 0.676364i
\(634\) 0 0
\(635\) −3.90033 + 0.894797i −0.154780 + 0.0355089i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −14.0498 + 24.3350i −0.554935 + 0.961176i 0.442973 + 0.896535i \(0.353924\pi\)
−0.997909 + 0.0646411i \(0.979410\pi\)
\(642\) 0 0
\(643\) 38.3353i 1.51180i 0.654689 + 0.755898i \(0.272800\pi\)
−0.654689 + 0.755898i \(0.727200\pi\)
\(644\) 0 0
\(645\) 24.0997 + 7.40437i 0.948924 + 0.291547i
\(646\) 0 0
\(647\) 0.675248 + 0.389855i 0.0265468 + 0.0153268i 0.513215 0.858260i \(-0.328454\pi\)
−0.486668 + 0.873587i \(0.661788\pi\)
\(648\) 0 0
\(649\) −4.86254 8.42217i −0.190871 0.330599i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 32.0619 18.5109i 1.25468 0.724389i 0.282643 0.959225i \(-0.408789\pi\)
0.972035 + 0.234836i \(0.0754554\pi\)
\(654\) 0 0
\(655\) 29.9244 27.8279i 1.16924 1.08733i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 25.4502 0.991398 0.495699 0.868494i \(-0.334912\pi\)
0.495699 + 0.868494i \(0.334912\pi\)
\(660\) 0 0
\(661\) −7.77492 + 13.4666i −0.302409 + 0.523788i −0.976681 0.214695i \(-0.931124\pi\)
0.674272 + 0.738483i \(0.264458\pi\)
\(662\) 0 0
\(663\) −43.6495 + 25.2011i −1.69521 + 0.978728i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.53779 + 1.46519i −0.0982636 + 0.0567325i
\(668\) 0 0
\(669\) 7.54983 13.0767i 0.291893 0.505574i
\(670\) 0 0
\(671\) −3.52575 −0.136110
\(672\) 0 0
\(673\) 3.57919i 0.137968i −0.997618 0.0689838i \(-0.978024\pi\)
0.997618 0.0689838i \(-0.0219757\pi\)
\(674\) 0 0
\(675\) −11.3248 23.3827i −0.435890 0.900000i
\(676\) 0 0
\(677\) −21.3127 + 12.3049i −0.819114 + 0.472916i −0.850111 0.526604i \(-0.823465\pi\)
0.0309969 + 0.999519i \(0.490132\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 5.58762 + 9.67805i 0.214118 + 0.370864i
\(682\) 0 0
\(683\) −13.5997 7.85177i −0.520377 0.300440i 0.216712 0.976236i \(-0.430467\pi\)
−0.737089 + 0.675796i \(0.763800\pi\)
\(684\) 0 0
\(685\) 6.03779 19.6517i 0.230692 0.750854i
\(686\) 0 0
\(687\) 7.40437i 0.282494i
\(688\) 0 0
\(689\) 22.5498 39.0575i 0.859080 1.48797i
\(690\) 0 0
\(691\) −3.68729 6.38658i −0.140271 0.242957i 0.787327 0.616535i \(-0.211464\pi\)
−0.927599 + 0.373578i \(0.878131\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.54983 37.2679i −0.324314 1.41365i
\(696\) 0 0
\(697\) 46.6495 + 26.9331i 1.76698 + 1.02016i
\(698\) 0 0
\(699\) 32.2749 1.22075
\(700\) 0 0
\(701\) −13.8248 −0.522154 −0.261077 0.965318i \(-0.584078\pi\)
−0.261077 + 0.965318i \(0.584078\pi\)
\(702\) 0 0
\(703\) −20.7870 12.0014i −0.783995 0.452640i
\(704\) 0 0
\(705\) 1.86254 + 8.11863i 0.0701474 + 0.305765i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −12.7749 22.1268i −0.479772 0.830990i 0.519959 0.854191i \(-0.325947\pi\)
−0.999731 + 0.0232018i \(0.992614\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.82518i 0.143254i
\(714\) 0 0
\(715\) −9.09967 + 29.6175i −0.340308 + 1.10763i
\(716\) 0 0
\(717\) −21.8248 12.6005i −0.815060 0.470575i
\(718\) 0 0
\(719\) −3.68729 6.38658i −0.137513 0.238179i 0.789042 0.614340i \(-0.210577\pi\)
−0.926555 + 0.376160i \(0.877244\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 19.2371 11.1066i 0.715436 0.413057i
\(724\) 0 0
\(725\) −14.7371 + 7.13752i −0.547323 + 0.265081i
\(726\) 0 0
\(727\) 18.6915i 0.693228i 0.938008 + 0.346614i \(0.112669\pi\)
−0.938008 + 0.346614i \(0.887331\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −15.5498 + 26.9331i −0.575131 + 0.996157i
\(732\) 0 0
\(733\) 28.8625 16.6638i 1.06606 0.615491i 0.138959 0.990298i \(-0.455624\pi\)
0.927103 + 0.374807i \(0.122291\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −27.4124 + 15.8265i −1.00975 + 0.582978i
\(738\) 0 0
\(739\) 15.9622 27.6474i 0.587179 1.01702i −0.407420 0.913241i \(-0.633572\pi\)
0.994600 0.103784i \(-0.0330950\pi\)
\(740\) 0 0
\(741\) −45.0997 −1.65678
\(742\) 0 0
\(743\) 19.5287i 0.716440i 0.933637 + 0.358220i \(0.116616\pi\)
−0.933637 + 0.358220i \(0.883384\pi\)
\(744\) 0 0
\(745\) −12.3625 + 11.4964i −0.452928 + 0.421196i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 11.1375 + 19.2906i 0.406412 + 0.703926i 0.994485 0.104882i \(-0.0334466\pi\)
−0.588073 + 0.808808i \(0.700113\pi\)
\(752\) 0 0
\(753\) −8.17525 4.71998i −0.297923 0.172006i
\(754\) 0 0
\(755\) 43.3368 + 13.3148i 1.57719 + 0.484575i
\(756\) 0 0
\(757\) 9.43996i 0.343101i 0.985175 + 0.171551i \(0.0548777\pi\)
−0.985175 + 0.171551i \(0.945122\pi\)
\(758\) 0 0
\(759\) −1.76287 + 3.05338i −0.0639882 + 0.110831i
\(760\) 0 0
\(761\) −14.9622 25.9153i −0.542380 0.939429i −0.998767 0.0496479i \(-0.984190\pi\)
0.456387 0.889781i \(-0.349143\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22.5498 + 13.0192i 0.814227 + 0.470094i
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) −42.8248 −1.54230
\(772\) 0 0
\(773\) 23.5876 + 13.6183i 0.848388 + 0.489817i 0.860107 0.510114i \(-0.170397\pi\)
−0.0117187 + 0.999931i \(0.503730\pi\)
\(774\) 0 0
\(775\) 1.54983 21.3183i 0.0556717 0.765777i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24.0997 + 41.7419i 0.863460 + 1.49556i
\(780\) 0 0
\(781\) −12.0000 + 20.7846i −0.429394 + 0.743732i
\(782\) 0 0
\(783\) 17.0170i 0.608137i
\(784\) 0 0
\(785\) −7.13746 + 23.2309i −0.254747 + 0.829147i
\(786\) 0 0
\(787\) −1.50000 0.866025i −0.0534692 0.0308705i 0.473027 0.881048i \(-0.343161\pi\)
−0.526496 + 0.850177i \(0.676495\pi\)
\(788\) 0 0
\(789\) −23.3248 40.3997i −0.830383 1.43827i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 8.17525 4.71998i 0.290312 0.167611i
\(794\) 0 0
\(795\) 21.0000 19.5287i 0.744793 0.692613i
\(796\) 0 0
\(797\) 29.3873i