# Properties

 Label 980.2.q.b.949.1 Level $980$ Weight $2$ Character 980.949 Analytic conductor $7.825$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$980 = 2^{2} \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 980.q (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$7.82533939809$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{-19})$$ Defining polynomial: $$x^{4} - x^{3} - 4 x^{2} - 5 x + 25$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 140) Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 949.1 Root $$-1.63746 + 1.52274i$$ of defining polynomial Character $$\chi$$ $$=$$ 980.949 Dual form 980.2.q.b.569.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.50000 - 0.866025i) q^{3} +(0.500000 - 2.17945i) q^{5} +O(q^{10})$$ $$q+(-1.50000 - 0.866025i) q^{3} +(0.500000 - 2.17945i) q^{5} +(2.63746 - 4.56821i) q^{11} +2.62685i q^{13} +(-2.63746 + 2.83616i) q^{15} +(0.362541 + 0.209313i) q^{17} +(-1.63746 - 2.83616i) q^{19} +(6.77492 - 3.91150i) q^{23} +(-4.50000 - 2.17945i) q^{25} +5.19615i q^{27} -4.27492 q^{29} +(1.63746 - 2.83616i) q^{31} +(-7.91238 + 4.56821i) q^{33} +(-8.63746 + 4.98684i) q^{37} +(2.27492 - 3.94027i) q^{39} +3.72508 q^{41} +2.15068i q^{43} +(-5.63746 + 3.25479i) q^{47} +(-0.362541 - 0.627940i) q^{51} +(-4.91238 - 2.83616i) q^{53} +(-8.63746 - 8.03231i) q^{55} +5.67232i q^{57} +(1.63746 - 2.83616i) q^{59} +(-6.77492 - 11.7345i) q^{61} +(5.72508 + 1.31342i) q^{65} +(-3.04983 - 1.76082i) q^{67} -13.5498 q^{69} -4.54983 q^{71} +(-5.63746 - 3.25479i) q^{73} +(4.86254 + 7.16629i) q^{75} +(3.63746 + 6.30026i) q^{79} +(4.50000 - 7.79423i) q^{81} -7.40437i q^{83} +(0.637459 - 0.685484i) q^{85} +(6.41238 + 3.70219i) q^{87} +(3.50000 + 6.06218i) q^{89} +(-4.91238 + 2.83616i) q^{93} +(-7.00000 + 2.15068i) q^{95} +6.92820i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 6 q^{3} + 2 q^{5} + O(q^{10})$$ $$4 q - 6 q^{3} + 2 q^{5} + 3 q^{11} - 3 q^{15} + 9 q^{17} + q^{19} + 12 q^{23} - 18 q^{25} - 2 q^{29} - q^{31} - 9 q^{33} - 27 q^{37} - 6 q^{39} + 30 q^{41} - 15 q^{47} - 9 q^{51} + 3 q^{53} - 27 q^{55} - q^{59} - 12 q^{61} + 38 q^{65} + 18 q^{67} - 24 q^{69} + 12 q^{71} - 15 q^{73} + 27 q^{75} + 7 q^{79} + 18 q^{81} - 5 q^{85} + 3 q^{87} + 14 q^{89} + 3 q^{93} - 28 q^{95} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/980\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$197$$ $$491$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −1.50000 0.866025i −0.866025 0.500000i 1.00000i $$-0.5\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$4$$ 0 0
$$5$$ 0.500000 2.17945i 0.223607 0.974679i
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 2.63746 4.56821i 0.795224 1.37737i −0.127473 0.991842i $$-0.540687\pi$$
0.922697 0.385526i $$-0.125980\pi$$
$$12$$ 0 0
$$13$$ 2.62685i 0.728557i 0.931290 + 0.364278i $$0.118684\pi$$
−0.931290 + 0.364278i $$0.881316\pi$$
$$14$$ 0 0
$$15$$ −2.63746 + 2.83616i −0.680989 + 0.732294i
$$16$$ 0 0
$$17$$ 0.362541 + 0.209313i 0.0879292 + 0.0507659i 0.543320 0.839526i $$-0.317167\pi$$
−0.455391 + 0.890292i $$0.650500\pi$$
$$18$$ 0 0
$$19$$ −1.63746 2.83616i −0.375659 0.650660i 0.614767 0.788709i $$-0.289250\pi$$
−0.990425 + 0.138049i $$0.955917\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 6.77492 3.91150i 1.41267 0.815604i 0.417029 0.908893i $$-0.363071\pi$$
0.995639 + 0.0932891i $$0.0297381\pi$$
$$24$$ 0 0
$$25$$ −4.50000 2.17945i −0.900000 0.435890i
$$26$$ 0 0
$$27$$ 5.19615i 1.00000i
$$28$$ 0 0
$$29$$ −4.27492 −0.793832 −0.396916 0.917855i $$-0.629920\pi$$
−0.396916 + 0.917855i $$0.629920\pi$$
$$30$$ 0 0
$$31$$ 1.63746 2.83616i 0.294096 0.509390i −0.680678 0.732583i $$-0.738315\pi$$
0.974774 + 0.223193i $$0.0716480\pi$$
$$32$$ 0 0
$$33$$ −7.91238 + 4.56821i −1.37737 + 0.795224i
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −8.63746 + 4.98684i −1.41999 + 0.819831i −0.996297 0.0859750i $$-0.972599\pi$$
−0.423692 + 0.905806i $$0.639266\pi$$
$$38$$ 0 0
$$39$$ 2.27492 3.94027i 0.364278 0.630949i
$$40$$ 0 0
$$41$$ 3.72508 0.581760 0.290880 0.956760i $$-0.406052\pi$$
0.290880 + 0.956760i $$0.406052\pi$$
$$42$$ 0 0
$$43$$ 2.15068i 0.327975i 0.986462 + 0.163988i $$0.0524357\pi$$
−0.986462 + 0.163988i $$0.947564\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −5.63746 + 3.25479i −0.822308 + 0.474760i −0.851212 0.524823i $$-0.824132\pi$$
0.0289038 + 0.999582i $$0.490798\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ −0.362541 0.627940i −0.0507659 0.0879292i
$$52$$ 0 0
$$53$$ −4.91238 2.83616i −0.674767 0.389577i 0.123114 0.992393i $$-0.460712\pi$$
−0.797880 + 0.602816i $$0.794045\pi$$
$$54$$ 0 0
$$55$$ −8.63746 8.03231i −1.16467 1.08308i
$$56$$ 0 0
$$57$$ 5.67232i 0.751318i
$$58$$ 0 0
$$59$$ 1.63746 2.83616i 0.213179 0.369237i −0.739529 0.673125i $$-0.764952\pi$$
0.952708 + 0.303888i $$0.0982849\pi$$
$$60$$ 0 0
$$61$$ −6.77492 11.7345i −0.867439 1.50245i −0.864605 0.502453i $$-0.832431\pi$$
−0.00283468 0.999996i $$-0.500902\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 5.72508 + 1.31342i 0.710109 + 0.162910i
$$66$$ 0 0
$$67$$ −3.04983 1.76082i −0.372597 0.215119i 0.301996 0.953309i $$-0.402347\pi$$
−0.674592 + 0.738191i $$0.735681\pi$$
$$68$$ 0 0
$$69$$ −13.5498 −1.63121
$$70$$ 0 0
$$71$$ −4.54983 −0.539966 −0.269983 0.962865i $$-0.587018\pi$$
−0.269983 + 0.962865i $$0.587018\pi$$
$$72$$ 0 0
$$73$$ −5.63746 3.25479i −0.659815 0.380944i 0.132392 0.991197i $$-0.457734\pi$$
−0.792206 + 0.610253i $$0.791068\pi$$
$$74$$ 0 0
$$75$$ 4.86254 + 7.16629i 0.561478 + 0.827492i
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 3.63746 + 6.30026i 0.409246 + 0.708835i 0.994805 0.101795i $$-0.0324584\pi$$
−0.585559 + 0.810630i $$0.699125\pi$$
$$80$$ 0 0
$$81$$ 4.50000 7.79423i 0.500000 0.866025i
$$82$$ 0 0
$$83$$ 7.40437i 0.812736i −0.913710 0.406368i $$-0.866795\pi$$
0.913710 0.406368i $$-0.133205\pi$$
$$84$$ 0 0
$$85$$ 0.637459 0.685484i 0.0691421 0.0743512i
$$86$$ 0 0
$$87$$ 6.41238 + 3.70219i 0.687479 + 0.396916i
$$88$$ 0 0
$$89$$ 3.50000 + 6.06218i 0.370999 + 0.642590i 0.989720 0.143022i $$-0.0456819\pi$$
−0.618720 + 0.785611i $$0.712349\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ −4.91238 + 2.83616i −0.509390 + 0.294096i
$$94$$ 0 0
$$95$$ −7.00000 + 2.15068i −0.718185 + 0.220655i
$$96$$ 0 0
$$97$$ 6.92820i 0.703452i 0.936103 + 0.351726i $$0.114405\pi$$
−0.936103 + 0.351726i $$0.885595\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −6.77492 + 11.7345i −0.674129 + 1.16763i 0.302593 + 0.953120i $$0.402148\pi$$
−0.976723 + 0.214507i $$0.931186\pi$$
$$102$$ 0 0
$$103$$ 9.77492 5.64355i 0.963151 0.556076i 0.0660098 0.997819i $$-0.478973\pi$$
0.897141 + 0.441743i $$0.145640\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 3.04983 1.76082i 0.294839 0.170225i −0.345283 0.938499i $$-0.612217\pi$$
0.640122 + 0.768273i $$0.278884\pi$$
$$108$$ 0 0
$$109$$ −5.77492 + 10.0025i −0.553137 + 0.958061i 0.444909 + 0.895576i $$0.353236\pi$$
−0.998046 + 0.0624852i $$0.980097\pi$$
$$110$$ 0 0
$$111$$ 17.2749 1.63966
$$112$$ 0 0
$$113$$ 4.30136i 0.404637i −0.979320 0.202319i $$-0.935152\pi$$
0.979320 0.202319i $$-0.0648477\pi$$
$$114$$ 0 0
$$115$$ −5.13746 16.7213i −0.479070 1.55927i
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −8.41238 14.5707i −0.764761 1.32461i
$$122$$ 0 0
$$123$$ −5.58762 3.22602i −0.503819 0.290880i
$$124$$ 0 0
$$125$$ −7.00000 + 8.71780i −0.626099 + 0.779744i
$$126$$ 0 0
$$127$$ 15.6460i 1.38836i −0.719802 0.694179i $$-0.755768\pi$$
0.719802 0.694179i $$-0.244232\pi$$
$$128$$ 0 0
$$129$$ 1.86254 3.22602i 0.163988 0.284035i
$$130$$ 0 0
$$131$$ −5.36254 9.28819i −0.468527 0.811513i 0.530826 0.847481i $$-0.321882\pi$$
−0.999353 + 0.0359678i $$0.988549\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 11.3248 + 2.59808i 0.974679 + 0.223607i
$$136$$ 0 0
$$137$$ 18.4622 + 10.6592i 1.57733 + 0.910674i 0.995230 + 0.0975588i $$0.0311034\pi$$
0.582103 + 0.813115i $$0.302230\pi$$
$$138$$ 0 0
$$139$$ 13.0997 1.11110 0.555550 0.831483i $$-0.312508\pi$$
0.555550 + 0.831483i $$0.312508\pi$$
$$140$$ 0 0
$$141$$ 11.2749 0.949519
$$142$$ 0 0
$$143$$ 12.0000 + 6.92820i 1.00349 + 0.579365i
$$144$$ 0 0
$$145$$ −2.13746 + 9.31697i −0.177506 + 0.773732i
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −3.77492 6.53835i −0.309253 0.535642i 0.668946 0.743311i $$-0.266746\pi$$
−0.978199 + 0.207669i $$0.933412\pi$$
$$150$$ 0 0
$$151$$ 6.36254 11.0202i 0.517776 0.896815i −0.482011 0.876165i $$-0.660093\pi$$
0.999787 0.0206494i $$-0.00657337\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −5.36254 4.98684i −0.430730 0.400553i
$$156$$ 0 0
$$157$$ −1.91238 1.10411i −0.152624 0.0881176i 0.421743 0.906715i $$-0.361418\pi$$
−0.574367 + 0.818598i $$0.694752\pi$$
$$158$$ 0 0
$$159$$ 4.91238 + 8.50848i 0.389577 + 0.674767i
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −4.91238 + 2.83616i −0.384767 + 0.222145i −0.679890 0.733314i $$-0.737973\pi$$
0.295123 + 0.955459i $$0.404639\pi$$
$$164$$ 0 0
$$165$$ 6.00000 + 19.5287i 0.467099 + 1.52031i
$$166$$ 0 0
$$167$$ 0.476171i 0.0368472i 0.999830 + 0.0184236i $$0.00586474\pi$$
−0.999830 + 0.0184236i $$0.994135\pi$$
$$168$$ 0 0
$$169$$ 6.09967 0.469205
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 17.7371 10.2405i 1.34853 0.778573i 0.360488 0.932764i $$-0.382610\pi$$
0.988041 + 0.154190i $$0.0492769\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ −4.91238 + 2.83616i −0.369237 + 0.213179i
$$178$$ 0 0
$$179$$ −3.63746 + 6.30026i −0.271876 + 0.470904i −0.969342 0.245714i $$-0.920978\pi$$
0.697466 + 0.716618i $$0.254311\pi$$
$$180$$ 0 0
$$181$$ 24.2749 1.80434 0.902170 0.431380i $$-0.141973\pi$$
0.902170 + 0.431380i $$0.141973\pi$$
$$182$$ 0 0
$$183$$ 23.4690i 1.73488i
$$184$$ 0 0
$$185$$ 6.54983 + 21.3183i 0.481553 + 1.56735i
$$186$$ 0 0
$$187$$ 1.91238 1.10411i 0.139847 0.0807406i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −0.0876242 0.151770i −0.00634026 0.0109817i 0.862838 0.505481i $$-0.168685\pi$$
−0.869178 + 0.494499i $$0.835352\pi$$
$$192$$ 0 0
$$193$$ 18.4622 + 10.6592i 1.32894 + 0.767263i 0.985136 0.171778i $$-0.0549513\pi$$
0.343803 + 0.939042i $$0.388285\pi$$
$$194$$ 0 0
$$195$$ −7.45017 6.92820i −0.533517 0.496139i
$$196$$ 0 0
$$197$$ 8.60271i 0.612918i 0.951884 + 0.306459i $$0.0991442\pi$$
−0.951884 + 0.306459i $$0.900856\pi$$
$$198$$ 0 0
$$199$$ −8.63746 + 14.9605i −0.612293 + 1.06052i 0.378560 + 0.925577i $$0.376419\pi$$
−0.990853 + 0.134946i $$0.956914\pi$$
$$200$$ 0 0
$$201$$ 3.04983 + 5.28247i 0.215119 + 0.372597i
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 1.86254 8.11863i 0.130086 0.567030i
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −17.2749 −1.19493
$$210$$ 0 0
$$211$$ 25.6495 1.76578 0.882892 0.469576i $$-0.155593\pi$$
0.882892 + 0.469576i $$0.155593\pi$$
$$212$$ 0 0
$$213$$ 6.82475 + 3.94027i 0.467624 + 0.269983i
$$214$$ 0 0
$$215$$ 4.68729 + 1.07534i 0.319671 + 0.0733375i
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 5.63746 + 9.76436i 0.380944 + 0.659815i
$$220$$ 0 0
$$221$$ −0.549834 + 0.952341i −0.0369859 + 0.0640614i
$$222$$ 0 0
$$223$$ 8.71780i 0.583787i −0.956451 0.291893i $$-0.905715\pi$$
0.956451 0.291893i $$-0.0942853\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −16.9124 9.76436i −1.12251 0.648084i −0.180472 0.983580i $$-0.557763\pi$$
−0.942041 + 0.335496i $$0.891096\pi$$
$$228$$ 0 0
$$229$$ −1.63746 2.83616i −0.108206 0.187419i 0.806837 0.590774i $$-0.201177\pi$$
−0.915044 + 0.403355i $$0.867844\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −12.3625 + 7.13752i −0.809897 + 0.467594i −0.846920 0.531720i $$-0.821546\pi$$
0.0370231 + 0.999314i $$0.488212\pi$$
$$234$$ 0 0
$$235$$ 4.27492 + 13.9140i 0.278865 + 0.907646i
$$236$$ 0 0
$$237$$ 12.6005i 0.818492i
$$238$$ 0 0
$$239$$ −0.549834 −0.0355658 −0.0177829 0.999842i $$-0.505661\pi$$
−0.0177829 + 0.999842i $$0.505661\pi$$
$$240$$ 0 0
$$241$$ 4.91238 8.50848i 0.316434 0.548080i −0.663307 0.748347i $$-0.730848\pi$$
0.979741 + 0.200267i $$0.0641811\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 7.45017 4.30136i 0.474043 0.273689i
$$248$$ 0 0
$$249$$ −6.41238 + 11.1066i −0.406368 + 0.703850i
$$250$$ 0 0
$$251$$ 20.5498 1.29709 0.648547 0.761175i $$-0.275377\pi$$
0.648547 + 0.761175i $$0.275377\pi$$
$$252$$ 0 0
$$253$$ 41.2657i 2.59435i
$$254$$ 0 0
$$255$$ −1.54983 + 0.476171i −0.0970544 + 0.0298190i
$$256$$ 0 0
$$257$$ 10.0876 5.82409i 0.629249 0.363297i −0.151212 0.988501i $$-0.548318\pi$$
0.780461 + 0.625204i $$0.214984\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 0.675248 + 0.389855i 0.0416376 + 0.0240395i 0.520674 0.853755i $$-0.325681\pi$$
−0.479037 + 0.877795i $$0.659014\pi$$
$$264$$ 0 0
$$265$$ −8.63746 + 9.28819i −0.530595 + 0.570569i
$$266$$ 0 0
$$267$$ 12.1244i 0.741999i
$$268$$ 0 0
$$269$$ 7.22508 12.5142i 0.440521 0.763005i −0.557207 0.830374i $$-0.688127\pi$$
0.997728 + 0.0673687i $$0.0214604\pi$$
$$270$$ 0 0
$$271$$ 4.91238 + 8.50848i 0.298406 + 0.516854i 0.975771 0.218793i $$-0.0702119\pi$$
−0.677366 + 0.735646i $$0.736879\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −21.8248 + 14.8087i −1.31608 + 0.893001i
$$276$$ 0 0
$$277$$ −12.3625 7.13752i −0.742793 0.428852i 0.0802909 0.996771i $$-0.474415\pi$$
−0.823084 + 0.567920i $$0.807748\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 6.00000 0.357930 0.178965 0.983855i $$-0.442725\pi$$
0.178965 + 0.983855i $$0.442725\pi$$
$$282$$ 0 0
$$283$$ −9.46221 5.46301i −0.562470 0.324742i 0.191666 0.981460i $$-0.438611\pi$$
−0.754136 + 0.656718i $$0.771944\pi$$
$$284$$ 0 0
$$285$$ 12.3625 + 2.83616i 0.732294 + 0.168000i
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −8.41238 14.5707i −0.494846 0.857098i
$$290$$ 0 0
$$291$$ 6.00000 10.3923i 0.351726 0.609208i
$$292$$ 0 0
$$293$$ 6.92820i 0.404750i 0.979308 + 0.202375i $$0.0648660\pi$$
−0.979308 + 0.202375i $$0.935134\pi$$
$$294$$ 0 0
$$295$$ −5.36254 4.98684i −0.312219 0.290345i
$$296$$ 0 0
$$297$$ 23.7371 + 13.7046i 1.37737 + 0.795224i
$$298$$ 0 0
$$299$$ 10.2749 + 17.7967i 0.594214 + 1.02921i
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 20.3248 11.7345i 1.16763 0.674129i
$$304$$ 0 0
$$305$$ −28.9622 + 8.89834i −1.65837 + 0.509517i
$$306$$ 0 0
$$307$$ 26.5145i 1.51326i −0.653843 0.756631i $$-0.726844\pi$$
0.653843 0.756631i $$-0.273156\pi$$
$$308$$ 0 0
$$309$$ −19.5498 −1.11215
$$310$$ 0 0
$$311$$ −4.91238 + 8.50848i −0.278555 + 0.482472i −0.971026 0.238974i $$-0.923189\pi$$
0.692471 + 0.721446i $$0.256522\pi$$
$$312$$ 0 0
$$313$$ −29.0120 + 16.7501i −1.63986 + 0.946772i −0.658977 + 0.752163i $$0.729010\pi$$
−0.980881 + 0.194609i $$0.937656\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 22.1873 12.8098i 1.24616 0.719472i 0.275821 0.961209i $$-0.411050\pi$$
0.970342 + 0.241737i $$0.0777171\pi$$
$$318$$ 0 0
$$319$$ −11.2749 + 19.5287i −0.631274 + 1.09340i
$$320$$ 0 0
$$321$$ −6.09967 −0.340450
$$322$$ 0 0
$$323$$ 1.37097i 0.0762827i
$$324$$ 0 0
$$325$$ 5.72508 11.8208i 0.317570 0.655701i
$$326$$ 0 0
$$327$$ 17.3248 10.0025i 0.958061 0.553137i
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −8.91238 15.4367i −0.489868 0.848477i 0.510064 0.860137i $$-0.329622\pi$$
−0.999932 + 0.0116596i $$0.996289\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ −5.36254 + 5.76655i −0.292987 + 0.315060i
$$336$$ 0 0
$$337$$ 4.30136i 0.234310i −0.993114 0.117155i $$-0.962623\pi$$
0.993114 0.117155i $$-0.0373774\pi$$
$$338$$ 0 0
$$339$$ −3.72508 + 6.45203i −0.202319 + 0.350426i
$$340$$ 0 0
$$341$$ −8.63746 14.9605i −0.467745 0.810157i
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ −6.77492 + 29.5312i −0.364749 + 1.58991i
$$346$$ 0 0
$$347$$ −10.5000 6.06218i −0.563670 0.325435i 0.190947 0.981600i $$-0.438844\pi$$
−0.754617 + 0.656165i $$0.772177\pi$$
$$348$$ 0 0
$$349$$ −3.72508 −0.199399 −0.0996996 0.995018i $$-0.531788\pi$$
−0.0996996 + 0.995018i $$0.531788\pi$$
$$350$$ 0 0
$$351$$ −13.6495 −0.728557
$$352$$ 0 0
$$353$$ −7.08762 4.09204i −0.377236 0.217797i 0.299379 0.954134i $$-0.403221\pi$$
−0.676615 + 0.736337i $$0.736554\pi$$
$$354$$ 0 0
$$355$$ −2.27492 + 9.91613i −0.120740 + 0.526294i
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 18.1873 + 31.5013i 0.959889 + 1.66258i 0.722762 + 0.691097i $$0.242872\pi$$
0.237127 + 0.971479i $$0.423794\pi$$
$$360$$ 0 0
$$361$$ 4.13746 7.16629i 0.217761 0.377173i
$$362$$ 0 0
$$363$$ 29.1413i 1.52952i
$$364$$ 0 0
$$365$$ −9.91238 + 10.6592i −0.518837 + 0.557926i
$$366$$ 0 0
$$367$$ −5.22508 3.01670i −0.272747 0.157471i 0.357388 0.933956i $$-0.383667\pi$$
−0.630135 + 0.776485i $$0.717001\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ −8.63746 + 4.98684i −0.447231 + 0.258209i −0.706660 0.707553i $$-0.749799\pi$$
0.259429 + 0.965762i $$0.416466\pi$$
$$374$$ 0 0
$$375$$ 18.0498 7.01452i 0.932089 0.362228i
$$376$$ 0 0
$$377$$ 11.2296i 0.578352i
$$378$$ 0 0
$$379$$ 21.6495 1.11206 0.556030 0.831162i $$-0.312324\pi$$
0.556030 + 0.831162i $$0.312324\pi$$
$$380$$ 0 0
$$381$$ −13.5498 + 23.4690i −0.694179 + 1.20235i
$$382$$ 0 0
$$383$$ −5.32475 + 3.07425i −0.272082 + 0.157087i −0.629833 0.776730i $$-0.716877\pi$$
0.357751 + 0.933817i $$0.383544\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 16.1873 28.0372i 0.820728 1.42154i −0.0844123 0.996431i $$-0.526901\pi$$
0.905141 0.425112i $$-0.139765\pi$$
$$390$$ 0 0
$$391$$ 3.27492 0.165620
$$392$$ 0 0
$$393$$ 18.5764i 0.937055i
$$394$$ 0 0
$$395$$ 15.5498 4.77753i 0.782397 0.240383i
$$396$$ 0 0
$$397$$ −9.36254 + 5.40547i −0.469892 + 0.271293i −0.716195 0.697901i $$-0.754118\pi$$
0.246302 + 0.969193i $$0.420784\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −1.50000 2.59808i −0.0749064 0.129742i 0.826139 0.563466i $$-0.190532\pi$$
−0.901046 + 0.433724i $$0.857199\pi$$
$$402$$ 0 0
$$403$$ 7.45017 + 4.30136i 0.371119 + 0.214266i
$$404$$ 0 0
$$405$$ −14.7371 13.7046i −0.732294 0.680989i
$$406$$ 0 0
$$407$$ 52.6103i 2.60780i
$$408$$ 0 0
$$409$$ 10.0498 17.4068i 0.496932 0.860712i −0.503061 0.864251i $$-0.667793\pi$$
0.999994 + 0.00353862i $$0.00112638\pi$$
$$410$$ 0 0
$$411$$ −18.4622 31.9775i −0.910674 1.57733i
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −16.1375 3.70219i −0.792157 0.181733i
$$416$$ 0 0
$$417$$ −19.6495 11.3446i −0.962240 0.555550i
$$418$$ 0 0
$$419$$ −13.0997 −0.639961 −0.319980 0.947424i $$-0.603676\pi$$
−0.319980 + 0.947424i $$0.603676\pi$$
$$420$$ 0 0
$$421$$ −4.27492 −0.208347 −0.104173 0.994559i $$-0.533220\pi$$
−0.104173 + 0.994559i $$0.533220\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −1.17525 1.73205i −0.0570079 0.0840168i
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ −12.0000 20.7846i −0.579365 1.00349i
$$430$$ 0 0
$$431$$ 9.18729 15.9129i 0.442536 0.766495i −0.555341 0.831623i $$-0.687412\pi$$
0.997877 + 0.0651276i $$0.0207454\pi$$
$$432$$ 0 0
$$433$$ 18.1578i 0.872606i −0.899800 0.436303i $$-0.856288\pi$$
0.899800 0.436303i $$-0.143712\pi$$
$$434$$ 0 0
$$435$$ 11.2749 12.1244i 0.540591 0.581318i
$$436$$ 0 0
$$437$$ −22.1873 12.8098i −1.06136 0.612778i
$$438$$ 0 0
$$439$$ −11.9124 20.6328i −0.568547 0.984752i −0.996710 0.0810504i $$-0.974173\pi$$
0.428163 0.903701i $$-0.359161\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 10.5000 6.06218i 0.498870 0.288023i −0.229377 0.973338i $$-0.573669\pi$$
0.728247 + 0.685315i $$0.240335\pi$$
$$444$$ 0 0
$$445$$ 14.9622 4.59698i 0.709277 0.217918i
$$446$$ 0 0
$$447$$ 13.0767i 0.618507i
$$448$$ 0 0
$$449$$ 3.17525 0.149849 0.0749246 0.997189i $$-0.476128\pi$$
0.0749246 + 0.997189i $$0.476128\pi$$
$$450$$ 0 0
$$451$$ 9.82475 17.0170i 0.462629 0.801298i
$$452$$ 0 0
$$453$$ −19.0876 + 11.0202i −0.896815 + 0.517776i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −1.18729 + 0.685484i −0.0555392 + 0.0320656i −0.527512 0.849547i $$-0.676875\pi$$
0.471973 + 0.881613i $$0.343542\pi$$
$$458$$ 0 0
$$459$$ −1.08762 + 1.88382i −0.0507659 + 0.0879292i
$$460$$ 0 0
$$461$$ 14.0000 0.652045 0.326023 0.945362i $$-0.394291\pi$$
0.326023 + 0.945362i $$0.394291\pi$$
$$462$$ 0 0
$$463$$ 2.15068i 0.0999505i −0.998750 0.0499752i $$-0.984086\pi$$
0.998750 0.0499752i $$-0.0159142\pi$$
$$464$$ 0 0
$$465$$ 3.72508 + 12.1244i 0.172747 + 0.562254i
$$466$$ 0 0
$$467$$ −13.5997 + 7.85177i −0.629318 + 0.363337i −0.780488 0.625171i $$-0.785029\pi$$
0.151170 + 0.988508i $$0.451696\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 1.91238 + 3.31233i 0.0881176 + 0.152624i
$$472$$ 0 0
$$473$$ 9.82475 + 5.67232i 0.451743 + 0.260814i
$$474$$ 0 0
$$475$$ 1.18729 + 16.3315i 0.0544767 + 0.749340i
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −4.91238 + 8.50848i −0.224452 + 0.388763i −0.956155 0.292861i $$-0.905393\pi$$
0.731703 + 0.681624i $$0.238726\pi$$
$$480$$ 0 0
$$481$$ −13.0997 22.6893i −0.597293 1.03454i
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 15.0997 + 3.46410i 0.685641 + 0.157297i
$$486$$ 0 0
$$487$$ −2.53779 1.46519i −0.114998 0.0663943i 0.441398 0.897312i $$-0.354483\pi$$
−0.556396 + 0.830917i $$0.687816\pi$$
$$488$$ 0 0
$$489$$ 9.82475 0.444291
$$490$$ 0 0
$$491$$ −28.5498 −1.28844 −0.644218 0.764842i $$-0.722817\pi$$
−0.644218 + 0.764842i $$0.722817\pi$$
$$492$$ 0 0
$$493$$ −1.54983 0.894797i −0.0698010 0.0402996i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 0.812707 + 1.40765i 0.0363818 + 0.0630151i 0.883643 0.468161i $$-0.155083\pi$$
−0.847261 + 0.531177i $$0.821750\pi$$
$$500$$ 0 0
$$501$$ 0.412376 0.714256i 0.0184236 0.0319106i
$$502$$ 0 0
$$503$$ 31.7682i 1.41647i 0.705975 + 0.708236i $$0.250509\pi$$
−0.705975 + 0.708236i $$0.749491\pi$$
$$504$$ 0 0
$$505$$ 22.1873 + 20.6328i 0.987322 + 0.918149i
$$506$$ 0 0
$$507$$ −9.14950 5.28247i −0.406344 0.234603i
$$508$$ 0 0
$$509$$ 7.22508 + 12.5142i 0.320246 + 0.554683i 0.980539 0.196326i $$-0.0629010\pi$$
−0.660293 + 0.751008i $$0.729568\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 14.7371 8.50848i 0.650660 0.375659i
$$514$$ 0 0
$$515$$ −7.41238 24.1257i −0.326628 1.06311i
$$516$$ 0 0
$$517$$ 34.3375i 1.51016i
$$518$$ 0 0
$$519$$ −35.4743 −1.55715
$$520$$ 0 0
$$521$$ 4.91238 8.50848i 0.215215 0.372763i −0.738124 0.674665i $$-0.764288\pi$$
0.953339 + 0.301902i $$0.0976214\pi$$
$$522$$ 0 0
$$523$$ 6.36254 3.67341i 0.278215 0.160627i −0.354400 0.935094i $$-0.615315\pi$$
0.632615 + 0.774467i $$0.281982\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 1.18729 0.685484i 0.0517193 0.0298602i
$$528$$ 0 0
$$529$$ 19.0997 33.0816i 0.830420 1.43833i
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 9.78523i 0.423845i
$$534$$ 0 0
$$535$$ −2.31271 7.52737i −0.0999870 0.325437i
$$536$$ 0 0
$$537$$ 10.9124 6.30026i 0.470904 0.271876i
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ 8.77492 + 15.1986i 0.377263 + 0.653439i 0.990663 0.136334i $$-0.0435319\pi$$
−0.613400 + 0.789773i $$0.710199\pi$$
$$542$$ 0 0
$$543$$ −36.4124 21.0227i −1.56260 0.902170i
$$544$$ 0 0
$$545$$ 18.9124 + 17.5874i 0.810117 + 0.753360i
$$546$$ 0 0
$$547$$ 20.5386i 0.878168i −0.898446 0.439084i $$-0.855303\pi$$
0.898446 0.439084i $$-0.144697\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 7.00000 + 12.1244i 0.298210 + 0.516515i
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 8.63746 37.6498i 0.366640 1.59815i
$$556$$ 0 0
$$557$$ −8.63746 4.98684i −0.365981 0.211299i 0.305720 0.952121i $$-0.401103\pi$$
−0.671701 + 0.740822i $$0.734436\pi$$
$$558$$ 0 0
$$559$$ −5.64950 −0.238949
$$560$$ 0 0
$$561$$ −3.82475 −0.161481
$$562$$ 0 0
$$563$$ 19.5997 + 11.3159i 0.826028 + 0.476907i 0.852491 0.522743i $$-0.175091\pi$$
−0.0264630 + 0.999650i $$0.508424\pi$$
$$564$$ 0 0
$$565$$ −9.37459 2.15068i −0.394392 0.0904797i
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 4.18729 + 7.25260i 0.175540 + 0.304045i 0.940348 0.340214i $$-0.110499\pi$$
−0.764808 + 0.644259i $$0.777166\pi$$
$$570$$ 0 0
$$571$$ −3.63746 + 6.30026i −0.152223 + 0.263658i −0.932044 0.362344i $$-0.881976\pi$$
0.779821 + 0.626002i $$0.215310\pi$$
$$572$$ 0 0
$$573$$ 0.303539i 0.0126805i
$$574$$ 0 0
$$575$$ −39.0120 + 2.83616i −1.62691 + 0.118276i
$$576$$ 0 0
$$577$$ −3.36254 1.94136i −0.139984 0.0808200i 0.428372 0.903602i $$-0.359087\pi$$
−0.568357 + 0.822782i $$0.692421\pi$$
$$578$$ 0 0
$$579$$ −18.4622 31.9775i −0.767263 1.32894i
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ −25.9124 + 14.9605i −1.07318 + 0.619601i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 20.8997i 0.862623i −0.902203 0.431311i $$-0.858051\pi$$
0.902203 0.431311i $$-0.141949\pi$$
$$588$$ 0 0
$$589$$ −10.7251 −0.441919
$$590$$ 0 0
$$591$$ 7.45017 12.9041i 0.306459 0.530802i
$$592$$ 0 0
$$593$$ 28.9124 16.6926i 1.18729 0.685482i 0.229600 0.973285i $$-0.426258\pi$$
0.957689 + 0.287804i $$0.0929250\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 25.9124 14.9605i 1.06052 0.612293i
$$598$$ 0 0
$$599$$ 2.63746 4.56821i 0.107764 0.186652i −0.807100 0.590414i $$-0.798964\pi$$
0.914864 + 0.403762i $$0.132298\pi$$
$$600$$ 0 0
$$601$$ −14.0000 −0.571072 −0.285536 0.958368i $$-0.592172\pi$$
−0.285536 + 0.958368i $$0.592172\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ −35.9622 + 11.0490i −1.46207 + 0.449206i
$$606$$ 0 0
$$607$$ −9.87459 + 5.70109i −0.400797 + 0.231400i −0.686828 0.726820i $$-0.740997\pi$$
0.286031 + 0.958220i $$0.407664\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −8.54983 14.8087i −0.345889 0.599098i
$$612$$ 0 0
$$613$$ −24.5619 14.1808i −0.992045 0.572757i −0.0861600 0.996281i $$-0.527460\pi$$
−0.905885 + 0.423524i $$0.860793\pi$$
$$614$$ 0 0
$$615$$ −9.82475 + 10.5649i −0.396172 + 0.426019i
$$616$$ 0 0
$$617$$ 31.2920i 1.25977i −0.776689 0.629884i $$-0.783102\pi$$
0.776689 0.629884i $$-0.216898\pi$$
$$618$$ 0 0
$$619$$ 4.46221 7.72877i 0.179351 0.310646i −0.762307 0.647215i $$-0.775933\pi$$
0.941659 + 0.336570i $$0.109267\pi$$
$$620$$ 0 0
$$621$$ 20.3248 + 35.2035i 0.815604 + 1.41267i
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 15.5000 + 19.6150i 0.620000 + 0.784602i
$$626$$ 0 0
$$627$$ 25.9124 + 14.9605i 1.03484 + 0.597466i
$$628$$ 0 0
$$629$$ −4.17525 −0.166478
$$630$$ 0 0
$$631$$ 33.0997 1.31768 0.658839 0.752284i $$-0.271048\pi$$
0.658839 + 0.752284i $$0.271048\pi$$
$$632$$ 0 0
$$633$$ −38.4743 22.2131i −1.52921 0.882892i
$$634$$ 0 0
$$635$$ −34.0997 7.82300i −1.35320 0.310446i
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 1.04983 1.81837i 0.0414660 0.0718212i −0.844548 0.535481i $$-0.820131\pi$$
0.886014 + 0.463659i $$0.153464\pi$$
$$642$$ 0 0
$$643$$ 31.4071i 1.23857i −0.785164 0.619287i $$-0.787422\pi$$
0.785164 0.619287i $$-0.212578\pi$$
$$644$$ 0 0
$$645$$ −6.09967 5.67232i −0.240174 0.223348i
$$646$$ 0 0
$$647$$ 23.3248 + 13.4666i 0.916991 + 0.529425i 0.882674 0.469986i $$-0.155741\pi$$
0.0343169 + 0.999411i $$0.489074\pi$$
$$648$$ 0 0
$$649$$ −8.63746 14.9605i −0.339050 0.587252i
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ −24.5619 + 14.1808i −0.961181 + 0.554938i −0.896536 0.442970i $$-0.853925\pi$$
−0.0646444 + 0.997908i $$0.520591\pi$$
$$654$$ 0 0
$$655$$ −22.9244 + 7.04329i −0.895731 + 0.275204i
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 40.5498 1.57960 0.789799 0.613366i $$-0.210185\pi$$
0.789799 + 0.613366i $$0.210185\pi$$
$$660$$ 0 0
$$661$$ −0.225083 + 0.389855i −0.00875471 + 0.0151636i −0.870370 0.492399i $$-0.836120\pi$$
0.861615 + 0.507563i $$0.169453\pi$$
$$662$$ 0 0
$$663$$ 1.64950 0.952341i 0.0640614 0.0369859i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ −28.9622 + 16.7213i −1.12142 + 0.647453i
$$668$$ 0 0
$$669$$ −7.54983 + 13.0767i −0.291893 + 0.505574i
$$670$$ 0 0
$$671$$ −71.4743 −2.75923
$$672$$ 0 0
$$673$$ 31.2920i 1.20622i 0.797659 + 0.603109i $$0.206072\pi$$
−0.797659 + 0.603109i $$0.793928\pi$$
$$674$$ 0 0
$$675$$ 11.3248 23.3827i 0.435890 0.900000i
$$676$$ 0 0
$$677$$ −40.1873 + 23.2021i −1.54452 + 0.891731i −0.545979 + 0.837799i $$0.683842\pi$$
−0.998545 + 0.0539317i $$0.982825\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 16.9124 + 29.2931i 0.648084 + 1.12251i
$$682$$ 0 0
$$683$$ 16.5997 + 9.58382i 0.635169 + 0.366715i 0.782751 0.622335i $$-0.213816\pi$$
−0.147582 + 0.989050i $$0.547149\pi$$
$$684$$ 0 0
$$685$$ 32.4622 34.9079i 1.24032 1.33376i
$$686$$ 0 0
$$687$$ 5.67232i 0.216413i
$$688$$ 0 0
$$689$$ 7.45017 12.9041i 0.283829 0.491606i
$$690$$ 0 0
$$691$$ 15.1873 + 26.3052i 0.577752 + 1.00070i 0.995737 + 0.0922416i $$0.0294032\pi$$
−0.417985 + 0.908454i $$0.637263\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 6.54983 28.5501i 0.248449 1.08297i
$$696$$ 0 0
$$697$$ 1.35050 + 0.779710i 0.0511537 + 0.0295336i
$$698$$ 0 0
$$699$$ 24.7251 0.935189
$$700$$ 0 0
$$701$$ 8.82475 0.333306 0.166653 0.986016i $$-0.446704\pi$$
0.166653 + 0.986016i $$0.446704\pi$$
$$702$$ 0 0
$$703$$ 28.2870 + 16.3315i 1.06686 + 0.615954i
$$704$$ 0 0
$$705$$ 5.63746 24.5731i 0.212319 0.925477i
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ −5.22508 9.05011i −0.196232 0.339884i 0.751072 0.660221i $$-0.229537\pi$$
−0.947304 + 0.320337i $$0.896204\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 25.6197i 0.959465i
$$714$$ 0 0
$$715$$ 21.0997 22.6893i 0.789083 0.848531i
$$716$$ 0 0
$$717$$ 0.824752 + 0.476171i 0.0308009 + 0.0177829i
$$718$$ 0 0
$$719$$ 15.1873 + 26.3052i 0.566390 + 0.981017i 0.996919 + 0.0784400i $$0.0249939\pi$$
−0.430528 + 0.902577i $$0.641673\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ −14.7371 + 8.50848i −0.548080 + 0.316434i
$$724$$ 0 0
$$725$$ 19.2371 + 9.31697i 0.714449 + 0.346023i
$$726$$ 0 0
$$727$$ 3.10302i 0.115085i −0.998343 0.0575423i $$-0.981674\pi$$
0.998343 0.0575423i $$-0.0183264\pi$$
$$728$$ 0 0
$$729$$ −27.0000 −1.00000
$$730$$ 0 0
$$731$$ −0.450166 + 0.779710i −0.0166500 + 0.0288386i
$$732$$ 0 0
$$733$$ 32.6375 18.8432i 1.20549 0.695991i 0.243721 0.969845i $$-0.421632\pi$$
0.961771 + 0.273854i $$0.0882986\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −16.0876 + 9.28819i −0.592595 + 0.342135i
$$738$$ 0 0
$$739$$ −10.4622 + 18.1211i −0.384859 + 0.666595i −0.991750 0.128190i $$-0.959083\pi$$
0.606891 + 0.794785i $$0.292416\pi$$
$$740$$ 0 0
$$741$$ −14.9003 −0.547377
$$742$$ 0 0
$$743$$ 6.45203i 0.236702i 0.992972 + 0.118351i $$0.0377608\pi$$
−0.992972 + 0.118351i $$0.962239\pi$$
$$744$$ 0 0
$$745$$ −16.1375 + 4.95807i −0.591231 + 0.181650i
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 7.36254 + 12.7523i 0.268663 + 0.465338i 0.968517 0.248948i $$-0.0800849\pi$$
−0.699854 + 0.714286i $$0.746752\pi$$
$$752$$ 0 0
$$753$$ −30.8248 17.7967i −1.12332 0.648547i
$$754$$ 0 0
$$755$$ −20.8368 19.3770i −0.758329 0.705200i
$$756$$ 0 0
$$757$$ 35.5934i 1.29366i 0.762633 + 0.646831i $$0.223906\pi$$
−0.762633 + 0.646831i $$0.776094\pi$$
$$758$$ 0 0
$$759$$ −35.7371 + 61.8985i −1.29718 + 2.24677i
$$760$$ 0 0
$$761$$ 11.4622 + 19.8531i 0.415505 + 0.719675i 0.995481 0.0949578i $$-0.0302716\pi$$
−0.579977 + 0.814633i $$0.696938\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 7.45017 + 4.30136i 0.269010 + 0.155313i
$$768$$ 0 0
$$769$$ −14.0000 −0.504853 −0.252426 0.967616i $$-0.581229\pi$$
−0.252426 + 0.967616i $$0.581229\pi$$
$$770$$ 0 0
$$771$$ −20.1752 −0.726594
$$772$$ 0 0
$$773$$ 34.9124 + 20.1567i 1.25571 + 0.724985i 0.972238 0.233995i $$-0.0751800\pi$$
0.283473 + 0.958980i $$0.408513\pi$$
$$774$$ 0 0
$$775$$ −13.5498 + 9.19397i −0.486724 + 0.330257i
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −6.09967 10.5649i −0.218543 0.378528i
$$780$$ 0 0
$$781$$ −12.0000 + 20.7846i −0.429394 + 0.743732i
$$782$$ 0 0
$$783$$ 22.2131i 0.793832i
$$784$$ 0 0
$$785$$ −3.36254 + 3.61587i −0.120014 + 0.129056i
$$786$$ 0 0
$$787$$ −1.50000 0.866025i −0.0534692 0.0308705i 0.473027 0.881048i $$-0.343161\pi$$
−0.526496 + 0.850177i $$0.676495\pi$$
$$788$$ 0 0
$$789$$ −0.675248 1.16956i −0.0240395 0.0416376i
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 30.8248 17.7967i 1.09462 0.631979i
$$794$$ 0 0
$$795$$ 21.0000 6.45203i 0.744793 0.228830i
$$796$$ 0 0
$$797$$ 46.8229i 1.65855i 0.558839 + 0.829276i $$0.311247\pi$$
−0.558839 + 0.829276i $$0.688753\pi$$
$$798$$