Properties

Label 980.2.q.b.949.1
Level $980$
Weight $2$
Character 980.949
Analytic conductor $7.825$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
Defining polynomial: \(x^{4} - x^{3} - 4 x^{2} - 5 x + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 949.1
Root \(-1.63746 + 1.52274i\) of defining polynomial
Character \(\chi\) \(=\) 980.949
Dual form 980.2.q.b.569.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{3} +(0.500000 - 2.17945i) q^{5} +O(q^{10})\) \(q+(-1.50000 - 0.866025i) q^{3} +(0.500000 - 2.17945i) q^{5} +(2.63746 - 4.56821i) q^{11} +2.62685i q^{13} +(-2.63746 + 2.83616i) q^{15} +(0.362541 + 0.209313i) q^{17} +(-1.63746 - 2.83616i) q^{19} +(6.77492 - 3.91150i) q^{23} +(-4.50000 - 2.17945i) q^{25} +5.19615i q^{27} -4.27492 q^{29} +(1.63746 - 2.83616i) q^{31} +(-7.91238 + 4.56821i) q^{33} +(-8.63746 + 4.98684i) q^{37} +(2.27492 - 3.94027i) q^{39} +3.72508 q^{41} +2.15068i q^{43} +(-5.63746 + 3.25479i) q^{47} +(-0.362541 - 0.627940i) q^{51} +(-4.91238 - 2.83616i) q^{53} +(-8.63746 - 8.03231i) q^{55} +5.67232i q^{57} +(1.63746 - 2.83616i) q^{59} +(-6.77492 - 11.7345i) q^{61} +(5.72508 + 1.31342i) q^{65} +(-3.04983 - 1.76082i) q^{67} -13.5498 q^{69} -4.54983 q^{71} +(-5.63746 - 3.25479i) q^{73} +(4.86254 + 7.16629i) q^{75} +(3.63746 + 6.30026i) q^{79} +(4.50000 - 7.79423i) q^{81} -7.40437i q^{83} +(0.637459 - 0.685484i) q^{85} +(6.41238 + 3.70219i) q^{87} +(3.50000 + 6.06218i) q^{89} +(-4.91238 + 2.83616i) q^{93} +(-7.00000 + 2.15068i) q^{95} +6.92820i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} + 2 q^{5} + O(q^{10}) \) \( 4 q - 6 q^{3} + 2 q^{5} + 3 q^{11} - 3 q^{15} + 9 q^{17} + q^{19} + 12 q^{23} - 18 q^{25} - 2 q^{29} - q^{31} - 9 q^{33} - 27 q^{37} - 6 q^{39} + 30 q^{41} - 15 q^{47} - 9 q^{51} + 3 q^{53} - 27 q^{55} - q^{59} - 12 q^{61} + 38 q^{65} + 18 q^{67} - 24 q^{69} + 12 q^{71} - 15 q^{73} + 27 q^{75} + 7 q^{79} + 18 q^{81} - 5 q^{85} + 3 q^{87} + 14 q^{89} + 3 q^{93} - 28 q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 0.866025i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) 0.500000 2.17945i 0.223607 0.974679i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.63746 4.56821i 0.795224 1.37737i −0.127473 0.991842i \(-0.540687\pi\)
0.922697 0.385526i \(-0.125980\pi\)
\(12\) 0 0
\(13\) 2.62685i 0.728557i 0.931290 + 0.364278i \(0.118684\pi\)
−0.931290 + 0.364278i \(0.881316\pi\)
\(14\) 0 0
\(15\) −2.63746 + 2.83616i −0.680989 + 0.732294i
\(16\) 0 0
\(17\) 0.362541 + 0.209313i 0.0879292 + 0.0507659i 0.543320 0.839526i \(-0.317167\pi\)
−0.455391 + 0.890292i \(0.650500\pi\)
\(18\) 0 0
\(19\) −1.63746 2.83616i −0.375659 0.650660i 0.614767 0.788709i \(-0.289250\pi\)
−0.990425 + 0.138049i \(0.955917\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.77492 3.91150i 1.41267 0.815604i 0.417029 0.908893i \(-0.363071\pi\)
0.995639 + 0.0932891i \(0.0297381\pi\)
\(24\) 0 0
\(25\) −4.50000 2.17945i −0.900000 0.435890i
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) −4.27492 −0.793832 −0.396916 0.917855i \(-0.629920\pi\)
−0.396916 + 0.917855i \(0.629920\pi\)
\(30\) 0 0
\(31\) 1.63746 2.83616i 0.294096 0.509390i −0.680678 0.732583i \(-0.738315\pi\)
0.974774 + 0.223193i \(0.0716480\pi\)
\(32\) 0 0
\(33\) −7.91238 + 4.56821i −1.37737 + 0.795224i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.63746 + 4.98684i −1.41999 + 0.819831i −0.996297 0.0859750i \(-0.972599\pi\)
−0.423692 + 0.905806i \(0.639266\pi\)
\(38\) 0 0
\(39\) 2.27492 3.94027i 0.364278 0.630949i
\(40\) 0 0
\(41\) 3.72508 0.581760 0.290880 0.956760i \(-0.406052\pi\)
0.290880 + 0.956760i \(0.406052\pi\)
\(42\) 0 0
\(43\) 2.15068i 0.327975i 0.986462 + 0.163988i \(0.0524357\pi\)
−0.986462 + 0.163988i \(0.947564\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.63746 + 3.25479i −0.822308 + 0.474760i −0.851212 0.524823i \(-0.824132\pi\)
0.0289038 + 0.999582i \(0.490798\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.362541 0.627940i −0.0507659 0.0879292i
\(52\) 0 0
\(53\) −4.91238 2.83616i −0.674767 0.389577i 0.123114 0.992393i \(-0.460712\pi\)
−0.797880 + 0.602816i \(0.794045\pi\)
\(54\) 0 0
\(55\) −8.63746 8.03231i −1.16467 1.08308i
\(56\) 0 0
\(57\) 5.67232i 0.751318i
\(58\) 0 0
\(59\) 1.63746 2.83616i 0.213179 0.369237i −0.739529 0.673125i \(-0.764952\pi\)
0.952708 + 0.303888i \(0.0982849\pi\)
\(60\) 0 0
\(61\) −6.77492 11.7345i −0.867439 1.50245i −0.864605 0.502453i \(-0.832431\pi\)
−0.00283468 0.999996i \(-0.500902\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.72508 + 1.31342i 0.710109 + 0.162910i
\(66\) 0 0
\(67\) −3.04983 1.76082i −0.372597 0.215119i 0.301996 0.953309i \(-0.402347\pi\)
−0.674592 + 0.738191i \(0.735681\pi\)
\(68\) 0 0
\(69\) −13.5498 −1.63121
\(70\) 0 0
\(71\) −4.54983 −0.539966 −0.269983 0.962865i \(-0.587018\pi\)
−0.269983 + 0.962865i \(0.587018\pi\)
\(72\) 0 0
\(73\) −5.63746 3.25479i −0.659815 0.380944i 0.132392 0.991197i \(-0.457734\pi\)
−0.792206 + 0.610253i \(0.791068\pi\)
\(74\) 0 0
\(75\) 4.86254 + 7.16629i 0.561478 + 0.827492i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.63746 + 6.30026i 0.409246 + 0.708835i 0.994805 0.101795i \(-0.0324584\pi\)
−0.585559 + 0.810630i \(0.699125\pi\)
\(80\) 0 0
\(81\) 4.50000 7.79423i 0.500000 0.866025i
\(82\) 0 0
\(83\) 7.40437i 0.812736i −0.913710 0.406368i \(-0.866795\pi\)
0.913710 0.406368i \(-0.133205\pi\)
\(84\) 0 0
\(85\) 0.637459 0.685484i 0.0691421 0.0743512i
\(86\) 0 0
\(87\) 6.41238 + 3.70219i 0.687479 + 0.396916i
\(88\) 0 0
\(89\) 3.50000 + 6.06218i 0.370999 + 0.642590i 0.989720 0.143022i \(-0.0456819\pi\)
−0.618720 + 0.785611i \(0.712349\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −4.91238 + 2.83616i −0.509390 + 0.294096i
\(94\) 0 0
\(95\) −7.00000 + 2.15068i −0.718185 + 0.220655i
\(96\) 0 0
\(97\) 6.92820i 0.703452i 0.936103 + 0.351726i \(0.114405\pi\)
−0.936103 + 0.351726i \(0.885595\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.77492 + 11.7345i −0.674129 + 1.16763i 0.302593 + 0.953120i \(0.402148\pi\)
−0.976723 + 0.214507i \(0.931186\pi\)
\(102\) 0 0
\(103\) 9.77492 5.64355i 0.963151 0.556076i 0.0660098 0.997819i \(-0.478973\pi\)
0.897141 + 0.441743i \(0.145640\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.04983 1.76082i 0.294839 0.170225i −0.345283 0.938499i \(-0.612217\pi\)
0.640122 + 0.768273i \(0.278884\pi\)
\(108\) 0 0
\(109\) −5.77492 + 10.0025i −0.553137 + 0.958061i 0.444909 + 0.895576i \(0.353236\pi\)
−0.998046 + 0.0624852i \(0.980097\pi\)
\(110\) 0 0
\(111\) 17.2749 1.63966
\(112\) 0 0
\(113\) 4.30136i 0.404637i −0.979320 0.202319i \(-0.935152\pi\)
0.979320 0.202319i \(-0.0648477\pi\)
\(114\) 0 0
\(115\) −5.13746 16.7213i −0.479070 1.55927i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.41238 14.5707i −0.764761 1.32461i
\(122\) 0 0
\(123\) −5.58762 3.22602i −0.503819 0.290880i
\(124\) 0 0
\(125\) −7.00000 + 8.71780i −0.626099 + 0.779744i
\(126\) 0 0
\(127\) 15.6460i 1.38836i −0.719802 0.694179i \(-0.755768\pi\)
0.719802 0.694179i \(-0.244232\pi\)
\(128\) 0 0
\(129\) 1.86254 3.22602i 0.163988 0.284035i
\(130\) 0 0
\(131\) −5.36254 9.28819i −0.468527 0.811513i 0.530826 0.847481i \(-0.321882\pi\)
−0.999353 + 0.0359678i \(0.988549\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 11.3248 + 2.59808i 0.974679 + 0.223607i
\(136\) 0 0
\(137\) 18.4622 + 10.6592i 1.57733 + 0.910674i 0.995230 + 0.0975588i \(0.0311034\pi\)
0.582103 + 0.813115i \(0.302230\pi\)
\(138\) 0 0
\(139\) 13.0997 1.11110 0.555550 0.831483i \(-0.312508\pi\)
0.555550 + 0.831483i \(0.312508\pi\)
\(140\) 0 0
\(141\) 11.2749 0.949519
\(142\) 0 0
\(143\) 12.0000 + 6.92820i 1.00349 + 0.579365i
\(144\) 0 0
\(145\) −2.13746 + 9.31697i −0.177506 + 0.773732i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.77492 6.53835i −0.309253 0.535642i 0.668946 0.743311i \(-0.266746\pi\)
−0.978199 + 0.207669i \(0.933412\pi\)
\(150\) 0 0
\(151\) 6.36254 11.0202i 0.517776 0.896815i −0.482011 0.876165i \(-0.660093\pi\)
0.999787 0.0206494i \(-0.00657337\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.36254 4.98684i −0.430730 0.400553i
\(156\) 0 0
\(157\) −1.91238 1.10411i −0.152624 0.0881176i 0.421743 0.906715i \(-0.361418\pi\)
−0.574367 + 0.818598i \(0.694752\pi\)
\(158\) 0 0
\(159\) 4.91238 + 8.50848i 0.389577 + 0.674767i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −4.91238 + 2.83616i −0.384767 + 0.222145i −0.679890 0.733314i \(-0.737973\pi\)
0.295123 + 0.955459i \(0.404639\pi\)
\(164\) 0 0
\(165\) 6.00000 + 19.5287i 0.467099 + 1.52031i
\(166\) 0 0
\(167\) 0.476171i 0.0368472i 0.999830 + 0.0184236i \(0.00586474\pi\)
−0.999830 + 0.0184236i \(0.994135\pi\)
\(168\) 0 0
\(169\) 6.09967 0.469205
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 17.7371 10.2405i 1.34853 0.778573i 0.360488 0.932764i \(-0.382610\pi\)
0.988041 + 0.154190i \(0.0492769\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.91238 + 2.83616i −0.369237 + 0.213179i
\(178\) 0 0
\(179\) −3.63746 + 6.30026i −0.271876 + 0.470904i −0.969342 0.245714i \(-0.920978\pi\)
0.697466 + 0.716618i \(0.254311\pi\)
\(180\) 0 0
\(181\) 24.2749 1.80434 0.902170 0.431380i \(-0.141973\pi\)
0.902170 + 0.431380i \(0.141973\pi\)
\(182\) 0 0
\(183\) 23.4690i 1.73488i
\(184\) 0 0
\(185\) 6.54983 + 21.3183i 0.481553 + 1.56735i
\(186\) 0 0
\(187\) 1.91238 1.10411i 0.139847 0.0807406i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.0876242 0.151770i −0.00634026 0.0109817i 0.862838 0.505481i \(-0.168685\pi\)
−0.869178 + 0.494499i \(0.835352\pi\)
\(192\) 0 0
\(193\) 18.4622 + 10.6592i 1.32894 + 0.767263i 0.985136 0.171778i \(-0.0549513\pi\)
0.343803 + 0.939042i \(0.388285\pi\)
\(194\) 0 0
\(195\) −7.45017 6.92820i −0.533517 0.496139i
\(196\) 0 0
\(197\) 8.60271i 0.612918i 0.951884 + 0.306459i \(0.0991442\pi\)
−0.951884 + 0.306459i \(0.900856\pi\)
\(198\) 0 0
\(199\) −8.63746 + 14.9605i −0.612293 + 1.06052i 0.378560 + 0.925577i \(0.376419\pi\)
−0.990853 + 0.134946i \(0.956914\pi\)
\(200\) 0 0
\(201\) 3.04983 + 5.28247i 0.215119 + 0.372597i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.86254 8.11863i 0.130086 0.567030i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −17.2749 −1.19493
\(210\) 0 0
\(211\) 25.6495 1.76578 0.882892 0.469576i \(-0.155593\pi\)
0.882892 + 0.469576i \(0.155593\pi\)
\(212\) 0 0
\(213\) 6.82475 + 3.94027i 0.467624 + 0.269983i
\(214\) 0 0
\(215\) 4.68729 + 1.07534i 0.319671 + 0.0733375i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 5.63746 + 9.76436i 0.380944 + 0.659815i
\(220\) 0 0
\(221\) −0.549834 + 0.952341i −0.0369859 + 0.0640614i
\(222\) 0 0
\(223\) 8.71780i 0.583787i −0.956451 0.291893i \(-0.905715\pi\)
0.956451 0.291893i \(-0.0942853\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.9124 9.76436i −1.12251 0.648084i −0.180472 0.983580i \(-0.557763\pi\)
−0.942041 + 0.335496i \(0.891096\pi\)
\(228\) 0 0
\(229\) −1.63746 2.83616i −0.108206 0.187419i 0.806837 0.590774i \(-0.201177\pi\)
−0.915044 + 0.403355i \(0.867844\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.3625 + 7.13752i −0.809897 + 0.467594i −0.846920 0.531720i \(-0.821546\pi\)
0.0370231 + 0.999314i \(0.488212\pi\)
\(234\) 0 0
\(235\) 4.27492 + 13.9140i 0.278865 + 0.907646i
\(236\) 0 0
\(237\) 12.6005i 0.818492i
\(238\) 0 0
\(239\) −0.549834 −0.0355658 −0.0177829 0.999842i \(-0.505661\pi\)
−0.0177829 + 0.999842i \(0.505661\pi\)
\(240\) 0 0
\(241\) 4.91238 8.50848i 0.316434 0.548080i −0.663307 0.748347i \(-0.730848\pi\)
0.979741 + 0.200267i \(0.0641811\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 7.45017 4.30136i 0.474043 0.273689i
\(248\) 0 0
\(249\) −6.41238 + 11.1066i −0.406368 + 0.703850i
\(250\) 0 0
\(251\) 20.5498 1.29709 0.648547 0.761175i \(-0.275377\pi\)
0.648547 + 0.761175i \(0.275377\pi\)
\(252\) 0 0
\(253\) 41.2657i 2.59435i
\(254\) 0 0
\(255\) −1.54983 + 0.476171i −0.0970544 + 0.0298190i
\(256\) 0 0
\(257\) 10.0876 5.82409i 0.629249 0.363297i −0.151212 0.988501i \(-0.548318\pi\)
0.780461 + 0.625204i \(0.214984\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.675248 + 0.389855i 0.0416376 + 0.0240395i 0.520674 0.853755i \(-0.325681\pi\)
−0.479037 + 0.877795i \(0.659014\pi\)
\(264\) 0 0
\(265\) −8.63746 + 9.28819i −0.530595 + 0.570569i
\(266\) 0 0
\(267\) 12.1244i 0.741999i
\(268\) 0 0
\(269\) 7.22508 12.5142i 0.440521 0.763005i −0.557207 0.830374i \(-0.688127\pi\)
0.997728 + 0.0673687i \(0.0214604\pi\)
\(270\) 0 0
\(271\) 4.91238 + 8.50848i 0.298406 + 0.516854i 0.975771 0.218793i \(-0.0702119\pi\)
−0.677366 + 0.735646i \(0.736879\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −21.8248 + 14.8087i −1.31608 + 0.893001i
\(276\) 0 0
\(277\) −12.3625 7.13752i −0.742793 0.428852i 0.0802909 0.996771i \(-0.474415\pi\)
−0.823084 + 0.567920i \(0.807748\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −9.46221 5.46301i −0.562470 0.324742i 0.191666 0.981460i \(-0.438611\pi\)
−0.754136 + 0.656718i \(0.771944\pi\)
\(284\) 0 0
\(285\) 12.3625 + 2.83616i 0.732294 + 0.168000i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.41238 14.5707i −0.494846 0.857098i
\(290\) 0 0
\(291\) 6.00000 10.3923i 0.351726 0.609208i
\(292\) 0 0
\(293\) 6.92820i 0.404750i 0.979308 + 0.202375i \(0.0648660\pi\)
−0.979308 + 0.202375i \(0.935134\pi\)
\(294\) 0 0
\(295\) −5.36254 4.98684i −0.312219 0.290345i
\(296\) 0 0
\(297\) 23.7371 + 13.7046i 1.37737 + 0.795224i
\(298\) 0 0
\(299\) 10.2749 + 17.7967i 0.594214 + 1.02921i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 20.3248 11.7345i 1.16763 0.674129i
\(304\) 0 0
\(305\) −28.9622 + 8.89834i −1.65837 + 0.509517i
\(306\) 0 0
\(307\) 26.5145i 1.51326i −0.653843 0.756631i \(-0.726844\pi\)
0.653843 0.756631i \(-0.273156\pi\)
\(308\) 0 0
\(309\) −19.5498 −1.11215
\(310\) 0 0
\(311\) −4.91238 + 8.50848i −0.278555 + 0.482472i −0.971026 0.238974i \(-0.923189\pi\)
0.692471 + 0.721446i \(0.256522\pi\)
\(312\) 0 0
\(313\) −29.0120 + 16.7501i −1.63986 + 0.946772i −0.658977 + 0.752163i \(0.729010\pi\)
−0.980881 + 0.194609i \(0.937656\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.1873 12.8098i 1.24616 0.719472i 0.275821 0.961209i \(-0.411050\pi\)
0.970342 + 0.241737i \(0.0777171\pi\)
\(318\) 0 0
\(319\) −11.2749 + 19.5287i −0.631274 + 1.09340i
\(320\) 0 0
\(321\) −6.09967 −0.340450
\(322\) 0 0
\(323\) 1.37097i 0.0762827i
\(324\) 0 0
\(325\) 5.72508 11.8208i 0.317570 0.655701i
\(326\) 0 0
\(327\) 17.3248 10.0025i 0.958061 0.553137i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8.91238 15.4367i −0.489868 0.848477i 0.510064 0.860137i \(-0.329622\pi\)
−0.999932 + 0.0116596i \(0.996289\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.36254 + 5.76655i −0.292987 + 0.315060i
\(336\) 0 0
\(337\) 4.30136i 0.234310i −0.993114 0.117155i \(-0.962623\pi\)
0.993114 0.117155i \(-0.0373774\pi\)
\(338\) 0 0
\(339\) −3.72508 + 6.45203i −0.202319 + 0.350426i
\(340\) 0 0
\(341\) −8.63746 14.9605i −0.467745 0.810157i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −6.77492 + 29.5312i −0.364749 + 1.58991i
\(346\) 0 0
\(347\) −10.5000 6.06218i −0.563670 0.325435i 0.190947 0.981600i \(-0.438844\pi\)
−0.754617 + 0.656165i \(0.772177\pi\)
\(348\) 0 0
\(349\) −3.72508 −0.199399 −0.0996996 0.995018i \(-0.531788\pi\)
−0.0996996 + 0.995018i \(0.531788\pi\)
\(350\) 0 0
\(351\) −13.6495 −0.728557
\(352\) 0 0
\(353\) −7.08762 4.09204i −0.377236 0.217797i 0.299379 0.954134i \(-0.403221\pi\)
−0.676615 + 0.736337i \(0.736554\pi\)
\(354\) 0 0
\(355\) −2.27492 + 9.91613i −0.120740 + 0.526294i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.1873 + 31.5013i 0.959889 + 1.66258i 0.722762 + 0.691097i \(0.242872\pi\)
0.237127 + 0.971479i \(0.423794\pi\)
\(360\) 0 0
\(361\) 4.13746 7.16629i 0.217761 0.377173i
\(362\) 0 0
\(363\) 29.1413i 1.52952i
\(364\) 0 0
\(365\) −9.91238 + 10.6592i −0.518837 + 0.557926i
\(366\) 0 0
\(367\) −5.22508 3.01670i −0.272747 0.157471i 0.357388 0.933956i \(-0.383667\pi\)
−0.630135 + 0.776485i \(0.717001\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −8.63746 + 4.98684i −0.447231 + 0.258209i −0.706660 0.707553i \(-0.749799\pi\)
0.259429 + 0.965762i \(0.416466\pi\)
\(374\) 0 0
\(375\) 18.0498 7.01452i 0.932089 0.362228i
\(376\) 0 0
\(377\) 11.2296i 0.578352i
\(378\) 0 0
\(379\) 21.6495 1.11206 0.556030 0.831162i \(-0.312324\pi\)
0.556030 + 0.831162i \(0.312324\pi\)
\(380\) 0 0
\(381\) −13.5498 + 23.4690i −0.694179 + 1.20235i
\(382\) 0 0
\(383\) −5.32475 + 3.07425i −0.272082 + 0.157087i −0.629833 0.776730i \(-0.716877\pi\)
0.357751 + 0.933817i \(0.383544\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.1873 28.0372i 0.820728 1.42154i −0.0844123 0.996431i \(-0.526901\pi\)
0.905141 0.425112i \(-0.139765\pi\)
\(390\) 0 0
\(391\) 3.27492 0.165620
\(392\) 0 0
\(393\) 18.5764i 0.937055i
\(394\) 0 0
\(395\) 15.5498 4.77753i 0.782397 0.240383i
\(396\) 0 0
\(397\) −9.36254 + 5.40547i −0.469892 + 0.271293i −0.716195 0.697901i \(-0.754118\pi\)
0.246302 + 0.969193i \(0.420784\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.50000 2.59808i −0.0749064 0.129742i 0.826139 0.563466i \(-0.190532\pi\)
−0.901046 + 0.433724i \(0.857199\pi\)
\(402\) 0 0
\(403\) 7.45017 + 4.30136i 0.371119 + 0.214266i
\(404\) 0 0
\(405\) −14.7371 13.7046i −0.732294 0.680989i
\(406\) 0 0
\(407\) 52.6103i 2.60780i
\(408\) 0 0
\(409\) 10.0498 17.4068i 0.496932 0.860712i −0.503061 0.864251i \(-0.667793\pi\)
0.999994 + 0.00353862i \(0.00112638\pi\)
\(410\) 0 0
\(411\) −18.4622 31.9775i −0.910674 1.57733i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −16.1375 3.70219i −0.792157 0.181733i
\(416\) 0 0
\(417\) −19.6495 11.3446i −0.962240 0.555550i
\(418\) 0 0
\(419\) −13.0997 −0.639961 −0.319980 0.947424i \(-0.603676\pi\)
−0.319980 + 0.947424i \(0.603676\pi\)
\(420\) 0 0
\(421\) −4.27492 −0.208347 −0.104173 0.994559i \(-0.533220\pi\)
−0.104173 + 0.994559i \(0.533220\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.17525 1.73205i −0.0570079 0.0840168i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −12.0000 20.7846i −0.579365 1.00349i
\(430\) 0 0
\(431\) 9.18729 15.9129i 0.442536 0.766495i −0.555341 0.831623i \(-0.687412\pi\)
0.997877 + 0.0651276i \(0.0207454\pi\)
\(432\) 0 0
\(433\) 18.1578i 0.872606i −0.899800 0.436303i \(-0.856288\pi\)
0.899800 0.436303i \(-0.143712\pi\)
\(434\) 0 0
\(435\) 11.2749 12.1244i 0.540591 0.581318i
\(436\) 0 0
\(437\) −22.1873 12.8098i −1.06136 0.612778i
\(438\) 0 0
\(439\) −11.9124 20.6328i −0.568547 0.984752i −0.996710 0.0810504i \(-0.974173\pi\)
0.428163 0.903701i \(-0.359161\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.5000 6.06218i 0.498870 0.288023i −0.229377 0.973338i \(-0.573669\pi\)
0.728247 + 0.685315i \(0.240335\pi\)
\(444\) 0 0
\(445\) 14.9622 4.59698i 0.709277 0.217918i
\(446\) 0 0
\(447\) 13.0767i 0.618507i
\(448\) 0 0
\(449\) 3.17525 0.149849 0.0749246 0.997189i \(-0.476128\pi\)
0.0749246 + 0.997189i \(0.476128\pi\)
\(450\) 0 0
\(451\) 9.82475 17.0170i 0.462629 0.801298i
\(452\) 0 0
\(453\) −19.0876 + 11.0202i −0.896815 + 0.517776i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.18729 + 0.685484i −0.0555392 + 0.0320656i −0.527512 0.849547i \(-0.676875\pi\)
0.471973 + 0.881613i \(0.343542\pi\)
\(458\) 0 0
\(459\) −1.08762 + 1.88382i −0.0507659 + 0.0879292i
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) 2.15068i 0.0999505i −0.998750 0.0499752i \(-0.984086\pi\)
0.998750 0.0499752i \(-0.0159142\pi\)
\(464\) 0 0
\(465\) 3.72508 + 12.1244i 0.172747 + 0.562254i
\(466\) 0 0
\(467\) −13.5997 + 7.85177i −0.629318 + 0.363337i −0.780488 0.625171i \(-0.785029\pi\)
0.151170 + 0.988508i \(0.451696\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.91238 + 3.31233i 0.0881176 + 0.152624i
\(472\) 0 0
\(473\) 9.82475 + 5.67232i 0.451743 + 0.260814i
\(474\) 0 0
\(475\) 1.18729 + 16.3315i 0.0544767 + 0.749340i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.91238 + 8.50848i −0.224452 + 0.388763i −0.956155 0.292861i \(-0.905393\pi\)
0.731703 + 0.681624i \(0.238726\pi\)
\(480\) 0 0
\(481\) −13.0997 22.6893i −0.597293 1.03454i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 15.0997 + 3.46410i 0.685641 + 0.157297i
\(486\) 0 0
\(487\) −2.53779 1.46519i −0.114998 0.0663943i 0.441398 0.897312i \(-0.354483\pi\)
−0.556396 + 0.830917i \(0.687816\pi\)
\(488\) 0 0
\(489\) 9.82475 0.444291
\(490\) 0 0
\(491\) −28.5498 −1.28844 −0.644218 0.764842i \(-0.722817\pi\)
−0.644218 + 0.764842i \(0.722817\pi\)
\(492\) 0 0
\(493\) −1.54983 0.894797i −0.0698010 0.0402996i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.812707 + 1.40765i 0.0363818 + 0.0630151i 0.883643 0.468161i \(-0.155083\pi\)
−0.847261 + 0.531177i \(0.821750\pi\)
\(500\) 0 0
\(501\) 0.412376 0.714256i 0.0184236 0.0319106i
\(502\) 0 0
\(503\) 31.7682i 1.41647i 0.705975 + 0.708236i \(0.250509\pi\)
−0.705975 + 0.708236i \(0.749491\pi\)
\(504\) 0 0
\(505\) 22.1873 + 20.6328i 0.987322 + 0.918149i
\(506\) 0 0
\(507\) −9.14950 5.28247i −0.406344 0.234603i
\(508\) 0 0
\(509\) 7.22508 + 12.5142i 0.320246 + 0.554683i 0.980539 0.196326i \(-0.0629010\pi\)
−0.660293 + 0.751008i \(0.729568\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 14.7371 8.50848i 0.650660 0.375659i
\(514\) 0 0
\(515\) −7.41238 24.1257i −0.326628 1.06311i
\(516\) 0 0
\(517\) 34.3375i 1.51016i
\(518\) 0 0
\(519\) −35.4743 −1.55715
\(520\) 0 0
\(521\) 4.91238 8.50848i 0.215215 0.372763i −0.738124 0.674665i \(-0.764288\pi\)
0.953339 + 0.301902i \(0.0976214\pi\)
\(522\) 0 0
\(523\) 6.36254 3.67341i 0.278215 0.160627i −0.354400 0.935094i \(-0.615315\pi\)
0.632615 + 0.774467i \(0.281982\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.18729 0.685484i 0.0517193 0.0298602i
\(528\) 0 0
\(529\) 19.0997 33.0816i 0.830420 1.43833i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.78523i 0.423845i
\(534\) 0 0
\(535\) −2.31271 7.52737i −0.0999870 0.325437i
\(536\) 0 0
\(537\) 10.9124 6.30026i 0.470904 0.271876i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 8.77492 + 15.1986i 0.377263 + 0.653439i 0.990663 0.136334i \(-0.0435319\pi\)
−0.613400 + 0.789773i \(0.710199\pi\)
\(542\) 0 0
\(543\) −36.4124 21.0227i −1.56260 0.902170i
\(544\) 0 0
\(545\) 18.9124 + 17.5874i 0.810117 + 0.753360i
\(546\) 0 0
\(547\) 20.5386i 0.878168i −0.898446 0.439084i \(-0.855303\pi\)
0.898446 0.439084i \(-0.144697\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.00000 + 12.1244i 0.298210 + 0.516515i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 8.63746 37.6498i 0.366640 1.59815i
\(556\) 0 0
\(557\) −8.63746 4.98684i −0.365981 0.211299i 0.305720 0.952121i \(-0.401103\pi\)
−0.671701 + 0.740822i \(0.734436\pi\)
\(558\) 0 0
\(559\) −5.64950 −0.238949
\(560\) 0 0
\(561\) −3.82475 −0.161481
\(562\) 0 0
\(563\) 19.5997 + 11.3159i 0.826028 + 0.476907i 0.852491 0.522743i \(-0.175091\pi\)
−0.0264630 + 0.999650i \(0.508424\pi\)
\(564\) 0 0
\(565\) −9.37459 2.15068i −0.394392 0.0904797i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.18729 + 7.25260i 0.175540 + 0.304045i 0.940348 0.340214i \(-0.110499\pi\)
−0.764808 + 0.644259i \(0.777166\pi\)
\(570\) 0 0
\(571\) −3.63746 + 6.30026i −0.152223 + 0.263658i −0.932044 0.362344i \(-0.881976\pi\)
0.779821 + 0.626002i \(0.215310\pi\)
\(572\) 0 0
\(573\) 0.303539i 0.0126805i
\(574\) 0 0
\(575\) −39.0120 + 2.83616i −1.62691 + 0.118276i
\(576\) 0 0
\(577\) −3.36254 1.94136i −0.139984 0.0808200i 0.428372 0.903602i \(-0.359087\pi\)
−0.568357 + 0.822782i \(0.692421\pi\)
\(578\) 0 0
\(579\) −18.4622 31.9775i −0.767263 1.32894i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −25.9124 + 14.9605i −1.07318 + 0.619601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.8997i 0.862623i −0.902203 0.431311i \(-0.858051\pi\)
0.902203 0.431311i \(-0.141949\pi\)
\(588\) 0 0
\(589\) −10.7251 −0.441919
\(590\) 0 0
\(591\) 7.45017 12.9041i 0.306459 0.530802i
\(592\) 0 0
\(593\) 28.9124 16.6926i 1.18729 0.685482i 0.229600 0.973285i \(-0.426258\pi\)
0.957689 + 0.287804i \(0.0929250\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 25.9124 14.9605i 1.06052 0.612293i
\(598\) 0 0
\(599\) 2.63746 4.56821i 0.107764 0.186652i −0.807100 0.590414i \(-0.798964\pi\)
0.914864 + 0.403762i \(0.132298\pi\)
\(600\) 0 0
\(601\) −14.0000 −0.571072 −0.285536 0.958368i \(-0.592172\pi\)
−0.285536 + 0.958368i \(0.592172\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −35.9622 + 11.0490i −1.46207 + 0.449206i
\(606\) 0 0
\(607\) −9.87459 + 5.70109i −0.400797 + 0.231400i −0.686828 0.726820i \(-0.740997\pi\)
0.286031 + 0.958220i \(0.407664\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.54983 14.8087i −0.345889 0.599098i
\(612\) 0 0
\(613\) −24.5619 14.1808i −0.992045 0.572757i −0.0861600 0.996281i \(-0.527460\pi\)
−0.905885 + 0.423524i \(0.860793\pi\)
\(614\) 0 0
\(615\) −9.82475 + 10.5649i −0.396172 + 0.426019i
\(616\) 0 0
\(617\) 31.2920i 1.25977i −0.776689 0.629884i \(-0.783102\pi\)
0.776689 0.629884i \(-0.216898\pi\)
\(618\) 0 0
\(619\) 4.46221 7.72877i 0.179351 0.310646i −0.762307 0.647215i \(-0.775933\pi\)
0.941659 + 0.336570i \(0.109267\pi\)
\(620\) 0 0
\(621\) 20.3248 + 35.2035i 0.815604 + 1.41267i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15.5000 + 19.6150i 0.620000 + 0.784602i
\(626\) 0 0
\(627\) 25.9124 + 14.9605i 1.03484 + 0.597466i
\(628\) 0 0
\(629\) −4.17525 −0.166478
\(630\) 0 0
\(631\) 33.0997 1.31768 0.658839 0.752284i \(-0.271048\pi\)
0.658839 + 0.752284i \(0.271048\pi\)
\(632\) 0 0
\(633\) −38.4743 22.2131i −1.52921 0.882892i
\(634\) 0 0
\(635\) −34.0997 7.82300i −1.35320 0.310446i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.04983 1.81837i 0.0414660 0.0718212i −0.844548 0.535481i \(-0.820131\pi\)
0.886014 + 0.463659i \(0.153464\pi\)
\(642\) 0 0
\(643\) 31.4071i 1.23857i −0.785164 0.619287i \(-0.787422\pi\)
0.785164 0.619287i \(-0.212578\pi\)
\(644\) 0 0
\(645\) −6.09967 5.67232i −0.240174 0.223348i
\(646\) 0 0
\(647\) 23.3248 + 13.4666i 0.916991 + 0.529425i 0.882674 0.469986i \(-0.155741\pi\)
0.0343169 + 0.999411i \(0.489074\pi\)
\(648\) 0 0
\(649\) −8.63746 14.9605i −0.339050 0.587252i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −24.5619 + 14.1808i −0.961181 + 0.554938i −0.896536 0.442970i \(-0.853925\pi\)
−0.0646444 + 0.997908i \(0.520591\pi\)
\(654\) 0 0
\(655\) −22.9244 + 7.04329i −0.895731 + 0.275204i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.5498 1.57960 0.789799 0.613366i \(-0.210185\pi\)
0.789799 + 0.613366i \(0.210185\pi\)
\(660\) 0 0
\(661\) −0.225083 + 0.389855i −0.00875471 + 0.0151636i −0.870370 0.492399i \(-0.836120\pi\)
0.861615 + 0.507563i \(0.169453\pi\)
\(662\) 0 0
\(663\) 1.64950 0.952341i 0.0640614 0.0369859i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −28.9622 + 16.7213i −1.12142 + 0.647453i
\(668\) 0 0
\(669\) −7.54983 + 13.0767i −0.291893 + 0.505574i
\(670\) 0 0
\(671\) −71.4743 −2.75923
\(672\) 0 0
\(673\) 31.2920i 1.20622i 0.797659 + 0.603109i \(0.206072\pi\)
−0.797659 + 0.603109i \(0.793928\pi\)
\(674\) 0 0
\(675\) 11.3248 23.3827i 0.435890 0.900000i
\(676\) 0 0
\(677\) −40.1873 + 23.2021i −1.54452 + 0.891731i −0.545979 + 0.837799i \(0.683842\pi\)
−0.998545 + 0.0539317i \(0.982825\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 16.9124 + 29.2931i 0.648084 + 1.12251i
\(682\) 0 0
\(683\) 16.5997 + 9.58382i 0.635169 + 0.366715i 0.782751 0.622335i \(-0.213816\pi\)
−0.147582 + 0.989050i \(0.547149\pi\)
\(684\) 0 0
\(685\) 32.4622 34.9079i 1.24032 1.33376i
\(686\) 0 0
\(687\) 5.67232i 0.216413i
\(688\) 0 0
\(689\) 7.45017 12.9041i 0.283829 0.491606i
\(690\) 0 0
\(691\) 15.1873 + 26.3052i 0.577752 + 1.00070i 0.995737 + 0.0922416i \(0.0294032\pi\)
−0.417985 + 0.908454i \(0.637263\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.54983 28.5501i 0.248449 1.08297i
\(696\) 0 0
\(697\) 1.35050 + 0.779710i 0.0511537 + 0.0295336i
\(698\) 0 0
\(699\) 24.7251 0.935189
\(700\) 0 0
\(701\) 8.82475 0.333306 0.166653 0.986016i \(-0.446704\pi\)
0.166653 + 0.986016i \(0.446704\pi\)
\(702\) 0 0
\(703\) 28.2870 + 16.3315i 1.06686 + 0.615954i
\(704\) 0 0
\(705\) 5.63746 24.5731i 0.212319 0.925477i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5.22508 9.05011i −0.196232 0.339884i 0.751072 0.660221i \(-0.229537\pi\)
−0.947304 + 0.320337i \(0.896204\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 25.6197i 0.959465i
\(714\) 0 0
\(715\) 21.0997 22.6893i 0.789083 0.848531i
\(716\) 0 0
\(717\) 0.824752 + 0.476171i 0.0308009 + 0.0177829i
\(718\) 0 0
\(719\) 15.1873 + 26.3052i 0.566390 + 0.981017i 0.996919 + 0.0784400i \(0.0249939\pi\)
−0.430528 + 0.902577i \(0.641673\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −14.7371 + 8.50848i −0.548080 + 0.316434i
\(724\) 0 0
\(725\) 19.2371 + 9.31697i 0.714449 + 0.346023i
\(726\) 0 0
\(727\) 3.10302i 0.115085i −0.998343 0.0575423i \(-0.981674\pi\)
0.998343 0.0575423i \(-0.0183264\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −0.450166 + 0.779710i −0.0166500 + 0.0288386i
\(732\) 0 0
\(733\) 32.6375 18.8432i 1.20549 0.695991i 0.243721 0.969845i \(-0.421632\pi\)
0.961771 + 0.273854i \(0.0882986\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.0876 + 9.28819i −0.592595 + 0.342135i
\(738\) 0 0
\(739\) −10.4622 + 18.1211i −0.384859 + 0.666595i −0.991750 0.128190i \(-0.959083\pi\)
0.606891 + 0.794785i \(0.292416\pi\)
\(740\) 0 0
\(741\) −14.9003 −0.547377
\(742\) 0 0
\(743\) 6.45203i 0.236702i 0.992972 + 0.118351i \(0.0377608\pi\)
−0.992972 + 0.118351i \(0.962239\pi\)
\(744\) 0 0
\(745\) −16.1375 + 4.95807i −0.591231 + 0.181650i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 7.36254 + 12.7523i 0.268663 + 0.465338i 0.968517 0.248948i \(-0.0800849\pi\)
−0.699854 + 0.714286i \(0.746752\pi\)
\(752\) 0 0
\(753\) −30.8248 17.7967i −1.12332 0.648547i
\(754\) 0 0
\(755\) −20.8368 19.3770i −0.758329 0.705200i
\(756\) 0 0
\(757\) 35.5934i 1.29366i 0.762633 + 0.646831i \(0.223906\pi\)
−0.762633 + 0.646831i \(0.776094\pi\)
\(758\) 0 0
\(759\) −35.7371 + 61.8985i −1.29718 + 2.24677i
\(760\) 0 0
\(761\) 11.4622 + 19.8531i 0.415505 + 0.719675i 0.995481 0.0949578i \(-0.0302716\pi\)
−0.579977 + 0.814633i \(0.696938\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.45017 + 4.30136i 0.269010 + 0.155313i
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) −20.1752 −0.726594
\(772\) 0 0
\(773\) 34.9124 + 20.1567i 1.25571 + 0.724985i 0.972238 0.233995i \(-0.0751800\pi\)
0.283473 + 0.958980i \(0.408513\pi\)
\(774\) 0 0
\(775\) −13.5498 + 9.19397i −0.486724 + 0.330257i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.09967 10.5649i −0.218543 0.378528i
\(780\) 0 0
\(781\) −12.0000 + 20.7846i −0.429394 + 0.743732i
\(782\) 0 0
\(783\) 22.2131i 0.793832i
\(784\) 0 0
\(785\) −3.36254 + 3.61587i −0.120014 + 0.129056i
\(786\) 0 0
\(787\) −1.50000 0.866025i −0.0534692 0.0308705i 0.473027 0.881048i \(-0.343161\pi\)
−0.526496 + 0.850177i \(0.676495\pi\)
\(788\) 0 0
\(789\) −0.675248 1.16956i −0.0240395 0.0416376i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 30.8248 17.7967i 1.09462 0.631979i
\(794\) 0 0
\(795\) 21.0000 6.45203i 0.744793 0.228830i
\(796\) 0 0
\(797\) 46.8229i 1.65855i 0.558839 + 0.829276i \(0.311247\pi\)
−0.558839 + 0.829276i \(0.688753\pi\)
\(798\)