Properties

Label 980.2.m
Level $980$
Weight $2$
Character orbit 980.m
Rep. character $\chi_{980}(97,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $40$
Newform subspaces $2$
Sturm bound $336$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.m (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(336\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(980, [\chi])\).

Total New Old
Modular forms 384 40 344
Cusp forms 288 40 248
Eisenstein series 96 0 96

Trace form

\( 40 q + 16 q^{11} - 20 q^{15} - 16 q^{23} + 20 q^{25} - 4 q^{37} + 44 q^{43} + 8 q^{51} - 4 q^{53} + 44 q^{57} - 4 q^{65} - 48 q^{67} - 8 q^{71} - 40 q^{81} - 64 q^{85} + 28 q^{93} + 60 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(980, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
980.2.m.a 980.m 35.f $16$ $7.825$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 140.2.u.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{5}q^{3}-\beta _{10}q^{5}+(-\beta _{3}-\beta _{4}-2\beta _{7}+\cdots)q^{9}+\cdots\)
980.2.m.b 980.m 35.f $24$ $7.825$ None 980.2.m.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(980, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(980, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 2}\)