Properties

Label 980.2.k.j.687.6
Level $980$
Weight $2$
Character 980.687
Analytic conductor $7.825$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(687,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.687"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,-2,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 687.6
Character \(\chi\) \(=\) 980.687
Dual form 980.2.k.j.883.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.745796 - 1.20158i) q^{2} +(1.48476 + 1.48476i) q^{3} +(-0.887576 + 1.79226i) q^{4} +(-2.14305 - 0.638231i) q^{5} +(0.676724 - 2.89137i) q^{6} +(2.81549 - 0.270171i) q^{8} +1.40900i q^{9} +(0.831394 + 3.05103i) q^{10} +0.422774i q^{11} +(-3.97891 + 1.34324i) q^{12} +(1.56422 - 1.56422i) q^{13} +(-2.23429 - 4.12952i) q^{15} +(-2.42442 - 3.18154i) q^{16} +(-3.22979 - 3.22979i) q^{17} +(1.69302 - 1.05082i) q^{18} +7.33366 q^{19} +(3.04600 - 3.27443i) q^{20} +(0.507996 - 0.315303i) q^{22} +(4.71595 + 4.71595i) q^{23} +(4.58146 + 3.77918i) q^{24} +(4.18532 + 2.73552i) q^{25} +(-3.04612 - 0.712942i) q^{26} +(2.36225 - 2.36225i) q^{27} +4.72835i q^{29} +(-3.29562 + 5.76445i) q^{30} -1.96495i q^{31} +(-2.01475 + 5.28591i) q^{32} +(-0.627717 + 0.627717i) q^{33} +(-1.47208 + 6.28961i) q^{34} +(-2.52529 - 1.25059i) q^{36} +(5.27207 + 5.27207i) q^{37} +(-5.46941 - 8.81196i) q^{38} +4.64497 q^{39} +(-6.20617 - 1.21795i) q^{40} +4.01882 q^{41} +(1.88664 + 1.88664i) q^{43} +(-0.757723 - 0.375245i) q^{44} +(0.899266 - 3.01955i) q^{45} +(2.14944 - 9.18371i) q^{46} +(-4.65428 + 4.65428i) q^{47} +(1.12414 - 8.32348i) q^{48} +(0.165546 - 7.06913i) q^{50} -9.59091i q^{51} +(1.41513 + 4.19186i) q^{52} +(-0.571039 + 0.571039i) q^{53} +(-4.60018 - 1.07667i) q^{54} +(0.269828 - 0.906026i) q^{55} +(10.8887 + 10.8887i) q^{57} +(5.68148 - 3.52639i) q^{58} +2.71435 q^{59} +(9.38429 - 0.339165i) q^{60} +1.85152 q^{61} +(-2.36104 + 1.46545i) q^{62} +(7.85401 - 1.52133i) q^{64} +(-4.35054 + 2.35387i) q^{65} +(1.22240 + 0.286101i) q^{66} +(6.36984 - 6.36984i) q^{67} +(8.65533 - 2.92195i) q^{68} +14.0041i q^{69} +3.16317i q^{71} +(0.380671 + 3.96702i) q^{72} +(4.88361 - 4.88361i) q^{73} +(2.40291 - 10.2667i) q^{74} +(2.15260 + 10.2758i) q^{75} +(-6.50918 + 13.1438i) q^{76} +(-3.46420 - 5.58129i) q^{78} -3.55990 q^{79} +(3.16509 + 8.36554i) q^{80} +11.2417 q^{81} +(-2.99722 - 4.82892i) q^{82} +(-4.71846 - 4.71846i) q^{83} +(4.86025 + 8.98296i) q^{85} +(0.859895 - 3.67399i) q^{86} +(-7.02044 + 7.02044i) q^{87} +(0.114222 + 1.19032i) q^{88} +11.5854i q^{89} +(-4.29889 + 1.17143i) q^{90} +(-12.6380 + 4.26646i) q^{92} +(2.91747 - 2.91747i) q^{93} +(9.06361 + 2.12133i) q^{94} +(-15.7164 - 4.68057i) q^{95} +(-10.8397 + 4.85687i) q^{96} +(4.64008 + 4.64008i) q^{97} -0.595688 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{2} - 8 q^{5} + 8 q^{6} - 2 q^{8} + 2 q^{10} + 10 q^{12} + 28 q^{16} + 4 q^{17} + 20 q^{18} + 28 q^{20} - 8 q^{22} + 16 q^{25} - 4 q^{26} + 32 q^{30} + 38 q^{32} - 64 q^{33} + 8 q^{36} + 4 q^{37}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.745796 1.20158i −0.527357 0.849644i
\(3\) 1.48476 + 1.48476i 0.857224 + 0.857224i 0.991010 0.133786i \(-0.0427136\pi\)
−0.133786 + 0.991010i \(0.542714\pi\)
\(4\) −0.887576 + 1.79226i −0.443788 + 0.896132i
\(5\) −2.14305 0.638231i −0.958401 0.285426i
\(6\) 0.676724 2.89137i 0.276271 1.18040i
\(7\) 0 0
\(8\) 2.81549 0.270171i 0.995428 0.0955200i
\(9\) 1.40900i 0.469666i
\(10\) 0.831394 + 3.05103i 0.262910 + 0.964820i
\(11\) 0.422774i 0.127471i 0.997967 + 0.0637356i \(0.0203014\pi\)
−0.997967 + 0.0637356i \(0.979699\pi\)
\(12\) −3.97891 + 1.34324i −1.14861 + 0.387760i
\(13\) 1.56422 1.56422i 0.433837 0.433837i −0.456095 0.889931i \(-0.650752\pi\)
0.889931 + 0.456095i \(0.150752\pi\)
\(14\) 0 0
\(15\) −2.23429 4.12952i −0.576890 1.06624i
\(16\) −2.42442 3.18154i −0.606104 0.795385i
\(17\) −3.22979 3.22979i −0.783340 0.783340i 0.197053 0.980393i \(-0.436863\pi\)
−0.980393 + 0.197053i \(0.936863\pi\)
\(18\) 1.69302 1.05082i 0.399048 0.247682i
\(19\) 7.33366 1.68246 0.841228 0.540680i \(-0.181833\pi\)
0.841228 + 0.540680i \(0.181833\pi\)
\(20\) 3.04600 3.27443i 0.681106 0.732185i
\(21\) 0 0
\(22\) 0.507996 0.315303i 0.108305 0.0672229i
\(23\) 4.71595 + 4.71595i 0.983343 + 0.983343i 0.999864 0.0165208i \(-0.00525898\pi\)
−0.0165208 + 0.999864i \(0.505259\pi\)
\(24\) 4.58146 + 3.77918i 0.935186 + 0.771422i
\(25\) 4.18532 + 2.73552i 0.837064 + 0.547105i
\(26\) −3.04612 0.712942i −0.597393 0.139819i
\(27\) 2.36225 2.36225i 0.454615 0.454615i
\(28\) 0 0
\(29\) 4.72835i 0.878033i 0.898479 + 0.439016i \(0.144673\pi\)
−0.898479 + 0.439016i \(0.855327\pi\)
\(30\) −3.29562 + 5.76445i −0.601695 + 1.05244i
\(31\) 1.96495i 0.352915i −0.984308 0.176458i \(-0.943536\pi\)
0.984308 0.176458i \(-0.0564638\pi\)
\(32\) −2.01475 + 5.28591i −0.356160 + 0.934425i
\(33\) −0.627717 + 0.627717i −0.109271 + 0.109271i
\(34\) −1.47208 + 6.28961i −0.252459 + 1.07866i
\(35\) 0 0
\(36\) −2.52529 1.25059i −0.420882 0.208432i
\(37\) 5.27207 + 5.27207i 0.866722 + 0.866722i 0.992108 0.125386i \(-0.0400169\pi\)
−0.125386 + 0.992108i \(0.540017\pi\)
\(38\) −5.46941 8.81196i −0.887256 1.42949i
\(39\) 4.64497 0.743790
\(40\) −6.20617 1.21795i −0.981282 0.192574i
\(41\) 4.01882 0.627634 0.313817 0.949483i \(-0.398392\pi\)
0.313817 + 0.949483i \(0.398392\pi\)
\(42\) 0 0
\(43\) 1.88664 + 1.88664i 0.287710 + 0.287710i 0.836174 0.548464i \(-0.184787\pi\)
−0.548464 + 0.836174i \(0.684787\pi\)
\(44\) −0.757723 0.375245i −0.114231 0.0565702i
\(45\) 0.899266 3.01955i 0.134055 0.450128i
\(46\) 2.14944 9.18371i 0.316918 1.35406i
\(47\) −4.65428 + 4.65428i −0.678896 + 0.678896i −0.959750 0.280854i \(-0.909382\pi\)
0.280854 + 0.959750i \(0.409382\pi\)
\(48\) 1.12414 8.32348i 0.162256 1.20139i
\(49\) 0 0
\(50\) 0.165546 7.06913i 0.0234117 0.999726i
\(51\) 9.59091i 1.34300i
\(52\) 1.41513 + 4.19186i 0.196243 + 0.581306i
\(53\) −0.571039 + 0.571039i −0.0784382 + 0.0784382i −0.745237 0.666799i \(-0.767664\pi\)
0.666799 + 0.745237i \(0.267664\pi\)
\(54\) −4.60018 1.07667i −0.626006 0.146516i
\(55\) 0.269828 0.906026i 0.0363836 0.122169i
\(56\) 0 0
\(57\) 10.8887 + 10.8887i 1.44224 + 1.44224i
\(58\) 5.68148 3.52639i 0.746015 0.463037i
\(59\) 2.71435 0.353378 0.176689 0.984267i \(-0.443461\pi\)
0.176689 + 0.984267i \(0.443461\pi\)
\(60\) 9.38429 0.339165i 1.21151 0.0437860i
\(61\) 1.85152 0.237063 0.118531 0.992950i \(-0.462181\pi\)
0.118531 + 0.992950i \(0.462181\pi\)
\(62\) −2.36104 + 1.46545i −0.299852 + 0.186112i
\(63\) 0 0
\(64\) 7.85401 1.52133i 0.981752 0.190167i
\(65\) −4.35054 + 2.35387i −0.539618 + 0.291961i
\(66\) 1.22240 + 0.286101i 0.150467 + 0.0352167i
\(67\) 6.36984 6.36984i 0.778200 0.778200i −0.201324 0.979525i \(-0.564525\pi\)
0.979525 + 0.201324i \(0.0645245\pi\)
\(68\) 8.65533 2.92195i 1.04961 0.354339i
\(69\) 14.0041i 1.68589i
\(70\) 0 0
\(71\) 3.16317i 0.375400i 0.982226 + 0.187700i \(0.0601032\pi\)
−0.982226 + 0.187700i \(0.939897\pi\)
\(72\) 0.380671 + 3.96702i 0.0448625 + 0.467518i
\(73\) 4.88361 4.88361i 0.571583 0.571583i −0.360988 0.932571i \(-0.617560\pi\)
0.932571 + 0.360988i \(0.117560\pi\)
\(74\) 2.40291 10.2667i 0.279332 1.19348i
\(75\) 2.15260 + 10.2758i 0.248560 + 1.18654i
\(76\) −6.50918 + 13.1438i −0.746654 + 1.50770i
\(77\) 0 0
\(78\) −3.46420 5.58129i −0.392243 0.631957i
\(79\) −3.55990 −0.400520 −0.200260 0.979743i \(-0.564179\pi\)
−0.200260 + 0.979743i \(0.564179\pi\)
\(80\) 3.16509 + 8.36554i 0.353867 + 0.935296i
\(81\) 11.2417 1.24908
\(82\) −2.99722 4.82892i −0.330988 0.533265i
\(83\) −4.71846 4.71846i −0.517919 0.517919i 0.399022 0.916941i \(-0.369350\pi\)
−0.916941 + 0.399022i \(0.869350\pi\)
\(84\) 0 0
\(85\) 4.86025 + 8.98296i 0.527168 + 0.974339i
\(86\) 0.859895 3.67399i 0.0927249 0.396177i
\(87\) −7.02044 + 7.02044i −0.752671 + 0.752671i
\(88\) 0.114222 + 1.19032i 0.0121761 + 0.126888i
\(89\) 11.5854i 1.22805i 0.789286 + 0.614026i \(0.210451\pi\)
−0.789286 + 0.614026i \(0.789549\pi\)
\(90\) −4.29889 + 1.17143i −0.453143 + 0.123480i
\(91\) 0 0
\(92\) −12.6380 + 4.26646i −1.31760 + 0.444809i
\(93\) 2.91747 2.91747i 0.302527 0.302527i
\(94\) 9.06361 + 2.12133i 0.934840 + 0.218799i
\(95\) −15.7164 4.68057i −1.61247 0.480217i
\(96\) −10.8397 + 4.85687i −1.10632 + 0.495702i
\(97\) 4.64008 + 4.64008i 0.471128 + 0.471128i 0.902280 0.431151i \(-0.141892\pi\)
−0.431151 + 0.902280i \(0.641892\pi\)
\(98\) 0 0
\(99\) −0.595688 −0.0598689
\(100\) −8.61757 + 5.07321i −0.861757 + 0.507321i
\(101\) −4.24039 −0.421934 −0.210967 0.977493i \(-0.567661\pi\)
−0.210967 + 0.977493i \(0.567661\pi\)
\(102\) −11.5242 + 7.15286i −1.14107 + 0.708239i
\(103\) −11.1183 11.1183i −1.09552 1.09552i −0.994928 0.100590i \(-0.967927\pi\)
−0.100590 0.994928i \(-0.532073\pi\)
\(104\) 3.98145 4.82666i 0.390413 0.473293i
\(105\) 0 0
\(106\) 1.11203 + 0.260269i 0.108009 + 0.0252795i
\(107\) 0.397301 0.397301i 0.0384086 0.0384086i −0.687642 0.726050i \(-0.741354\pi\)
0.726050 + 0.687642i \(0.241354\pi\)
\(108\) 2.13710 + 6.33045i 0.205642 + 0.609148i
\(109\) 5.22851i 0.500800i 0.968142 + 0.250400i \(0.0805621\pi\)
−0.968142 + 0.250400i \(0.919438\pi\)
\(110\) −1.28990 + 0.351492i −0.122987 + 0.0335134i
\(111\) 15.6555i 1.48595i
\(112\) 0 0
\(113\) 9.46096 9.46096i 0.890012 0.890012i −0.104511 0.994524i \(-0.533328\pi\)
0.994524 + 0.104511i \(0.0333278\pi\)
\(114\) 4.96286 21.2043i 0.464815 1.98597i
\(115\) −7.09664 13.1164i −0.661765 1.22311i
\(116\) −8.47445 4.19677i −0.786833 0.389661i
\(117\) 2.20398 + 2.20398i 0.203758 + 0.203758i
\(118\) −2.02435 3.26150i −0.186357 0.300245i
\(119\) 0 0
\(120\) −7.40630 11.0230i −0.676100 1.00626i
\(121\) 10.8213 0.983751
\(122\) −1.38086 2.22474i −0.125017 0.201419i
\(123\) 5.96697 + 5.96697i 0.538023 + 0.538023i
\(124\) 3.52171 + 1.74404i 0.316259 + 0.156620i
\(125\) −7.22345 8.53356i −0.646085 0.763265i
\(126\) 0 0
\(127\) 15.7173 15.7173i 1.39469 1.39469i 0.580249 0.814439i \(-0.302955\pi\)
0.814439 0.580249i \(-0.197045\pi\)
\(128\) −7.68549 8.30260i −0.679308 0.733853i
\(129\) 5.60240i 0.493264i
\(130\) 6.07297 + 3.47200i 0.532634 + 0.304515i
\(131\) 17.9708i 1.57012i −0.619420 0.785060i \(-0.712632\pi\)
0.619420 0.785060i \(-0.287368\pi\)
\(132\) −0.567887 1.68218i −0.0494282 0.146415i
\(133\) 0 0
\(134\) −12.4045 2.90326i −1.07158 0.250803i
\(135\) −6.57008 + 3.55476i −0.565462 + 0.305945i
\(136\) −9.96606 8.22087i −0.854583 0.704933i
\(137\) −9.50367 9.50367i −0.811953 0.811953i 0.172974 0.984926i \(-0.444662\pi\)
−0.984926 + 0.172974i \(0.944662\pi\)
\(138\) 16.8270 10.4442i 1.43241 0.889067i
\(139\) 6.16658 0.523043 0.261521 0.965198i \(-0.415776\pi\)
0.261521 + 0.965198i \(0.415776\pi\)
\(140\) 0 0
\(141\) −13.8209 −1.16393
\(142\) 3.80080 2.35908i 0.318956 0.197970i
\(143\) 0.661312 + 0.661312i 0.0553017 + 0.0553017i
\(144\) 4.48278 3.41600i 0.373565 0.284666i
\(145\) 3.01778 10.1331i 0.250613 0.841507i
\(146\) −9.51021 2.22586i −0.787070 0.184213i
\(147\) 0 0
\(148\) −14.1283 + 4.76957i −1.16134 + 0.392056i
\(149\) 4.88250i 0.399990i 0.979797 + 0.199995i \(0.0640925\pi\)
−0.979797 + 0.199995i \(0.935907\pi\)
\(150\) 10.7417 10.2501i 0.877058 0.836920i
\(151\) 3.51281i 0.285868i 0.989732 + 0.142934i \(0.0456537\pi\)
−0.989732 + 0.142934i \(0.954346\pi\)
\(152\) 20.6479 1.98135i 1.67476 0.160708i
\(153\) 4.55077 4.55077i 0.367908 0.367908i
\(154\) 0 0
\(155\) −1.25409 + 4.21098i −0.100731 + 0.338234i
\(156\) −4.12276 + 8.32501i −0.330085 + 0.666534i
\(157\) −9.54222 9.54222i −0.761552 0.761552i 0.215050 0.976603i \(-0.431008\pi\)
−0.976603 + 0.215050i \(0.931008\pi\)
\(158\) 2.65496 + 4.27749i 0.211217 + 0.340299i
\(159\) −1.69571 −0.134478
\(160\) 7.69133 10.0421i 0.608053 0.793896i
\(161\) 0 0
\(162\) −8.38403 13.5078i −0.658712 1.06127i
\(163\) −4.07926 4.07926i −0.319512 0.319512i 0.529068 0.848580i \(-0.322542\pi\)
−0.848580 + 0.529068i \(0.822542\pi\)
\(164\) −3.56701 + 7.20279i −0.278537 + 0.562443i
\(165\) 1.74586 0.944599i 0.135915 0.0735369i
\(166\) −2.15059 + 9.18861i −0.166918 + 0.713175i
\(167\) 6.11518 6.11518i 0.473207 0.473207i −0.429744 0.902951i \(-0.641396\pi\)
0.902951 + 0.429744i \(0.141396\pi\)
\(168\) 0 0
\(169\) 8.10643i 0.623572i
\(170\) 7.16897 12.5394i 0.549835 0.961730i
\(171\) 10.3331i 0.790192i
\(172\) −5.05589 + 1.70682i −0.385508 + 0.130144i
\(173\) −3.09145 + 3.09145i −0.235039 + 0.235039i −0.814792 0.579753i \(-0.803149\pi\)
0.579753 + 0.814792i \(0.303149\pi\)
\(174\) 13.6714 + 3.19979i 1.03643 + 0.242575i
\(175\) 0 0
\(176\) 1.34507 1.02498i 0.101389 0.0772609i
\(177\) 4.03014 + 4.03014i 0.302924 + 0.302924i
\(178\) 13.9208 8.64036i 1.04341 0.647622i
\(179\) −18.0061 −1.34584 −0.672920 0.739715i \(-0.734960\pi\)
−0.672920 + 0.739715i \(0.734960\pi\)
\(180\) 4.61366 + 4.29180i 0.343882 + 0.319892i
\(181\) −14.5671 −1.08276 −0.541382 0.840777i \(-0.682099\pi\)
−0.541382 + 0.840777i \(0.682099\pi\)
\(182\) 0 0
\(183\) 2.74905 + 2.74905i 0.203216 + 0.203216i
\(184\) 14.5518 + 12.0036i 1.07278 + 0.884917i
\(185\) −7.93350 14.6631i −0.583282 1.07805i
\(186\) −5.68140 1.32973i −0.416580 0.0975003i
\(187\) 1.36547 1.36547i 0.0998533 0.0998533i
\(188\) −4.21066 12.4727i −0.307094 0.909666i
\(189\) 0 0
\(190\) 6.09716 + 22.3752i 0.442334 + 1.62327i
\(191\) 10.1306i 0.733025i 0.930413 + 0.366513i \(0.119448\pi\)
−0.930413 + 0.366513i \(0.880552\pi\)
\(192\) 13.9201 + 9.40248i 1.00460 + 0.678566i
\(193\) −15.0116 + 15.0116i −1.08056 + 1.08056i −0.0841013 + 0.996457i \(0.526802\pi\)
−0.996457 + 0.0841013i \(0.973198\pi\)
\(194\) 2.11486 9.03596i 0.151838 0.648744i
\(195\) −9.95440 2.96456i −0.712849 0.212297i
\(196\) 0 0
\(197\) −14.1612 14.1612i −1.00895 1.00895i −0.999960 0.00898613i \(-0.997140\pi\)
−0.00898613 0.999960i \(-0.502860\pi\)
\(198\) 0.444262 + 0.715765i 0.0315723 + 0.0508672i
\(199\) −7.28442 −0.516379 −0.258189 0.966094i \(-0.583126\pi\)
−0.258189 + 0.966094i \(0.583126\pi\)
\(200\) 12.5228 + 6.57109i 0.885496 + 0.464646i
\(201\) 18.9153 1.33418
\(202\) 3.16246 + 5.09515i 0.222510 + 0.358494i
\(203\) 0 0
\(204\) 17.1894 + 8.51266i 1.20350 + 0.596005i
\(205\) −8.61253 2.56494i −0.601525 0.179143i
\(206\) −5.06751 + 21.6515i −0.353070 + 1.50853i
\(207\) −6.64476 + 6.64476i −0.461842 + 0.461842i
\(208\) −8.76895 1.18431i −0.608017 0.0821171i
\(209\) 3.10048i 0.214465i
\(210\) 0 0
\(211\) 17.4066i 1.19832i 0.800630 + 0.599159i \(0.204498\pi\)
−0.800630 + 0.599159i \(0.795502\pi\)
\(212\) −0.516611 1.53029i −0.0354810 0.105101i
\(213\) −4.69654 + 4.69654i −0.321802 + 0.321802i
\(214\) −0.773694 0.181082i −0.0528886 0.0123785i
\(215\) −2.83905 5.24728i −0.193622 0.357861i
\(216\) 6.01269 7.28911i 0.409112 0.495961i
\(217\) 0 0
\(218\) 6.28245 3.89940i 0.425502 0.264101i
\(219\) 14.5019 0.979949
\(220\) 1.38435 + 1.28777i 0.0933325 + 0.0868214i
\(221\) −10.1042 −0.679683
\(222\) 18.8112 11.6758i 1.26253 0.783627i
\(223\) −1.68218 1.68218i −0.112647 0.112647i 0.648537 0.761183i \(-0.275381\pi\)
−0.761183 + 0.648537i \(0.775381\pi\)
\(224\) 0 0
\(225\) −3.85434 + 5.89711i −0.256956 + 0.393140i
\(226\) −18.4240 4.31213i −1.22555 0.286839i
\(227\) 11.0692 11.0692i 0.734690 0.734690i −0.236855 0.971545i \(-0.576117\pi\)
0.971545 + 0.236855i \(0.0761167\pi\)
\(228\) −29.1799 + 9.85086i −1.93249 + 0.652389i
\(229\) 17.0715i 1.12811i 0.825736 + 0.564057i \(0.190760\pi\)
−0.825736 + 0.564057i \(0.809240\pi\)
\(230\) −10.4677 + 18.3093i −0.690219 + 1.20728i
\(231\) 0 0
\(232\) 1.27747 + 13.3126i 0.0838697 + 0.874018i
\(233\) −9.84177 + 9.84177i −0.644756 + 0.644756i −0.951721 0.306965i \(-0.900687\pi\)
0.306965 + 0.951721i \(0.400687\pi\)
\(234\) 1.00453 4.29198i 0.0656684 0.280575i
\(235\) 12.9448 7.00384i 0.844429 0.456880i
\(236\) −2.40919 + 4.86483i −0.156825 + 0.316673i
\(237\) −5.28558 5.28558i −0.343335 0.343335i
\(238\) 0 0
\(239\) 7.51141 0.485873 0.242936 0.970042i \(-0.421889\pi\)
0.242936 + 0.970042i \(0.421889\pi\)
\(240\) −7.72140 + 17.1202i −0.498414 + 1.10510i
\(241\) 7.25161 0.467117 0.233559 0.972343i \(-0.424963\pi\)
0.233559 + 0.972343i \(0.424963\pi\)
\(242\) −8.07045 13.0026i −0.518788 0.835838i
\(243\) 9.60445 + 9.60445i 0.616126 + 0.616126i
\(244\) −1.64336 + 3.31841i −0.105206 + 0.212439i
\(245\) 0 0
\(246\) 2.71963 11.6199i 0.173397 0.740858i
\(247\) 11.4715 11.4715i 0.729911 0.729911i
\(248\) −0.530873 5.53230i −0.0337105 0.351301i
\(249\) 14.0115i 0.887945i
\(250\) −4.86651 + 15.0438i −0.307785 + 0.951456i
\(251\) 3.63825i 0.229644i −0.993386 0.114822i \(-0.963370\pi\)
0.993386 0.114822i \(-0.0366298\pi\)
\(252\) 0 0
\(253\) −1.99378 + 1.99378i −0.125348 + 0.125348i
\(254\) −30.6075 7.16367i −1.92049 0.449488i
\(255\) −6.12122 + 20.5538i −0.383325 + 1.28713i
\(256\) −4.24441 + 15.4268i −0.265276 + 0.964173i
\(257\) 4.93082 + 4.93082i 0.307576 + 0.307576i 0.843969 0.536393i \(-0.180213\pi\)
−0.536393 + 0.843969i \(0.680213\pi\)
\(258\) 6.73171 4.17825i 0.419098 0.260126i
\(259\) 0 0
\(260\) −0.357317 9.88654i −0.0221599 0.613137i
\(261\) −6.66223 −0.412382
\(262\) −21.5933 + 13.4026i −1.33404 + 0.828014i
\(263\) 17.9368 + 17.9368i 1.10603 + 1.10603i 0.993667 + 0.112365i \(0.0358424\pi\)
0.112365 + 0.993667i \(0.464158\pi\)
\(264\) −1.59774 + 1.93692i −0.0983342 + 0.119209i
\(265\) 1.58822 0.859309i 0.0975635 0.0527869i
\(266\) 0 0
\(267\) −17.2015 + 17.2015i −1.05271 + 1.05271i
\(268\) 5.76272 + 17.0702i 0.352014 + 1.04273i
\(269\) 19.0373i 1.16072i 0.814359 + 0.580361i \(0.197089\pi\)
−0.814359 + 0.580361i \(0.802911\pi\)
\(270\) 9.17125 + 5.24334i 0.558145 + 0.319099i
\(271\) 21.0984i 1.28163i 0.767694 + 0.640817i \(0.221404\pi\)
−0.767694 + 0.640817i \(0.778596\pi\)
\(272\) −2.44536 + 18.1061i −0.148271 + 1.09784i
\(273\) 0 0
\(274\) −4.33159 + 18.5072i −0.261681 + 1.11806i
\(275\) −1.15651 + 1.76945i −0.0697401 + 0.106702i
\(276\) −25.0990 12.4297i −1.51078 0.748178i
\(277\) −11.3981 11.3981i −0.684844 0.684844i 0.276243 0.961088i \(-0.410910\pi\)
−0.961088 + 0.276243i \(0.910910\pi\)
\(278\) −4.59901 7.40962i −0.275830 0.444400i
\(279\) 2.76861 0.165752
\(280\) 0 0
\(281\) −6.00749 −0.358377 −0.179189 0.983815i \(-0.557347\pi\)
−0.179189 + 0.983815i \(0.557347\pi\)
\(282\) 10.3076 + 16.6069i 0.613808 + 0.988927i
\(283\) −1.17708 1.17708i −0.0699703 0.0699703i 0.671256 0.741226i \(-0.265755\pi\)
−0.741226 + 0.671256i \(0.765755\pi\)
\(284\) −5.66924 2.80756i −0.336408 0.166598i
\(285\) −16.3855 30.2845i −0.970593 1.79390i
\(286\) 0.301414 1.28782i 0.0178230 0.0761505i
\(287\) 0 0
\(288\) −7.44783 2.83877i −0.438867 0.167276i
\(289\) 3.86313i 0.227243i
\(290\) −14.4263 + 3.93112i −0.847144 + 0.230843i
\(291\) 13.7788i 0.807725i
\(292\) 4.41814 + 13.0873i 0.258552 + 0.765875i
\(293\) 14.2453 14.2453i 0.832220 0.832220i −0.155600 0.987820i \(-0.549731\pi\)
0.987820 + 0.155600i \(0.0497311\pi\)
\(294\) 0 0
\(295\) −5.81698 1.73238i −0.338678 0.100863i
\(296\) 16.2678 + 13.4191i 0.945548 + 0.779970i
\(297\) 0.998699 + 0.998699i 0.0579504 + 0.0579504i
\(298\) 5.86670 3.64135i 0.339849 0.210938i
\(299\) 14.7536 0.853220
\(300\) −20.3275 5.26250i −1.17361 0.303831i
\(301\) 0 0
\(302\) 4.22091 2.61984i 0.242886 0.150755i
\(303\) −6.29594 6.29594i −0.361692 0.361692i
\(304\) −17.7798 23.3323i −1.01974 1.33820i
\(305\) −3.96790 1.18170i −0.227201 0.0676638i
\(306\) −8.86205 2.07416i −0.506610 0.118572i
\(307\) −3.60252 + 3.60252i −0.205607 + 0.205607i −0.802397 0.596790i \(-0.796442\pi\)
0.596790 + 0.802397i \(0.296442\pi\)
\(308\) 0 0
\(309\) 33.0159i 1.87821i
\(310\) 5.99512 1.63365i 0.340500 0.0927848i
\(311\) 0.432667i 0.0245343i −0.999925 0.0122672i \(-0.996095\pi\)
0.999925 0.0122672i \(-0.00390485\pi\)
\(312\) 13.0779 1.25494i 0.740389 0.0710469i
\(313\) −0.728389 + 0.728389i −0.0411710 + 0.0411710i −0.727393 0.686222i \(-0.759268\pi\)
0.686222 + 0.727393i \(0.259268\pi\)
\(314\) −4.34917 + 18.5823i −0.245438 + 1.04866i
\(315\) 0 0
\(316\) 3.15968 6.38027i 0.177746 0.358918i
\(317\) −19.9371 19.9371i −1.11978 1.11978i −0.991773 0.128008i \(-0.959142\pi\)
−0.128008 0.991773i \(-0.540858\pi\)
\(318\) 1.26465 + 2.03752i 0.0709181 + 0.114259i
\(319\) −1.99903 −0.111924
\(320\) −17.8025 1.75239i −0.995190 0.0979615i
\(321\) 1.17979 0.0658495
\(322\) 0 0
\(323\) −23.6862 23.6862i −1.31794 1.31794i
\(324\) −9.97788 + 20.1481i −0.554327 + 1.11934i
\(325\) 10.8257 2.26780i 0.600503 0.125795i
\(326\) −1.85925 + 7.94384i −0.102974 + 0.439969i
\(327\) −7.76305 + 7.76305i −0.429298 + 0.429298i
\(328\) 11.3150 1.08577i 0.624765 0.0599517i
\(329\) 0 0
\(330\) −2.43706 1.39330i −0.134156 0.0766988i
\(331\) 25.7714i 1.41652i 0.705949 + 0.708262i \(0.250521\pi\)
−0.705949 + 0.708262i \(0.749479\pi\)
\(332\) 12.6447 4.26873i 0.693970 0.234277i
\(333\) −7.42833 + 7.42833i −0.407070 + 0.407070i
\(334\) −11.9085 2.78719i −0.651607 0.152508i
\(335\) −17.7163 + 9.58546i −0.967946 + 0.523709i
\(336\) 0 0
\(337\) 10.4788 + 10.4788i 0.570816 + 0.570816i 0.932356 0.361540i \(-0.117749\pi\)
−0.361540 + 0.932356i \(0.617749\pi\)
\(338\) 9.74050 6.04574i 0.529814 0.328845i
\(339\) 28.0944 1.52588
\(340\) −20.4137 + 0.737786i −1.10709 + 0.0400121i
\(341\) 0.830730 0.0449865
\(342\) 12.4160 7.70639i 0.671382 0.416714i
\(343\) 0 0
\(344\) 5.82154 + 4.80211i 0.313876 + 0.258912i
\(345\) 8.93783 30.0114i 0.481196 1.61576i
\(346\) 6.02021 + 1.40903i 0.323649 + 0.0757497i
\(347\) 13.2786 13.2786i 0.712831 0.712831i −0.254295 0.967127i \(-0.581843\pi\)
0.967127 + 0.254295i \(0.0818435\pi\)
\(348\) −6.35131 18.8137i −0.340466 1.00852i
\(349\) 7.53504i 0.403341i 0.979453 + 0.201671i \(0.0646371\pi\)
−0.979453 + 0.201671i \(0.935363\pi\)
\(350\) 0 0
\(351\) 7.39016i 0.394457i
\(352\) −2.23475 0.851784i −0.119112 0.0454002i
\(353\) −26.0655 + 26.0655i −1.38733 + 1.38733i −0.556433 + 0.830893i \(0.687830\pi\)
−0.830893 + 0.556433i \(0.812170\pi\)
\(354\) 1.83686 7.84819i 0.0976282 0.417127i
\(355\) 2.01884 6.77884i 0.107149 0.359783i
\(356\) −20.7641 10.2829i −1.10050 0.544995i
\(357\) 0 0
\(358\) 13.4289 + 21.6357i 0.709739 + 1.14348i
\(359\) −18.0954 −0.955040 −0.477520 0.878621i \(-0.658464\pi\)
−0.477520 + 0.878621i \(0.658464\pi\)
\(360\) 1.71608 8.74448i 0.0904455 0.460875i
\(361\) 34.7826 1.83066
\(362\) 10.8641 + 17.5035i 0.571004 + 0.919963i
\(363\) 16.0669 + 16.0669i 0.843295 + 0.843295i
\(364\) 0 0
\(365\) −13.5827 + 7.34894i −0.710950 + 0.384661i
\(366\) 1.25297 5.35343i 0.0654936 0.279829i
\(367\) 16.5608 16.5608i 0.864469 0.864469i −0.127385 0.991853i \(-0.540658\pi\)
0.991853 + 0.127385i \(0.0406583\pi\)
\(368\) 3.57056 26.4374i 0.186128 1.37814i
\(369\) 5.66251i 0.294778i
\(370\) −11.7021 + 20.4684i −0.608362 + 1.06410i
\(371\) 0 0
\(372\) 2.63940 + 7.81835i 0.136846 + 0.405362i
\(373\) 4.10219 4.10219i 0.212403 0.212403i −0.592884 0.805288i \(-0.702011\pi\)
0.805288 + 0.592884i \(0.202011\pi\)
\(374\) −2.65909 0.622357i −0.137498 0.0321813i
\(375\) 1.94519 23.3953i 0.100449 1.20813i
\(376\) −11.8466 + 14.3615i −0.610943 + 0.740640i
\(377\) 7.39618 + 7.39618i 0.380923 + 0.380923i
\(378\) 0 0
\(379\) −20.3909 −1.04741 −0.523706 0.851899i \(-0.675451\pi\)
−0.523706 + 0.851899i \(0.675451\pi\)
\(380\) 22.3383 24.0136i 1.14593 1.23187i
\(381\) 46.6728 2.39112
\(382\) 12.1727 7.55537i 0.622810 0.386566i
\(383\) 7.46211 + 7.46211i 0.381296 + 0.381296i 0.871569 0.490273i \(-0.163103\pi\)
−0.490273 + 0.871569i \(0.663103\pi\)
\(384\) 0.916257 23.7384i 0.0467576 1.21140i
\(385\) 0 0
\(386\) 29.2332 + 6.84201i 1.48793 + 0.348249i
\(387\) −2.65827 + 2.65827i −0.135127 + 0.135127i
\(388\) −12.4347 + 4.19782i −0.631274 + 0.213112i
\(389\) 2.26346i 0.114762i 0.998352 + 0.0573809i \(0.0182749\pi\)
−0.998352 + 0.0573809i \(0.981725\pi\)
\(390\) 3.86180 + 14.1719i 0.195550 + 0.717624i
\(391\) 30.4631i 1.54058i
\(392\) 0 0
\(393\) 26.6823 26.6823i 1.34594 1.34594i
\(394\) −6.45442 + 27.5772i −0.325169 + 1.38932i
\(395\) 7.62903 + 2.27204i 0.383858 + 0.114319i
\(396\) 0.528719 1.06763i 0.0265691 0.0536504i
\(397\) −12.2234 12.2234i −0.613476 0.613476i 0.330374 0.943850i \(-0.392825\pi\)
−0.943850 + 0.330374i \(0.892825\pi\)
\(398\) 5.43269 + 8.75279i 0.272316 + 0.438738i
\(399\) 0 0
\(400\) −1.44378 19.9478i −0.0721892 0.997391i
\(401\) 4.98332 0.248855 0.124428 0.992229i \(-0.460291\pi\)
0.124428 + 0.992229i \(0.460291\pi\)
\(402\) −14.1070 22.7282i −0.703592 1.13358i
\(403\) −3.07361 3.07361i −0.153108 0.153108i
\(404\) 3.76367 7.59989i 0.187249 0.378109i
\(405\) −24.0916 7.17482i −1.19712 0.356520i
\(406\) 0 0
\(407\) −2.22889 + 2.22889i −0.110482 + 0.110482i
\(408\) −2.59119 27.0031i −0.128283 1.33685i
\(409\) 2.08630i 0.103161i −0.998669 0.0515805i \(-0.983574\pi\)
0.998669 0.0515805i \(-0.0164259\pi\)
\(410\) 3.34122 + 12.2615i 0.165011 + 0.605554i
\(411\) 28.2212i 1.39205i
\(412\) 29.7952 10.0586i 1.46791 0.495550i
\(413\) 0 0
\(414\) 12.9398 + 3.02855i 0.635957 + 0.148845i
\(415\) 7.10043 + 13.1234i 0.348546 + 0.644201i
\(416\) 5.11681 + 11.4198i 0.250872 + 0.559903i
\(417\) 9.15586 + 9.15586i 0.448365 + 0.448365i
\(418\) 3.72547 2.31233i 0.182219 0.113100i
\(419\) −3.19769 −0.156217 −0.0781086 0.996945i \(-0.524888\pi\)
−0.0781086 + 0.996945i \(0.524888\pi\)
\(420\) 0 0
\(421\) −39.6161 −1.93077 −0.965386 0.260824i \(-0.916006\pi\)
−0.965386 + 0.260824i \(0.916006\pi\)
\(422\) 20.9153 12.9817i 1.01814 0.631942i
\(423\) −6.55786 6.55786i −0.318854 0.318854i
\(424\) −1.45348 + 1.76203i −0.0705871 + 0.0855719i
\(425\) −4.68255 22.3529i −0.227137 1.08427i
\(426\) 9.14592 + 2.14059i 0.443121 + 0.103712i
\(427\) 0 0
\(428\) 0.359433 + 1.06470i 0.0173739 + 0.0514644i
\(429\) 1.96377i 0.0948119i
\(430\) −4.18766 + 7.32474i −0.201947 + 0.353230i
\(431\) 14.6979i 0.707974i −0.935250 0.353987i \(-0.884826\pi\)
0.935250 0.353987i \(-0.115174\pi\)
\(432\) −13.2427 1.78852i −0.637138 0.0860501i
\(433\) −6.03281 + 6.03281i −0.289919 + 0.289919i −0.837048 0.547129i \(-0.815721\pi\)
0.547129 + 0.837048i \(0.315721\pi\)
\(434\) 0 0
\(435\) 19.5258 10.5645i 0.936192 0.506529i
\(436\) −9.37086 4.64070i −0.448783 0.222249i
\(437\) 34.5851 + 34.5851i 1.65443 + 1.65443i
\(438\) −10.8155 17.4252i −0.516784 0.832607i
\(439\) −6.62435 −0.316163 −0.158081 0.987426i \(-0.550531\pi\)
−0.158081 + 0.987426i \(0.550531\pi\)
\(440\) 0.514916 2.62381i 0.0245477 0.125085i
\(441\) 0 0
\(442\) 7.53568 + 12.1410i 0.358436 + 0.577488i
\(443\) −6.90086 6.90086i −0.327870 0.327870i 0.523906 0.851776i \(-0.324474\pi\)
−0.851776 + 0.523906i \(0.824474\pi\)
\(444\) −28.0587 13.8954i −1.33161 0.659447i
\(445\) 7.39417 24.8281i 0.350517 1.17697i
\(446\) −0.766704 + 3.27583i −0.0363045 + 0.155115i
\(447\) −7.24931 + 7.24931i −0.342881 + 0.342881i
\(448\) 0 0
\(449\) 18.0135i 0.850109i −0.905168 0.425055i \(-0.860255\pi\)
0.905168 0.425055i \(-0.139745\pi\)
\(450\) 9.96038 + 0.233253i 0.469537 + 0.0109957i
\(451\) 1.69905i 0.0800053i
\(452\) 8.55921 + 25.3539i 0.402591 + 1.19255i
\(453\) −5.21566 + 5.21566i −0.245053 + 0.245053i
\(454\) −21.5559 5.04514i −1.01167 0.236780i
\(455\) 0 0
\(456\) 33.5989 + 27.7152i 1.57341 + 1.29788i
\(457\) 0.897986 + 0.897986i 0.0420060 + 0.0420060i 0.727798 0.685792i \(-0.240544\pi\)
−0.685792 + 0.727798i \(0.740544\pi\)
\(458\) 20.5127 12.7318i 0.958495 0.594920i
\(459\) −15.2592 −0.712236
\(460\) 29.8068 1.07727i 1.38975 0.0502280i
\(461\) 17.6021 0.819811 0.409906 0.912128i \(-0.365562\pi\)
0.409906 + 0.912128i \(0.365562\pi\)
\(462\) 0 0
\(463\) 13.7264 + 13.7264i 0.637919 + 0.637919i 0.950042 0.312123i \(-0.101040\pi\)
−0.312123 + 0.950042i \(0.601040\pi\)
\(464\) 15.0434 11.4635i 0.698374 0.532179i
\(465\) −8.11430 + 4.39026i −0.376292 + 0.203593i
\(466\) 19.1656 + 4.48570i 0.887830 + 0.207796i
\(467\) 9.07179 9.07179i 0.419792 0.419792i −0.465340 0.885132i \(-0.654068\pi\)
0.885132 + 0.465340i \(0.154068\pi\)
\(468\) −5.90632 + 1.99391i −0.273020 + 0.0921687i
\(469\) 0 0
\(470\) −18.0699 10.3308i −0.833501 0.476524i
\(471\) 28.3357i 1.30564i
\(472\) 7.64223 0.733339i 0.351762 0.0337547i
\(473\) −0.797623 + 0.797623i −0.0366747 + 0.0366747i
\(474\) −2.40907 + 10.2930i −0.110652 + 0.472773i
\(475\) 30.6937 + 20.0614i 1.40832 + 0.920480i
\(476\) 0 0
\(477\) −0.804592 0.804592i −0.0368397 0.0368397i
\(478\) −5.60198 9.02554i −0.256229 0.412819i
\(479\) −14.8390 −0.678009 −0.339005 0.940785i \(-0.610090\pi\)
−0.339005 + 0.940785i \(0.610090\pi\)
\(480\) 26.3298 3.49028i 1.20178 0.159309i
\(481\) 16.4933 0.752032
\(482\) −5.40822 8.71337i −0.246338 0.396883i
\(483\) 0 0
\(484\) −9.60470 + 19.3946i −0.436577 + 0.881571i
\(485\) −6.98247 12.9054i −0.317058 0.586002i
\(486\) 4.37753 18.7035i 0.198569 0.848406i
\(487\) −24.7071 + 24.7071i −1.11958 + 1.11958i −0.127782 + 0.991802i \(0.540786\pi\)
−0.991802 + 0.127782i \(0.959214\pi\)
\(488\) 5.21294 0.500228i 0.235979 0.0226442i
\(489\) 12.1134i 0.547787i
\(490\) 0 0
\(491\) 5.19048i 0.234243i −0.993118 0.117122i \(-0.962633\pi\)
0.993118 0.117122i \(-0.0373667\pi\)
\(492\) −15.9905 + 5.39824i −0.720908 + 0.243371i
\(493\) 15.2716 15.2716i 0.687798 0.687798i
\(494\) −22.3392 5.22848i −1.00509 0.235240i
\(495\) 1.27659 + 0.380187i 0.0573784 + 0.0170881i
\(496\) −6.25157 + 4.76385i −0.280704 + 0.213903i
\(497\) 0 0
\(498\) −16.8359 + 10.4497i −0.754436 + 0.468264i
\(499\) 10.8419 0.485351 0.242675 0.970108i \(-0.421975\pi\)
0.242675 + 0.970108i \(0.421975\pi\)
\(500\) 21.7058 5.37214i 0.970711 0.240250i
\(501\) 18.1591 0.811289
\(502\) −4.37164 + 2.71339i −0.195116 + 0.121105i
\(503\) −2.03813 2.03813i −0.0908758 0.0908758i 0.660207 0.751083i \(-0.270468\pi\)
−0.751083 + 0.660207i \(0.770468\pi\)
\(504\) 0 0
\(505\) 9.08736 + 2.70635i 0.404382 + 0.120431i
\(506\) 3.88264 + 0.908728i 0.172604 + 0.0403979i
\(507\) −12.0361 + 12.0361i −0.534540 + 0.534540i
\(508\) 14.2193 + 42.1199i 0.630878 + 1.86877i
\(509\) 12.2328i 0.542210i −0.962550 0.271105i \(-0.912611\pi\)
0.962550 0.271105i \(-0.0873891\pi\)
\(510\) 29.2621 7.97382i 1.29575 0.353087i
\(511\) 0 0
\(512\) 21.7019 6.40523i 0.959098 0.283074i
\(513\) 17.3239 17.3239i 0.764870 0.764870i
\(514\) 2.24737 9.60214i 0.0991274 0.423532i
\(515\) 16.7310 + 30.9231i 0.737256 + 1.36263i
\(516\) −10.0410 4.97256i −0.442029 0.218905i
\(517\) −1.96771 1.96771i −0.0865397 0.0865397i
\(518\) 0 0
\(519\) −9.18010 −0.402962
\(520\) −11.6130 + 7.80269i −0.509262 + 0.342171i
\(521\) −3.12048 −0.136711 −0.0683554 0.997661i \(-0.521775\pi\)
−0.0683554 + 0.997661i \(0.521775\pi\)
\(522\) 4.96867 + 8.00519i 0.217473 + 0.350378i
\(523\) 4.92347 + 4.92347i 0.215288 + 0.215288i 0.806509 0.591221i \(-0.201354\pi\)
−0.591221 + 0.806509i \(0.701354\pi\)
\(524\) 32.2085 + 15.9505i 1.40703 + 0.696800i
\(525\) 0 0
\(526\) 8.17527 34.9297i 0.356459 1.52301i
\(527\) −6.34638 + 6.34638i −0.276453 + 0.276453i
\(528\) 3.51895 + 0.475260i 0.153143 + 0.0206830i
\(529\) 21.4803i 0.933926i
\(530\) −2.21701 1.26750i −0.0963009 0.0550566i
\(531\) 3.82451i 0.165970i
\(532\) 0 0
\(533\) 6.28632 6.28632i 0.272291 0.272291i
\(534\) 33.4978 + 7.84012i 1.44959 + 0.339275i
\(535\) −1.10501 + 0.597866i −0.0477736 + 0.0258480i
\(536\) 16.2133 19.6552i 0.700308 0.848976i
\(537\) −26.7347 26.7347i −1.15369 1.15369i
\(538\) 22.8748 14.1979i 0.986201 0.612116i
\(539\) 0 0
\(540\) −0.539612 14.9304i −0.0232212 0.642503i
\(541\) −3.86100 −0.165997 −0.0829986 0.996550i \(-0.526450\pi\)
−0.0829986 + 0.996550i \(0.526450\pi\)
\(542\) 25.3513 15.7351i 1.08893 0.675879i
\(543\) −21.6286 21.6286i −0.928171 0.928171i
\(544\) 23.5796 10.5652i 1.01097 0.452978i
\(545\) 3.33700 11.2049i 0.142941 0.479967i
\(546\) 0 0
\(547\) 25.7583 25.7583i 1.10135 1.10135i 0.107098 0.994249i \(-0.465844\pi\)
0.994249 0.107098i \(-0.0341557\pi\)
\(548\) 25.4683 8.59784i 1.08795 0.367282i
\(549\) 2.60879i 0.111340i
\(550\) 2.98865 + 0.0699885i 0.127436 + 0.00298432i
\(551\) 34.6761i 1.47725i
\(552\) 3.78350 + 39.4283i 0.161036 + 1.67818i
\(553\) 0 0
\(554\) −5.19503 + 22.1963i −0.220716 + 0.943032i
\(555\) 9.99180 33.5504i 0.424128 1.42414i
\(556\) −5.47331 + 11.0521i −0.232120 + 0.468715i
\(557\) 11.8763 + 11.8763i 0.503213 + 0.503213i 0.912435 0.409222i \(-0.134200\pi\)
−0.409222 + 0.912435i \(0.634200\pi\)
\(558\) −2.06482 3.32670i −0.0874107 0.140830i
\(559\) 5.90224 0.249638
\(560\) 0 0
\(561\) 4.05479 0.171193
\(562\) 4.48037 + 7.21847i 0.188993 + 0.304493i
\(563\) −7.90665 7.90665i −0.333226 0.333226i 0.520584 0.853810i \(-0.325714\pi\)
−0.853810 + 0.520584i \(0.825714\pi\)
\(564\) 12.2671 24.7707i 0.516539 1.04304i
\(565\) −26.3136 + 14.2370i −1.10702 + 0.598956i
\(566\) −0.536492 + 2.29222i −0.0225504 + 0.0963491i
\(567\) 0 0
\(568\) 0.854600 + 8.90590i 0.0358582 + 0.373683i
\(569\) 16.3875i 0.687000i 0.939153 + 0.343500i \(0.111613\pi\)
−0.939153 + 0.343500i \(0.888387\pi\)
\(570\) −24.1689 + 42.2745i −1.01233 + 1.77068i
\(571\) 45.3093i 1.89614i −0.318067 0.948068i \(-0.603034\pi\)
0.318067 0.948068i \(-0.396966\pi\)
\(572\) −1.77221 + 0.598281i −0.0740999 + 0.0250154i
\(573\) −15.0415 + 15.0415i −0.628367 + 0.628367i
\(574\) 0 0
\(575\) 6.83717 + 32.6383i 0.285130 + 1.36111i
\(576\) 2.14355 + 11.0663i 0.0893147 + 0.461095i
\(577\) −22.5272 22.5272i −0.937819 0.937819i 0.0603582 0.998177i \(-0.480776\pi\)
−0.998177 + 0.0603582i \(0.980776\pi\)
\(578\) 4.64184 2.88110i 0.193075 0.119838i
\(579\) −44.5771 −1.85256
\(580\) 15.4827 + 14.4026i 0.642882 + 0.598033i
\(581\) 0 0
\(582\) 16.5562 10.2761i 0.686278 0.425960i
\(583\) −0.241420 0.241420i −0.00999861 0.00999861i
\(584\) 12.4304 15.0692i 0.514372 0.623567i
\(585\) −3.31659 6.12989i −0.137124 0.253440i
\(586\) −27.7409 6.49275i −1.14597 0.268213i
\(587\) 14.5087 14.5087i 0.598837 0.598837i −0.341166 0.940003i \(-0.610822\pi\)
0.940003 + 0.341166i \(0.110822\pi\)
\(588\) 0 0
\(589\) 14.4103i 0.593765i
\(590\) 2.25669 + 8.28156i 0.0929065 + 0.340946i
\(591\) 42.0519i 1.72978i
\(592\) 3.99161 29.5550i 0.164054 1.21470i
\(593\) −31.2356 + 31.2356i −1.28269 + 1.28269i −0.343565 + 0.939129i \(0.611634\pi\)
−0.939129 + 0.343565i \(0.888366\pi\)
\(594\) 0.455188 1.94484i 0.0186766 0.0797977i
\(595\) 0 0
\(596\) −8.75072 4.33359i −0.358443 0.177511i
\(597\) −10.8156 10.8156i −0.442652 0.442652i
\(598\) −11.0031 17.7275i −0.449952 0.724933i
\(599\) 40.1954 1.64234 0.821170 0.570683i \(-0.193322\pi\)
0.821170 + 0.570683i \(0.193322\pi\)
\(600\) 8.83684 + 28.3498i 0.360763 + 1.15737i
\(601\) −17.3374 −0.707207 −0.353604 0.935395i \(-0.615044\pi\)
−0.353604 + 0.935395i \(0.615044\pi\)
\(602\) 0 0
\(603\) 8.97509 + 8.97509i 0.365494 + 0.365494i
\(604\) −6.29587 3.11788i −0.256175 0.126865i
\(605\) −23.1905 6.90647i −0.942828 0.280788i
\(606\) −2.86957 + 12.2605i −0.116568 + 0.498050i
\(607\) 0.935943 0.935943i 0.0379887 0.0379887i −0.687857 0.725846i \(-0.741448\pi\)
0.725846 + 0.687857i \(0.241448\pi\)
\(608\) −14.7755 + 38.7650i −0.599225 + 1.57213i
\(609\) 0 0
\(610\) 1.53934 + 5.64904i 0.0623261 + 0.228723i
\(611\) 14.5606i 0.589060i
\(612\) 4.11702 + 12.1953i 0.166421 + 0.492967i
\(613\) 10.2481 10.2481i 0.413918 0.413918i −0.469183 0.883101i \(-0.655452\pi\)
0.883101 + 0.469183i \(0.155452\pi\)
\(614\) 7.01545 + 1.64196i 0.283121 + 0.0662641i
\(615\) −8.97920 16.5958i −0.362076 0.669208i
\(616\) 0 0
\(617\) 11.3496 + 11.3496i 0.456918 + 0.456918i 0.897642 0.440725i \(-0.145278\pi\)
−0.440725 + 0.897642i \(0.645278\pi\)
\(618\) −39.6711 + 24.6231i −1.59581 + 0.990487i
\(619\) −21.5163 −0.864814 −0.432407 0.901679i \(-0.642336\pi\)
−0.432407 + 0.901679i \(0.642336\pi\)
\(620\) −6.43409 5.98523i −0.258399 0.240373i
\(621\) 22.2805 0.894085
\(622\) −0.519883 + 0.322681i −0.0208454 + 0.0129383i
\(623\) 0 0
\(624\) −11.2613 14.7782i −0.450814 0.591600i
\(625\) 10.0338 + 22.8981i 0.401353 + 0.915923i
\(626\) 1.41845 + 0.331986i 0.0566925 + 0.0132688i
\(627\) −4.60346 + 4.60346i −0.183844 + 0.183844i
\(628\) 25.5716 8.63273i 1.02042 0.344483i
\(629\) 34.0554i 1.35788i
\(630\) 0 0
\(631\) 7.18172i 0.285900i −0.989730 0.142950i \(-0.954341\pi\)
0.989730 0.142950i \(-0.0456588\pi\)
\(632\) −10.0229 + 0.961782i −0.398688 + 0.0382577i
\(633\) −25.8445 + 25.8445i −1.02723 + 1.02723i
\(634\) −9.08697 + 38.8250i −0.360890 + 1.54194i
\(635\) −43.7143 + 23.6517i −1.73475 + 0.938590i
\(636\) 1.50507 3.03915i 0.0596798 0.120510i
\(637\) 0 0
\(638\) 1.49087 + 2.40198i 0.0590239 + 0.0950955i
\(639\) −4.45690 −0.176312
\(640\) 11.1714 + 22.6980i 0.441589 + 0.897218i
\(641\) −26.2003 −1.03485 −0.517425 0.855729i \(-0.673109\pi\)
−0.517425 + 0.855729i \(0.673109\pi\)
\(642\) −0.879883 1.41761i −0.0347262 0.0559486i
\(643\) −30.8400 30.8400i −1.21621 1.21621i −0.968948 0.247263i \(-0.920469\pi\)
−0.247263 0.968948i \(-0.579531\pi\)
\(644\) 0 0
\(645\) 3.57563 12.0062i 0.140790 0.472744i
\(646\) −10.7957 + 46.1259i −0.424752 + 1.81480i
\(647\) −10.2306 + 10.2306i −0.402207 + 0.402207i −0.879010 0.476803i \(-0.841796\pi\)
0.476803 + 0.879010i \(0.341796\pi\)
\(648\) 31.6510 3.03719i 1.24337 0.119312i
\(649\) 1.14756i 0.0450455i
\(650\) −10.7987 11.3166i −0.423561 0.443875i
\(651\) 0 0
\(652\) 10.9318 3.69045i 0.428121 0.144529i
\(653\) −26.7027 + 26.7027i −1.04496 + 1.04496i −0.0460178 + 0.998941i \(0.514653\pi\)
−0.998941 + 0.0460178i \(0.985347\pi\)
\(654\) 15.1176 + 3.53825i 0.591144 + 0.138357i
\(655\) −11.4696 + 38.5124i −0.448152 + 1.50480i
\(656\) −9.74330 12.7860i −0.380412 0.499211i
\(657\) 6.88099 + 6.88099i 0.268453 + 0.268453i
\(658\) 0 0
\(659\) 5.66966 0.220859 0.110429 0.993884i \(-0.464777\pi\)
0.110429 + 0.993884i \(0.464777\pi\)
\(660\) 0.143390 + 3.96744i 0.00558145 + 0.154432i
\(661\) 28.8816 1.12336 0.561682 0.827353i \(-0.310155\pi\)
0.561682 + 0.827353i \(0.310155\pi\)
\(662\) 30.9663 19.2202i 1.20354 0.747015i
\(663\) −15.0023 15.0023i −0.582641 0.582641i
\(664\) −14.5596 12.0100i −0.565022 0.466079i
\(665\) 0 0
\(666\) 14.4657 + 3.38569i 0.560535 + 0.131193i
\(667\) −22.2986 + 22.2986i −0.863407 + 0.863407i
\(668\) 5.53233 + 16.3877i 0.214052 + 0.634060i
\(669\) 4.99524i 0.193127i
\(670\) 24.7304 + 14.1387i 0.955420 + 0.546227i
\(671\) 0.782775i 0.0302187i
\(672\) 0 0
\(673\) −6.90378 + 6.90378i −0.266121 + 0.266121i −0.827535 0.561414i \(-0.810258\pi\)
0.561414 + 0.827535i \(0.310258\pi\)
\(674\) 4.77604 20.4061i 0.183966 0.786014i
\(675\) 16.3488 3.42479i 0.629264 0.131820i
\(676\) −14.5289 7.19508i −0.558802 0.276734i
\(677\) −9.93948 9.93948i −0.382005 0.382005i 0.489819 0.871824i \(-0.337063\pi\)
−0.871824 + 0.489819i \(0.837063\pi\)
\(678\) −20.9527 33.7576i −0.804684 1.29645i
\(679\) 0 0
\(680\) 16.1109 + 23.9784i 0.617827 + 0.919529i
\(681\) 32.8702 1.25959
\(682\) −0.619555 0.998186i −0.0237240 0.0382225i
\(683\) −22.9551 22.9551i −0.878352 0.878352i 0.115012 0.993364i \(-0.463309\pi\)
−0.993364 + 0.115012i \(0.963309\pi\)
\(684\) −18.5196 9.17142i −0.708116 0.350678i
\(685\) 14.3013 + 26.4324i 0.546424 + 1.00993i
\(686\) 0 0
\(687\) −25.3470 + 25.3470i −0.967047 + 0.967047i
\(688\) 1.42842 10.5764i 0.0544581 0.403222i
\(689\) 1.78646i 0.0680587i
\(690\) −42.7268 + 11.6429i −1.62658 + 0.443237i
\(691\) 3.78523i 0.143997i −0.997405 0.0719984i \(-0.977062\pi\)
0.997405 0.0719984i \(-0.0229376\pi\)
\(692\) −2.79680 8.28460i −0.106318 0.314933i
\(693\) 0 0
\(694\) −25.8583 6.05213i −0.981570 0.229736i
\(695\) −13.2153 3.93571i −0.501284 0.149290i
\(696\) −17.8693 + 21.6627i −0.677334 + 0.821124i
\(697\) −12.9800 12.9800i −0.491651 0.491651i
\(698\) 9.05393 5.61960i 0.342696 0.212705i
\(699\) −29.2253 −1.10540
\(700\) 0 0
\(701\) −5.66595 −0.214000 −0.107000 0.994259i \(-0.534124\pi\)
−0.107000 + 0.994259i \(0.534124\pi\)
\(702\) −8.87985 + 5.51155i −0.335148 + 0.208020i
\(703\) 38.6635 + 38.6635i 1.45822 + 1.45822i
\(704\) 0.643180 + 3.32048i 0.0242408 + 0.125145i
\(705\) 29.6189 + 8.82095i 1.11551 + 0.332216i
\(706\) 50.7592 + 11.8802i 1.91035 + 0.447116i
\(707\) 0 0
\(708\) −10.8001 + 3.64602i −0.405894 + 0.137026i
\(709\) 11.9892i 0.450265i −0.974328 0.225133i \(-0.927718\pi\)
0.974328 0.225133i \(-0.0722816\pi\)
\(710\) −9.65094 + 2.62984i −0.362193 + 0.0986962i
\(711\) 5.01588i 0.188110i
\(712\) 3.13005 + 32.6187i 0.117304 + 1.22244i
\(713\) 9.26659 9.26659i 0.347037 0.347037i
\(714\) 0 0
\(715\) −0.995155 1.83929i −0.0372167 0.0687857i
\(716\) 15.9818 32.2717i 0.597268 1.20605i
\(717\) 11.1526 + 11.1526i 0.416502 + 0.416502i
\(718\) 13.4955 + 21.7430i 0.503647 + 0.811443i
\(719\) 25.1593 0.938285 0.469142 0.883123i \(-0.344563\pi\)
0.469142 + 0.883123i \(0.344563\pi\)
\(720\) −11.7870 + 4.45960i −0.439276 + 0.166199i
\(721\) 0 0
\(722\) −25.9407 41.7939i −0.965413 1.55541i
\(723\) 10.7669 + 10.7669i 0.400424 + 0.400424i
\(724\) 12.9294 26.1081i 0.480518 0.970299i
\(725\) −12.9345 + 19.7897i −0.480376 + 0.734970i
\(726\) 7.32300 31.2883i 0.271782 1.16122i
\(727\) −20.9986 + 20.9986i −0.778795 + 0.778795i −0.979626 0.200831i \(-0.935636\pi\)
0.200831 + 0.979626i \(0.435636\pi\)
\(728\) 0 0
\(729\) 5.20463i 0.192764i
\(730\) 18.9602 + 10.8398i 0.701750 + 0.401200i
\(731\) 12.1869i 0.450749i
\(732\) −7.36702 + 2.48703i −0.272293 + 0.0919234i
\(733\) 13.2242 13.2242i 0.488445 0.488445i −0.419370 0.907815i \(-0.637749\pi\)
0.907815 + 0.419370i \(0.137749\pi\)
\(734\) −32.2501 7.54812i −1.19037 0.278606i
\(735\) 0 0
\(736\) −34.4295 + 15.4266i −1.26909 + 0.568632i
\(737\) 2.69301 + 2.69301i 0.0991982 + 0.0991982i
\(738\) 6.80394 4.22308i 0.250457 0.155454i
\(739\) 16.4171 0.603913 0.301957 0.953322i \(-0.402360\pi\)
0.301957 + 0.953322i \(0.402360\pi\)
\(740\) 33.3217 1.20431i 1.22493 0.0442711i
\(741\) 34.0646 1.25140
\(742\) 0 0
\(743\) −11.1710 11.1710i −0.409825 0.409825i 0.471852 0.881678i \(-0.343586\pi\)
−0.881678 + 0.471852i \(0.843586\pi\)
\(744\) 7.42590 9.00233i 0.272247 0.330041i
\(745\) 3.11616 10.4634i 0.114167 0.383350i
\(746\) −7.98849 1.86970i −0.292479 0.0684546i
\(747\) 6.64830 6.64830i 0.243249 0.243249i
\(748\) 1.23533 + 3.65925i 0.0451680 + 0.133795i
\(749\) 0 0
\(750\) −29.5620 + 15.1108i −1.07945 + 0.551770i
\(751\) 27.7527i 1.01271i −0.862325 0.506355i \(-0.830993\pi\)
0.862325 0.506355i \(-0.169007\pi\)
\(752\) 26.0917 + 3.52387i 0.951465 + 0.128502i
\(753\) 5.40191 5.40191i 0.196857 0.196857i
\(754\) 3.37104 14.4031i 0.122766 0.524531i
\(755\) 2.24198 7.52812i 0.0815941 0.273976i
\(756\) 0 0
\(757\) −4.34481 4.34481i −0.157915 0.157915i 0.623727 0.781642i \(-0.285618\pi\)
−0.781642 + 0.623727i \(0.785618\pi\)
\(758\) 15.2075 + 24.5013i 0.552361 + 0.889927i
\(759\) −5.92055 −0.214903
\(760\) −45.5140 8.93200i −1.65097 0.323998i
\(761\) 23.5794 0.854751 0.427376 0.904074i \(-0.359438\pi\)
0.427376 + 0.904074i \(0.359438\pi\)
\(762\) −34.8084 56.0810i −1.26098 2.03160i
\(763\) 0 0
\(764\) −18.1567 8.99169i −0.656887 0.325308i
\(765\) −12.6570 + 6.84808i −0.457614 + 0.247593i
\(766\) 3.40109 14.5315i 0.122886 0.525045i
\(767\) 4.24584 4.24584i 0.153308 0.153308i
\(768\) −29.2069 + 16.6031i −1.05391 + 0.599111i
\(769\) 11.6924i 0.421638i 0.977525 + 0.210819i \(0.0676131\pi\)
−0.977525 + 0.210819i \(0.932387\pi\)
\(770\) 0 0
\(771\) 14.6421i 0.527323i
\(772\) −13.5808 40.2287i −0.488784 1.44786i
\(773\) 13.2918 13.2918i 0.478073 0.478073i −0.426442 0.904515i \(-0.640233\pi\)
0.904515 + 0.426442i \(0.140233\pi\)
\(774\) 5.17665 + 1.21159i 0.186071 + 0.0435497i
\(775\) 5.37516 8.22394i 0.193082 0.295413i
\(776\) 14.3177 + 11.8105i 0.513976 + 0.423972i
\(777\) 0 0
\(778\) 2.71972 1.68808i 0.0975066 0.0605205i
\(779\) 29.4727 1.05597
\(780\) 14.1486 15.2096i 0.506600 0.544592i
\(781\) −1.33731 −0.0478527
\(782\) −36.6037 + 22.7192i −1.30895 + 0.812438i
\(783\) 11.1695 + 11.1695i 0.399167 + 0.399167i
\(784\) 0 0
\(785\) 14.3593 + 26.5396i 0.512506 + 0.947239i
\(786\) −51.9604 12.1613i −1.85337 0.433779i
\(787\) −36.3277 + 36.3277i −1.29494 + 1.29494i −0.363250 + 0.931692i \(0.618333\pi\)
−0.931692 + 0.363250i \(0.881667\pi\)
\(788\) 37.9498 12.8115i 1.35191 0.456390i
\(789\) 53.2636i 1.89623i
\(790\) −2.95967 10.8614i −0.105301 0.386430i
\(791\) 0 0
\(792\) −1.67716 + 0.160938i −0.0595951 + 0.00571868i
\(793\) 2.89618 2.89618i 0.102847 0.102847i
\(794\) −5.57121 + 23.8036i −0.197715 + 0.844757i
\(795\) 3.63398 + 1.08225i 0.128884 + 0.0383835i
\(796\) 6.46548 13.0556i 0.229163 0.462743i
\(797\) −1.34897 1.34897i −0.0477829 0.0477829i 0.682812 0.730594i \(-0.260757\pi\)
−0.730594 + 0.682812i \(0.760757\pi\)
\(798\) 0 0
\(799\) 30.0647 1.06361
\(800\) −22.8921 + 16.6118i −0.809357 + 0.587317i
\(801\) −16.3238 −0.576774
\(802\) −3.71654 5.98784i −0.131236 0.211438i
\(803\) 2.06466 + 2.06466i 0.0728604 + 0.0728604i
\(804\) −16.7888 + 33.9012i −0.592095 + 1.19560i
\(805\) 0 0
\(806\) −1.40089 + 5.98547i −0.0493444 + 0.210829i
\(807\) −28.2657 + 28.2657i −0.995000 + 0.995000i
\(808\) −11.9388 + 1.14563i −0.420005 + 0.0403032i
\(809\) 3.99728i 0.140537i 0.997528 + 0.0702684i \(0.0223856\pi\)
−0.997528 + 0.0702684i \(0.977614\pi\)
\(810\) 9.34629 + 34.2988i 0.328395 + 1.20514i
\(811\) 41.2999i 1.45024i 0.688625 + 0.725118i \(0.258215\pi\)
−0.688625 + 0.725118i \(0.741785\pi\)
\(812\) 0 0
\(813\) −31.3259 + 31.3259i −1.09865 + 1.09865i
\(814\) 4.34049 + 1.01589i 0.152134 + 0.0356069i
\(815\) 6.13854 + 11.3456i 0.215024 + 0.397418i
\(816\) −30.5139 + 23.2523i −1.06820 + 0.813995i
\(817\) 13.8360 + 13.8360i 0.484060 + 0.484060i
\(818\) −2.50685 + 1.55596i −0.0876501 + 0.0544027i
\(819\) 0 0
\(820\) 12.2413 13.1593i 0.427486 0.459544i
\(821\) −53.5502 −1.86891 −0.934457 0.356076i \(-0.884114\pi\)
−0.934457 + 0.356076i \(0.884114\pi\)
\(822\) −33.9100 + 21.0473i −1.18275 + 0.734108i
\(823\) 0.268313 + 0.268313i 0.00935282 + 0.00935282i 0.711768 0.702415i \(-0.247895\pi\)
−0.702415 + 0.711768i \(0.747895\pi\)
\(824\) −34.3073 28.2996i −1.19515 0.985865i
\(825\) −4.34433 + 0.910063i −0.151250 + 0.0316843i
\(826\) 0 0
\(827\) 2.07441 2.07441i 0.0721345 0.0721345i −0.670119 0.742254i \(-0.733757\pi\)
0.742254 + 0.670119i \(0.233757\pi\)
\(828\) −6.01142 17.8069i −0.208911 0.618832i
\(829\) 26.6938i 0.927113i 0.886067 + 0.463556i \(0.153427\pi\)
−0.886067 + 0.463556i \(0.846573\pi\)
\(830\) 10.4733 18.3191i 0.363533 0.635864i
\(831\) 33.8467i 1.17413i
\(832\) 9.90571 14.6651i 0.343419 0.508421i
\(833\) 0 0
\(834\) 4.17307 17.8299i 0.144502 0.617398i
\(835\) −17.0080 + 9.20224i −0.588588 + 0.318457i
\(836\) −5.55688 2.75192i −0.192189 0.0951770i
\(837\) −4.64170 4.64170i −0.160441 0.160441i
\(838\) 2.38482 + 3.84227i 0.0823823 + 0.132729i
\(839\) 23.5830 0.814175 0.407087 0.913389i \(-0.366544\pi\)
0.407087 + 0.913389i \(0.366544\pi\)
\(840\) 0 0
\(841\) 6.64270 0.229059
\(842\) 29.5456 + 47.6019i 1.01821 + 1.64047i
\(843\) −8.91966 8.91966i −0.307209 0.307209i
\(844\) −31.1972 15.4497i −1.07385 0.531799i
\(845\) 5.17378 17.3725i 0.177983 0.597631i
\(846\) −2.98895 + 12.7706i −0.102762 + 0.439063i
\(847\) 0 0
\(848\) 3.20122 + 0.432347i 0.109930 + 0.0148469i
\(849\) 3.49536i 0.119960i
\(850\) −23.3665 + 22.2971i −0.801464 + 0.764786i
\(851\) 49.7255i 1.70457i
\(852\) −4.24890 12.5860i −0.145565 0.431188i
\(853\) −35.4043 + 35.4043i −1.21222 + 1.21222i −0.241926 + 0.970295i \(0.577779\pi\)
−0.970295 + 0.241926i \(0.922221\pi\)
\(854\) 0 0
\(855\) 6.59491 22.1444i 0.225541 0.757321i
\(856\) 1.01126 1.22594i 0.0345641 0.0419017i
\(857\) −27.8303 27.8303i −0.950664 0.950664i 0.0481748 0.998839i \(-0.484660\pi\)
−0.998839 + 0.0481748i \(0.984660\pi\)
\(858\) 2.35963 1.46457i 0.0805563 0.0499998i
\(859\) 31.8308 1.08605 0.543026 0.839716i \(-0.317278\pi\)
0.543026 + 0.839716i \(0.317278\pi\)
\(860\) 11.9244 0.430968i 0.406618 0.0146959i
\(861\) 0 0
\(862\) −17.6607 + 10.9616i −0.601525 + 0.373355i
\(863\) 27.4032 + 27.4032i 0.932815 + 0.932815i 0.997881 0.0650658i \(-0.0207257\pi\)
−0.0650658 + 0.997881i \(0.520726\pi\)
\(864\) 7.72729 + 17.2460i 0.262888 + 0.586720i
\(865\) 8.59820 4.65207i 0.292347 0.158175i
\(866\) 11.7481 + 2.74964i 0.399218 + 0.0934367i
\(867\) −5.73580 + 5.73580i −0.194798 + 0.194798i
\(868\) 0 0
\(869\) 1.50503i 0.0510547i
\(870\) −27.2563 15.5828i −0.924076 0.528308i
\(871\) 19.9277i 0.675224i
\(872\) 1.41259 + 14.7208i 0.0478364 + 0.498510i
\(873\) −6.53786 + 6.53786i −0.221273 + 0.221273i
\(874\) 15.7633 67.3502i 0.533200 2.27815i
\(875\) 0 0
\(876\) −12.8716 + 25.9913i −0.434890 + 0.878164i
\(877\) 1.96937 + 1.96937i 0.0665009 + 0.0665009i 0.739575 0.673074i \(-0.235027\pi\)
−0.673074 + 0.739575i \(0.735027\pi\)
\(878\) 4.94041 + 7.95967i 0.166731 + 0.268626i
\(879\) 42.3016 1.42680
\(880\) −3.53674 + 1.33812i −0.119223 + 0.0451079i
\(881\) 40.5035 1.36460 0.682299 0.731074i \(-0.260980\pi\)
0.682299 + 0.731074i \(0.260980\pi\)
\(882\) 0 0
\(883\) −17.0113 17.0113i −0.572477 0.572477i 0.360343 0.932820i \(-0.382660\pi\)
−0.932820 + 0.360343i \(0.882660\pi\)
\(884\) 8.96826 18.1094i 0.301635 0.609086i
\(885\) −6.06463 11.2090i −0.203860 0.376785i
\(886\) −3.14528 + 13.4386i −0.105668 + 0.451477i
\(887\) 27.5454 27.5454i 0.924885 0.924885i −0.0724841 0.997370i \(-0.523093\pi\)
0.997370 + 0.0724841i \(0.0230927\pi\)
\(888\) 4.22966 + 44.0778i 0.141938 + 1.47916i
\(889\) 0 0
\(890\) −35.3474 + 9.63204i −1.18485 + 0.322867i
\(891\) 4.75271i 0.159222i
\(892\) 4.50796 1.52184i 0.150938 0.0509551i
\(893\) −34.1329 + 34.1329i −1.14221 + 1.14221i
\(894\) 14.1171 + 3.30410i 0.472147 + 0.110506i
\(895\) 38.5880 + 11.4921i 1.28985 + 0.384137i
\(896\) 0 0
\(897\) 21.9054 + 21.9054i 0.731401 + 0.731401i
\(898\) −21.6446 + 13.4344i −0.722290 + 0.448311i
\(899\) 9.29097 0.309871
\(900\) −7.14814 12.1421i −0.238271 0.404738i
\(901\) 3.68867 0.122888
\(902\) 2.04155 1.26715i 0.0679760 0.0421914i
\(903\) 0 0
\(904\) 24.0812 29.1934i 0.800929 0.970957i
\(905\) 31.2180 + 9.29718i 1.03772 + 0.309049i
\(906\) 10.1568 + 2.37720i 0.337438 + 0.0789771i
\(907\) −16.1902 + 16.1902i −0.537588 + 0.537588i −0.922820 0.385232i \(-0.874121\pi\)
0.385232 + 0.922820i \(0.374121\pi\)
\(908\) 10.0142 + 29.6637i 0.332332 + 0.984425i
\(909\) 5.97469i 0.198168i
\(910\) 0 0
\(911\) 43.8022i 1.45123i −0.688100 0.725616i \(-0.741555\pi\)
0.688100 0.725616i \(-0.258445\pi\)
\(912\) 8.24410 61.0415i 0.272989 2.02129i
\(913\) 1.99485 1.99485i 0.0660198 0.0660198i
\(914\) 0.409285 1.74872i 0.0135380 0.0578424i
\(915\) −4.13683 7.64589i −0.136759 0.252765i
\(916\) −30.5966 15.1522i −1.01094 0.500644i
\(917\) 0 0
\(918\) 11.3802 + 18.3351i 0.375603 + 0.605147i
\(919\) 32.1651 1.06103 0.530515 0.847675i \(-0.321999\pi\)
0.530515 + 0.847675i \(0.321999\pi\)
\(920\) −23.5242 35.0118i −0.775571 1.15430i
\(921\) −10.6977 −0.352502
\(922\) −13.1276 21.1503i −0.432334 0.696547i
\(923\) 4.94790 + 4.94790i 0.162862 + 0.162862i
\(924\) 0 0
\(925\) 7.64343 + 36.4871i 0.251315 + 1.19969i
\(926\) 6.25623 26.7304i 0.205592 0.878415i
\(927\) 15.6656 15.6656i 0.514527 0.514527i
\(928\) −24.9936 9.52643i −0.820456 0.312720i
\(929\) 41.2161i 1.35226i −0.736784 0.676128i \(-0.763657\pi\)
0.736784 0.676128i \(-0.236343\pi\)
\(930\) 11.3268 + 6.47572i 0.371422 + 0.212347i
\(931\) 0 0
\(932\) −8.90373 26.3744i −0.291651 0.863921i
\(933\) 0.642405 0.642405i 0.0210314 0.0210314i
\(934\) −17.6662 4.13475i −0.578055 0.135293i
\(935\) −3.79777 + 2.05479i −0.124200 + 0.0671988i
\(936\) 6.80075 + 5.60985i 0.222290 + 0.183364i
\(937\) −25.3650 25.3650i −0.828637 0.828637i 0.158691 0.987328i \(-0.449273\pi\)
−0.987328 + 0.158691i \(0.949273\pi\)
\(938\) 0 0
\(939\) −2.16296 −0.0705855
\(940\) 1.06318 + 29.4170i 0.0346772 + 0.959477i
\(941\) −22.9459 −0.748013 −0.374007 0.927426i \(-0.622016\pi\)
−0.374007 + 0.927426i \(0.622016\pi\)
\(942\) −34.0476 + 21.1327i −1.10933 + 0.688540i
\(943\) 18.9525 + 18.9525i 0.617180 + 0.617180i
\(944\) −6.58071 8.63581i −0.214184 0.281072i
\(945\) 0 0
\(946\) 1.55327 + 0.363542i 0.0505012 + 0.0118198i
\(947\) 21.4542 21.4542i 0.697167 0.697167i −0.266631 0.963799i \(-0.585911\pi\)
0.963799 + 0.266631i \(0.0859106\pi\)
\(948\) 14.1645 4.78179i 0.460041 0.155305i
\(949\) 15.2781i 0.495947i
\(950\) 1.21406 51.8426i 0.0393892 1.68200i
\(951\) 59.2035i 1.91981i
\(952\) 0 0
\(953\) −1.41682 + 1.41682i −0.0458953 + 0.0458953i −0.729682 0.683787i \(-0.760332\pi\)
0.683787 + 0.729682i \(0.260332\pi\)
\(954\) −0.366718 + 1.56684i −0.0118729 + 0.0507283i
\(955\) 6.46567 21.7104i 0.209224 0.702532i
\(956\) −6.66695 + 13.4624i −0.215625 + 0.435406i
\(957\) −2.96806 2.96806i −0.0959439 0.0959439i
\(958\) 11.0668 + 17.8302i 0.357553 + 0.576066i
\(959\) 0 0
\(960\) −23.8305 29.0342i −0.769126 0.937076i
\(961\) 27.1390 0.875451
\(962\) −12.3007 19.8180i −0.396590 0.638959i
\(963\) 0.559796 + 0.559796i 0.0180392 + 0.0180392i
\(964\) −6.43635 + 12.9968i −0.207301 + 0.418598i
\(965\) 41.7515 22.5897i 1.34403 0.727189i
\(966\) 0 0
\(967\) −30.6644 + 30.6644i −0.986102 + 0.986102i −0.999905 0.0138026i \(-0.995606\pi\)
0.0138026 + 0.999905i \(0.495606\pi\)
\(968\) 30.4672 2.92360i 0.979253 0.0939679i
\(969\) 70.3364i 2.25953i
\(970\) −10.2993 + 18.0147i −0.330690 + 0.578419i
\(971\) 28.0586i 0.900443i 0.892917 + 0.450221i \(0.148655\pi\)
−0.892917 + 0.450221i \(0.851345\pi\)
\(972\) −25.7384 + 8.68902i −0.825559 + 0.278701i
\(973\) 0 0
\(974\) 48.1139 + 11.2610i 1.54167 + 0.360826i
\(975\) 19.4407 + 12.7064i 0.622600 + 0.406931i
\(976\) −4.48885 5.89069i −0.143685 0.188556i
\(977\) 19.4835 + 19.4835i 0.623333 + 0.623333i 0.946382 0.323049i \(-0.104708\pi\)
−0.323049 + 0.946382i \(0.604708\pi\)
\(978\) −14.5552 + 9.03413i −0.465424 + 0.288880i
\(979\) −4.89802 −0.156541
\(980\) 0 0
\(981\) −7.36695 −0.235209
\(982\) −6.23676 + 3.87104i −0.199023 + 0.123530i
\(983\) 23.9088 + 23.9088i 0.762573 + 0.762573i 0.976787 0.214214i \(-0.0687189\pi\)
−0.214214 + 0.976787i \(0.568719\pi\)
\(984\) 18.4121 + 15.1879i 0.586955 + 0.484171i
\(985\) 21.3101 + 39.3864i 0.678995 + 1.25495i
\(986\) −29.7395 6.96051i −0.947099 0.221668i
\(987\) 0 0
\(988\) 10.3781 + 30.7417i 0.330171 + 0.978023i
\(989\) 17.7946i 0.565835i
\(990\) −0.495251 1.81746i −0.0157401 0.0577627i
\(991\) 44.7591i 1.42182i −0.703283 0.710910i \(-0.748283\pi\)
0.703283 0.710910i \(-0.251717\pi\)
\(992\) 10.3865 + 3.95888i 0.329773 + 0.125694i
\(993\) −38.2642 + 38.2642i −1.21428 + 1.21428i
\(994\) 0 0
\(995\) 15.6109 + 4.64914i 0.494898 + 0.147388i
\(996\) 25.1124 + 12.4363i 0.795715 + 0.394059i
\(997\) −5.86418 5.86418i −0.185720 0.185720i 0.608123 0.793843i \(-0.291923\pi\)
−0.793843 + 0.608123i \(0.791923\pi\)
\(998\) −8.08586 13.0274i −0.255953 0.412375i
\(999\) 24.9079 0.788050
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.k.j.687.6 36
4.3 odd 2 inner 980.2.k.j.687.5 36
5.3 odd 4 inner 980.2.k.j.883.5 36
7.2 even 3 980.2.x.m.67.8 72
7.3 odd 6 140.2.w.b.107.18 yes 72
7.4 even 3 980.2.x.m.667.18 72
7.5 odd 6 140.2.w.b.67.8 yes 72
7.6 odd 2 980.2.k.k.687.6 36
20.3 even 4 inner 980.2.k.j.883.6 36
28.3 even 6 140.2.w.b.107.16 yes 72
28.11 odd 6 980.2.x.m.667.16 72
28.19 even 6 140.2.w.b.67.10 yes 72
28.23 odd 6 980.2.x.m.67.10 72
28.27 even 2 980.2.k.k.687.5 36
35.3 even 12 140.2.w.b.23.10 yes 72
35.12 even 12 700.2.be.e.543.3 72
35.13 even 4 980.2.k.k.883.5 36
35.17 even 12 700.2.be.e.443.9 72
35.18 odd 12 980.2.x.m.863.10 72
35.19 odd 6 700.2.be.e.207.11 72
35.23 odd 12 980.2.x.m.263.16 72
35.24 odd 6 700.2.be.e.107.1 72
35.33 even 12 140.2.w.b.123.16 yes 72
140.3 odd 12 140.2.w.b.23.8 72
140.19 even 6 700.2.be.e.207.9 72
140.23 even 12 980.2.x.m.263.18 72
140.47 odd 12 700.2.be.e.543.1 72
140.59 even 6 700.2.be.e.107.3 72
140.83 odd 4 980.2.k.k.883.6 36
140.87 odd 12 700.2.be.e.443.11 72
140.103 odd 12 140.2.w.b.123.18 yes 72
140.123 even 12 980.2.x.m.863.8 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.8 72 140.3 odd 12
140.2.w.b.23.10 yes 72 35.3 even 12
140.2.w.b.67.8 yes 72 7.5 odd 6
140.2.w.b.67.10 yes 72 28.19 even 6
140.2.w.b.107.16 yes 72 28.3 even 6
140.2.w.b.107.18 yes 72 7.3 odd 6
140.2.w.b.123.16 yes 72 35.33 even 12
140.2.w.b.123.18 yes 72 140.103 odd 12
700.2.be.e.107.1 72 35.24 odd 6
700.2.be.e.107.3 72 140.59 even 6
700.2.be.e.207.9 72 140.19 even 6
700.2.be.e.207.11 72 35.19 odd 6
700.2.be.e.443.9 72 35.17 even 12
700.2.be.e.443.11 72 140.87 odd 12
700.2.be.e.543.1 72 140.47 odd 12
700.2.be.e.543.3 72 35.12 even 12
980.2.k.j.687.5 36 4.3 odd 2 inner
980.2.k.j.687.6 36 1.1 even 1 trivial
980.2.k.j.883.5 36 5.3 odd 4 inner
980.2.k.j.883.6 36 20.3 even 4 inner
980.2.k.k.687.5 36 28.27 even 2
980.2.k.k.687.6 36 7.6 odd 2
980.2.k.k.883.5 36 35.13 even 4
980.2.k.k.883.6 36 140.83 odd 4
980.2.x.m.67.8 72 7.2 even 3
980.2.x.m.67.10 72 28.23 odd 6
980.2.x.m.263.16 72 35.23 odd 12
980.2.x.m.263.18 72 140.23 even 12
980.2.x.m.667.16 72 28.11 odd 6
980.2.x.m.667.18 72 7.4 even 3
980.2.x.m.863.8 72 140.123 even 12
980.2.x.m.863.10 72 35.18 odd 12