Properties

Label 980.2.i.f.961.1
Level $980$
Weight $2$
Character 980.961
Analytic conductor $7.825$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(361,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 980.961
Dual form 980.2.i.f.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{5} +(1.00000 - 1.73205i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{5} +(1.00000 - 1.73205i) q^{9} +(-3.00000 - 5.19615i) q^{11} -2.00000 q^{13} -1.00000 q^{15} +(-3.00000 - 5.19615i) q^{17} +(4.00000 - 6.92820i) q^{19} +(-1.50000 + 2.59808i) q^{23} +(-0.500000 - 0.866025i) q^{25} +5.00000 q^{27} +3.00000 q^{29} +(1.00000 + 1.73205i) q^{31} +(3.00000 - 5.19615i) q^{33} +(-4.00000 + 6.92820i) q^{37} +(-1.00000 - 1.73205i) q^{39} +3.00000 q^{41} +5.00000 q^{43} +(1.00000 + 1.73205i) q^{45} +(3.00000 - 5.19615i) q^{51} +(-6.00000 - 10.3923i) q^{53} +6.00000 q^{55} +8.00000 q^{57} +(-0.500000 + 0.866025i) q^{61} +(1.00000 - 1.73205i) q^{65} +(3.50000 + 6.06218i) q^{67} -3.00000 q^{69} +(-5.00000 - 8.66025i) q^{73} +(0.500000 - 0.866025i) q^{75} +(2.00000 - 3.46410i) q^{79} +(-0.500000 - 0.866025i) q^{81} -3.00000 q^{83} +6.00000 q^{85} +(1.50000 + 2.59808i) q^{87} +(-1.50000 + 2.59808i) q^{89} +(-1.00000 + 1.73205i) q^{93} +(4.00000 + 6.92820i) q^{95} +10.0000 q^{97} -12.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - q^{5} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{3} - q^{5} + 2 q^{9} - 6 q^{11} - 4 q^{13} - 2 q^{15} - 6 q^{17} + 8 q^{19} - 3 q^{23} - q^{25} + 10 q^{27} + 6 q^{29} + 2 q^{31} + 6 q^{33} - 8 q^{37} - 2 q^{39} + 6 q^{41} + 10 q^{43} + 2 q^{45} + 6 q^{51} - 12 q^{53} + 12 q^{55} + 16 q^{57} - q^{61} + 2 q^{65} + 7 q^{67} - 6 q^{69} - 10 q^{73} + q^{75} + 4 q^{79} - q^{81} - 6 q^{83} + 12 q^{85} + 3 q^{87} - 3 q^{89} - 2 q^{93} + 8 q^{95} + 20 q^{97} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 0 0
\(11\) −3.00000 5.19615i −0.904534 1.56670i −0.821541 0.570149i \(-0.806886\pi\)
−0.0829925 0.996550i \(-0.526448\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −3.00000 5.19615i −0.727607 1.26025i −0.957892 0.287129i \(-0.907299\pi\)
0.230285 0.973123i \(-0.426034\pi\)
\(18\) 0 0
\(19\) 4.00000 6.92820i 0.917663 1.58944i 0.114708 0.993399i \(-0.463407\pi\)
0.802955 0.596040i \(-0.203260\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) 1.00000 + 1.73205i 0.179605 + 0.311086i 0.941745 0.336327i \(-0.109185\pi\)
−0.762140 + 0.647412i \(0.775851\pi\)
\(32\) 0 0
\(33\) 3.00000 5.19615i 0.522233 0.904534i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 + 6.92820i −0.657596 + 1.13899i 0.323640 + 0.946180i \(0.395093\pi\)
−0.981236 + 0.192809i \(0.938240\pi\)
\(38\) 0 0
\(39\) −1.00000 1.73205i −0.160128 0.277350i
\(40\) 0 0
\(41\) 3.00000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) 0 0
\(43\) 5.00000 0.762493 0.381246 0.924473i \(-0.375495\pi\)
0.381246 + 0.924473i \(0.375495\pi\)
\(44\) 0 0
\(45\) 1.00000 + 1.73205i 0.149071 + 0.258199i
\(46\) 0 0
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 3.00000 5.19615i 0.420084 0.727607i
\(52\) 0 0
\(53\) −6.00000 10.3923i −0.824163 1.42749i −0.902557 0.430570i \(-0.858312\pi\)
0.0783936 0.996922i \(-0.475021\pi\)
\(54\) 0 0
\(55\) 6.00000 0.809040
\(56\) 0 0
\(57\) 8.00000 1.05963
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) −0.500000 + 0.866025i −0.0640184 + 0.110883i −0.896258 0.443533i \(-0.853725\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.00000 1.73205i 0.124035 0.214834i
\(66\) 0 0
\(67\) 3.50000 + 6.06218i 0.427593 + 0.740613i 0.996659 0.0816792i \(-0.0260283\pi\)
−0.569066 + 0.822292i \(0.692695\pi\)
\(68\) 0 0
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −5.00000 8.66025i −0.585206 1.01361i −0.994850 0.101361i \(-0.967680\pi\)
0.409644 0.912245i \(-0.365653\pi\)
\(74\) 0 0
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.00000 3.46410i 0.225018 0.389742i −0.731307 0.682048i \(-0.761089\pi\)
0.956325 + 0.292306i \(0.0944227\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −3.00000 −0.329293 −0.164646 0.986353i \(-0.552648\pi\)
−0.164646 + 0.986353i \(0.552648\pi\)
\(84\) 0 0
\(85\) 6.00000 0.650791
\(86\) 0 0
\(87\) 1.50000 + 2.59808i 0.160817 + 0.278543i
\(88\) 0 0
\(89\) −1.50000 + 2.59808i −0.159000 + 0.275396i −0.934508 0.355942i \(-0.884160\pi\)
0.775509 + 0.631337i \(0.217494\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.00000 + 1.73205i −0.103695 + 0.179605i
\(94\) 0 0
\(95\) 4.00000 + 6.92820i 0.410391 + 0.710819i
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) −12.0000 −1.20605
\(100\) 0 0
\(101\) −1.50000 2.59808i −0.149256 0.258518i 0.781697 0.623658i \(-0.214354\pi\)
−0.930953 + 0.365140i \(0.881021\pi\)
\(102\) 0 0
\(103\) −3.50000 + 6.06218i −0.344865 + 0.597324i −0.985329 0.170664i \(-0.945409\pi\)
0.640464 + 0.767988i \(0.278742\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.50000 2.59808i 0.145010 0.251166i −0.784366 0.620298i \(-0.787012\pi\)
0.929377 + 0.369132i \(0.120345\pi\)
\(108\) 0 0
\(109\) −8.50000 14.7224i −0.814152 1.41015i −0.909935 0.414751i \(-0.863869\pi\)
0.0957826 0.995402i \(-0.469465\pi\)
\(110\) 0 0
\(111\) −8.00000 −0.759326
\(112\) 0 0
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) 0 0
\(115\) −1.50000 2.59808i −0.139876 0.242272i
\(116\) 0 0
\(117\) −2.00000 + 3.46410i −0.184900 + 0.320256i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −12.5000 + 21.6506i −1.13636 + 1.96824i
\(122\) 0 0
\(123\) 1.50000 + 2.59808i 0.135250 + 0.234261i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 2.50000 + 4.33013i 0.220113 + 0.381246i
\(130\) 0 0
\(131\) 6.00000 10.3923i 0.524222 0.907980i −0.475380 0.879781i \(-0.657689\pi\)
0.999602 0.0281993i \(-0.00897729\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.50000 + 4.33013i −0.215166 + 0.372678i
\(136\) 0 0
\(137\) 6.00000 + 10.3923i 0.512615 + 0.887875i 0.999893 + 0.0146279i \(0.00465636\pi\)
−0.487278 + 0.873247i \(0.662010\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.00000 + 10.3923i 0.501745 + 0.869048i
\(144\) 0 0
\(145\) −1.50000 + 2.59808i −0.124568 + 0.215758i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.50000 12.9904i 0.614424 1.06421i −0.376061 0.926595i \(-0.622722\pi\)
0.990485 0.137619i \(-0.0439449\pi\)
\(150\) 0 0
\(151\) 5.00000 + 8.66025i 0.406894 + 0.704761i 0.994540 0.104357i \(-0.0332784\pi\)
−0.587646 + 0.809118i \(0.699945\pi\)
\(152\) 0 0
\(153\) −12.0000 −0.970143
\(154\) 0 0
\(155\) −2.00000 −0.160644
\(156\) 0 0
\(157\) 7.00000 + 12.1244i 0.558661 + 0.967629i 0.997609 + 0.0691164i \(0.0220180\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 0 0
\(159\) 6.00000 10.3923i 0.475831 0.824163i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 8.00000 13.8564i 0.626608 1.08532i −0.361619 0.932326i \(-0.617776\pi\)
0.988227 0.152992i \(-0.0488907\pi\)
\(164\) 0 0
\(165\) 3.00000 + 5.19615i 0.233550 + 0.404520i
\(166\) 0 0
\(167\) 21.0000 1.62503 0.812514 0.582941i \(-0.198098\pi\)
0.812514 + 0.582941i \(0.198098\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −8.00000 13.8564i −0.611775 1.05963i
\(172\) 0 0
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.00000 + 5.19615i 0.224231 + 0.388379i 0.956088 0.293079i \(-0.0946798\pi\)
−0.731858 + 0.681457i \(0.761346\pi\)
\(180\) 0 0
\(181\) −17.0000 −1.26360 −0.631800 0.775131i \(-0.717684\pi\)
−0.631800 + 0.775131i \(0.717684\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 0 0
\(185\) −4.00000 6.92820i −0.294086 0.509372i
\(186\) 0 0
\(187\) −18.0000 + 31.1769i −1.31629 + 2.27988i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.00000 15.5885i 0.651217 1.12794i −0.331611 0.943416i \(-0.607592\pi\)
0.982828 0.184525i \(-0.0590746\pi\)
\(192\) 0 0
\(193\) −1.00000 1.73205i −0.0719816 0.124676i 0.827788 0.561041i \(-0.189599\pi\)
−0.899770 + 0.436365i \(0.856266\pi\)
\(194\) 0 0
\(195\) 2.00000 0.143223
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 10.0000 + 17.3205i 0.708881 + 1.22782i 0.965272 + 0.261245i \(0.0841331\pi\)
−0.256391 + 0.966573i \(0.582534\pi\)
\(200\) 0 0
\(201\) −3.50000 + 6.06218i −0.246871 + 0.427593i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.50000 + 2.59808i −0.104765 + 0.181458i
\(206\) 0 0
\(207\) 3.00000 + 5.19615i 0.208514 + 0.361158i
\(208\) 0 0
\(209\) −48.0000 −3.32023
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.50000 + 4.33013i −0.170499 + 0.295312i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 5.00000 8.66025i 0.337869 0.585206i
\(220\) 0 0
\(221\) 6.00000 + 10.3923i 0.403604 + 0.699062i
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) −2.00000 −0.133333
\(226\) 0 0
\(227\) −6.00000 10.3923i −0.398234 0.689761i 0.595274 0.803523i \(-0.297043\pi\)
−0.993508 + 0.113761i \(0.963710\pi\)
\(228\) 0 0
\(229\) 1.00000 1.73205i 0.0660819 0.114457i −0.831092 0.556136i \(-0.812283\pi\)
0.897173 + 0.441679i \(0.145617\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.00000 + 5.19615i −0.196537 + 0.340411i −0.947403 0.320043i \(-0.896303\pi\)
0.750867 + 0.660454i \(0.229636\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.00000 0.259828
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 13.0000 + 22.5167i 0.837404 + 1.45043i 0.892058 + 0.451920i \(0.149261\pi\)
−0.0546547 + 0.998505i \(0.517406\pi\)
\(242\) 0 0
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −8.00000 + 13.8564i −0.509028 + 0.881662i
\(248\) 0 0
\(249\) −1.50000 2.59808i −0.0950586 0.164646i
\(250\) 0 0
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 0 0
\(255\) 3.00000 + 5.19615i 0.187867 + 0.325396i
\(256\) 0 0
\(257\) −12.0000 + 20.7846i −0.748539 + 1.29651i 0.199983 + 0.979799i \(0.435911\pi\)
−0.948523 + 0.316709i \(0.897422\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 3.00000 5.19615i 0.185695 0.321634i
\(262\) 0 0
\(263\) 1.50000 + 2.59808i 0.0924940 + 0.160204i 0.908560 0.417755i \(-0.137183\pi\)
−0.816066 + 0.577959i \(0.803849\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 0 0
\(267\) −3.00000 −0.183597
\(268\) 0 0
\(269\) −7.50000 12.9904i −0.457283 0.792038i 0.541533 0.840679i \(-0.317844\pi\)
−0.998816 + 0.0486418i \(0.984511\pi\)
\(270\) 0 0
\(271\) −8.00000 + 13.8564i −0.485965 + 0.841717i −0.999870 0.0161307i \(-0.994865\pi\)
0.513905 + 0.857847i \(0.328199\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.00000 + 5.19615i −0.180907 + 0.313340i
\(276\) 0 0
\(277\) 11.0000 + 19.0526i 0.660926 + 1.14476i 0.980373 + 0.197153i \(0.0631696\pi\)
−0.319447 + 0.947604i \(0.603497\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 10.0000 + 17.3205i 0.594438 + 1.02960i 0.993626 + 0.112728i \(0.0359589\pi\)
−0.399188 + 0.916869i \(0.630708\pi\)
\(284\) 0 0
\(285\) −4.00000 + 6.92820i −0.236940 + 0.410391i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 0 0
\(291\) 5.00000 + 8.66025i 0.293105 + 0.507673i
\(292\) 0 0
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −15.0000 25.9808i −0.870388 1.50756i
\(298\) 0 0
\(299\) 3.00000 5.19615i 0.173494 0.300501i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.50000 2.59808i 0.0861727 0.149256i
\(304\) 0 0
\(305\) −0.500000 0.866025i −0.0286299 0.0495885i
\(306\) 0 0
\(307\) 19.0000 1.08439 0.542194 0.840254i \(-0.317594\pi\)
0.542194 + 0.840254i \(0.317594\pi\)
\(308\) 0 0
\(309\) −7.00000 −0.398216
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) −2.00000 + 3.46410i −0.113047 + 0.195803i −0.916997 0.398894i \(-0.869394\pi\)
0.803951 + 0.594696i \(0.202728\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) −9.00000 15.5885i −0.503903 0.872786i
\(320\) 0 0
\(321\) 3.00000 0.167444
\(322\) 0 0
\(323\) −48.0000 −2.67079
\(324\) 0 0
\(325\) 1.00000 + 1.73205i 0.0554700 + 0.0960769i
\(326\) 0 0
\(327\) 8.50000 14.7224i 0.470051 0.814152i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 11.0000 19.0526i 0.604615 1.04722i −0.387498 0.921871i \(-0.626660\pi\)
0.992112 0.125353i \(-0.0400062\pi\)
\(332\) 0 0
\(333\) 8.00000 + 13.8564i 0.438397 + 0.759326i
\(334\) 0 0
\(335\) −7.00000 −0.382451
\(336\) 0 0
\(337\) 20.0000 1.08947 0.544735 0.838608i \(-0.316630\pi\)
0.544735 + 0.838608i \(0.316630\pi\)
\(338\) 0 0
\(339\) −6.00000 10.3923i −0.325875 0.564433i
\(340\) 0 0
\(341\) 6.00000 10.3923i 0.324918 0.562775i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.50000 2.59808i 0.0807573 0.139876i
\(346\) 0 0
\(347\) 13.5000 + 23.3827i 0.724718 + 1.25525i 0.959090 + 0.283101i \(0.0913633\pi\)
−0.234372 + 0.972147i \(0.575303\pi\)
\(348\) 0 0
\(349\) 1.00000 0.0535288 0.0267644 0.999642i \(-0.491480\pi\)
0.0267644 + 0.999642i \(0.491480\pi\)
\(350\) 0 0
\(351\) −10.0000 −0.533761
\(352\) 0 0
\(353\) −6.00000 10.3923i −0.319348 0.553127i 0.661004 0.750382i \(-0.270130\pi\)
−0.980352 + 0.197256i \(0.936797\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.00000 + 5.19615i −0.158334 + 0.274242i −0.934268 0.356572i \(-0.883946\pi\)
0.775934 + 0.630814i \(0.217279\pi\)
\(360\) 0 0
\(361\) −22.5000 38.9711i −1.18421 2.05111i
\(362\) 0 0
\(363\) −25.0000 −1.31216
\(364\) 0 0
\(365\) 10.0000 0.523424
\(366\) 0 0
\(367\) 2.50000 + 4.33013i 0.130499 + 0.226031i 0.923869 0.382709i \(-0.125009\pi\)
−0.793370 + 0.608740i \(0.791675\pi\)
\(368\) 0 0
\(369\) 3.00000 5.19615i 0.156174 0.270501i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 8.00000 13.8564i 0.414224 0.717458i −0.581122 0.813816i \(-0.697386\pi\)
0.995347 + 0.0963587i \(0.0307196\pi\)
\(374\) 0 0
\(375\) 0.500000 + 0.866025i 0.0258199 + 0.0447214i
\(376\) 0 0
\(377\) −6.00000 −0.309016
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 0 0
\(381\) 4.00000 + 6.92820i 0.204926 + 0.354943i
\(382\) 0 0
\(383\) 1.50000 2.59808i 0.0766464 0.132755i −0.825155 0.564907i \(-0.808912\pi\)
0.901801 + 0.432151i \(0.142245\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.00000 8.66025i 0.254164 0.440225i
\(388\) 0 0
\(389\) −3.00000 5.19615i −0.152106 0.263455i 0.779895 0.625910i \(-0.215272\pi\)
−0.932002 + 0.362454i \(0.881939\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) 0 0
\(393\) 12.0000 0.605320
\(394\) 0 0
\(395\) 2.00000 + 3.46410i 0.100631 + 0.174298i
\(396\) 0 0
\(397\) 13.0000 22.5167i 0.652451 1.13008i −0.330075 0.943955i \(-0.607074\pi\)
0.982526 0.186124i \(-0.0595926\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.50000 + 2.59808i −0.0749064 + 0.129742i −0.901046 0.433724i \(-0.857199\pi\)
0.826139 + 0.563466i \(0.190532\pi\)
\(402\) 0 0
\(403\) −2.00000 3.46410i −0.0996271 0.172559i
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 48.0000 2.37927
\(408\) 0 0
\(409\) 5.50000 + 9.52628i 0.271957 + 0.471044i 0.969363 0.245633i \(-0.0789957\pi\)
−0.697406 + 0.716677i \(0.745662\pi\)
\(410\) 0 0
\(411\) −6.00000 + 10.3923i −0.295958 + 0.512615i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.50000 2.59808i 0.0736321 0.127535i
\(416\) 0 0
\(417\) −1.00000 1.73205i −0.0489702 0.0848189i
\(418\) 0 0
\(419\) −24.0000 −1.17248 −0.586238 0.810139i \(-0.699392\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(420\) 0 0
\(421\) 23.0000 1.12095 0.560476 0.828171i \(-0.310618\pi\)
0.560476 + 0.828171i \(0.310618\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.00000 + 5.19615i −0.145521 + 0.252050i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −6.00000 + 10.3923i −0.289683 + 0.501745i
\(430\) 0 0
\(431\) −15.0000 25.9808i −0.722525 1.25145i −0.959985 0.280052i \(-0.909648\pi\)
0.237460 0.971397i \(-0.423685\pi\)
\(432\) 0 0
\(433\) 28.0000 1.34559 0.672797 0.739827i \(-0.265093\pi\)
0.672797 + 0.739827i \(0.265093\pi\)
\(434\) 0 0
\(435\) −3.00000 −0.143839
\(436\) 0 0
\(437\) 12.0000 + 20.7846i 0.574038 + 0.994263i
\(438\) 0 0
\(439\) −14.0000 + 24.2487i −0.668184 + 1.15733i 0.310228 + 0.950662i \(0.399595\pi\)
−0.978412 + 0.206666i \(0.933739\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.50000 + 7.79423i −0.213801 + 0.370315i −0.952901 0.303281i \(-0.901918\pi\)
0.739100 + 0.673596i \(0.235251\pi\)
\(444\) 0 0
\(445\) −1.50000 2.59808i −0.0711068 0.123161i
\(446\) 0 0
\(447\) 15.0000 0.709476
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) −9.00000 15.5885i −0.423793 0.734032i
\(452\) 0 0
\(453\) −5.00000 + 8.66025i −0.234920 + 0.406894i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.00000 3.46410i 0.0935561 0.162044i −0.815449 0.578829i \(-0.803510\pi\)
0.909005 + 0.416785i \(0.136843\pi\)
\(458\) 0 0
\(459\) −15.0000 25.9808i −0.700140 1.21268i
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) 29.0000 1.34774 0.673872 0.738848i \(-0.264630\pi\)
0.673872 + 0.738848i \(0.264630\pi\)
\(464\) 0 0
\(465\) −1.00000 1.73205i −0.0463739 0.0803219i
\(466\) 0 0
\(467\) 16.5000 28.5788i 0.763529 1.32247i −0.177492 0.984122i \(-0.556798\pi\)
0.941021 0.338349i \(-0.109868\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −7.00000 + 12.1244i −0.322543 + 0.558661i
\(472\) 0 0
\(473\) −15.0000 25.9808i −0.689701 1.19460i
\(474\) 0 0
\(475\) −8.00000 −0.367065
\(476\) 0 0
\(477\) −24.0000 −1.09888
\(478\) 0 0
\(479\) −15.0000 25.9808i −0.685367 1.18709i −0.973321 0.229447i \(-0.926308\pi\)
0.287954 0.957644i \(-0.407025\pi\)
\(480\) 0 0
\(481\) 8.00000 13.8564i 0.364769 0.631798i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.00000 + 8.66025i −0.227038 + 0.393242i
\(486\) 0 0
\(487\) −4.00000 6.92820i −0.181257 0.313947i 0.761052 0.648691i \(-0.224683\pi\)
−0.942309 + 0.334744i \(0.891350\pi\)
\(488\) 0 0
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) 6.00000 0.270776 0.135388 0.990793i \(-0.456772\pi\)
0.135388 + 0.990793i \(0.456772\pi\)
\(492\) 0 0
\(493\) −9.00000 15.5885i −0.405340 0.702069i
\(494\) 0 0
\(495\) 6.00000 10.3923i 0.269680 0.467099i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.00000 + 1.73205i −0.0447661 + 0.0775372i −0.887540 0.460730i \(-0.847588\pi\)
0.842774 + 0.538267i \(0.180921\pi\)
\(500\) 0 0
\(501\) 10.5000 + 18.1865i 0.469105 + 0.812514i
\(502\) 0 0
\(503\) 9.00000 0.401290 0.200645 0.979664i \(-0.435696\pi\)
0.200645 + 0.979664i \(0.435696\pi\)
\(504\) 0 0
\(505\) 3.00000 0.133498
\(506\) 0 0
\(507\) −4.50000 7.79423i −0.199852 0.346154i
\(508\) 0 0
\(509\) 19.5000 33.7750i 0.864322 1.49705i −0.00339621 0.999994i \(-0.501081\pi\)
0.867719 0.497056i \(-0.165586\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 20.0000 34.6410i 0.883022 1.52944i
\(514\) 0 0
\(515\) −3.50000 6.06218i −0.154228 0.267131i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.0000 + 25.9808i 0.657162 + 1.13824i 0.981347 + 0.192244i \(0.0615766\pi\)
−0.324185 + 0.945994i \(0.605090\pi\)
\(522\) 0 0
\(523\) 22.0000 38.1051i 0.961993 1.66622i 0.244507 0.969648i \(-0.421374\pi\)
0.717486 0.696573i \(-0.245293\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.00000 10.3923i 0.261364 0.452696i
\(528\) 0 0
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.00000 −0.259889
\(534\) 0 0
\(535\) 1.50000 + 2.59808i 0.0648507 + 0.112325i
\(536\) 0 0
\(537\) −3.00000 + 5.19615i −0.129460 + 0.224231i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −8.50000 + 14.7224i −0.365444 + 0.632967i −0.988847 0.148933i \(-0.952416\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 0 0
\(543\) −8.50000 14.7224i −0.364770 0.631800i
\(544\) 0 0
\(545\) 17.0000 0.728200
\(546\) 0 0
\(547\) −19.0000 −0.812381 −0.406191 0.913788i \(-0.633143\pi\)
−0.406191 + 0.913788i \(0.633143\pi\)
\(548\) 0 0
\(549\) 1.00000 + 1.73205i 0.0426790 + 0.0739221i
\(550\) 0 0
\(551\) 12.0000 20.7846i 0.511217 0.885454i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 4.00000 6.92820i 0.169791 0.294086i
\(556\) 0 0
\(557\) −15.0000 25.9808i −0.635570 1.10084i −0.986394 0.164399i \(-0.947432\pi\)
0.350824 0.936442i \(-0.385902\pi\)
\(558\) 0 0
\(559\) −10.0000 −0.422955
\(560\) 0 0
\(561\) −36.0000 −1.51992
\(562\) 0 0
\(563\) −4.50000 7.79423i −0.189652 0.328488i 0.755482 0.655169i \(-0.227403\pi\)
−0.945134 + 0.326682i \(0.894069\pi\)
\(564\) 0 0
\(565\) 6.00000 10.3923i 0.252422 0.437208i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.00000 15.5885i 0.377300 0.653502i −0.613369 0.789797i \(-0.710186\pi\)
0.990668 + 0.136295i \(0.0435194\pi\)
\(570\) 0 0
\(571\) 8.00000 + 13.8564i 0.334790 + 0.579873i 0.983444 0.181210i \(-0.0580014\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) 0 0
\(573\) 18.0000 0.751961
\(574\) 0 0
\(575\) 3.00000 0.125109
\(576\) 0 0
\(577\) −5.00000 8.66025i −0.208153 0.360531i 0.742980 0.669314i \(-0.233412\pi\)
−0.951133 + 0.308783i \(0.900078\pi\)
\(578\) 0 0
\(579\) 1.00000 1.73205i 0.0415586 0.0719816i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −36.0000 + 62.3538i −1.49097 + 2.58243i
\(584\) 0 0
\(585\) −2.00000 3.46410i −0.0826898 0.143223i
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) −9.00000 15.5885i −0.370211 0.641223i
\(592\) 0 0
\(593\) −6.00000 + 10.3923i −0.246390 + 0.426761i −0.962522 0.271205i \(-0.912578\pi\)
0.716131 + 0.697966i \(0.245911\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10.0000 + 17.3205i −0.409273 + 0.708881i
\(598\) 0 0
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 0 0
\(603\) 14.0000 0.570124
\(604\) 0 0
\(605\) −12.5000 21.6506i −0.508197 0.880223i
\(606\) 0 0
\(607\) −21.5000 + 37.2391i −0.872658 + 1.51149i −0.0134214 + 0.999910i \(0.504272\pi\)
−0.859237 + 0.511578i \(0.829061\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.00000 1.73205i −0.0403896 0.0699569i 0.845124 0.534570i \(-0.179527\pi\)
−0.885514 + 0.464614i \(0.846193\pi\)
\(614\) 0 0
\(615\) −3.00000 −0.120972
\(616\) 0 0
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) 0 0
\(619\) 7.00000 + 12.1244i 0.281354 + 0.487319i 0.971718 0.236143i \(-0.0758832\pi\)
−0.690365 + 0.723462i \(0.742550\pi\)
\(620\) 0 0
\(621\) −7.50000 + 12.9904i −0.300965 + 0.521286i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) −24.0000 41.5692i −0.958468 1.66011i
\(628\) 0 0
\(629\) 48.0000 1.91389
\(630\) 0 0
\(631\) 38.0000 1.51276 0.756378 0.654135i \(-0.226967\pi\)
0.756378 + 0.654135i \(0.226967\pi\)
\(632\) 0 0
\(633\) −2.00000 3.46410i −0.0794929 0.137686i
\(634\) 0 0
\(635\) −4.00000 + 6.92820i −0.158735 + 0.274937i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.5000 + 33.7750i 0.770204 + 1.33403i 0.937451 + 0.348117i \(0.113179\pi\)
−0.167247 + 0.985915i \(0.553488\pi\)
\(642\) 0 0
\(643\) −20.0000 −0.788723 −0.394362 0.918955i \(-0.629034\pi\)
−0.394362 + 0.918955i \(0.629034\pi\)
\(644\) 0 0
\(645\) −5.00000 −0.196875
\(646\) 0 0
\(647\) 10.5000 + 18.1865i 0.412798 + 0.714986i 0.995194 0.0979182i \(-0.0312184\pi\)
−0.582397 + 0.812905i \(0.697885\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 21.0000 36.3731i 0.821794 1.42339i −0.0825519 0.996587i \(-0.526307\pi\)
0.904345 0.426801i \(-0.140360\pi\)
\(654\) 0 0
\(655\) 6.00000 + 10.3923i 0.234439 + 0.406061i
\(656\) 0 0
\(657\) −20.0000 −0.780274
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −12.5000 21.6506i −0.486194 0.842112i 0.513680 0.857982i \(-0.328282\pi\)
−0.999874 + 0.0158695i \(0.994948\pi\)
\(662\) 0 0
\(663\) −6.00000 + 10.3923i −0.233021 + 0.403604i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.50000 + 7.79423i −0.174241 + 0.301794i
\(668\) 0 0
\(669\) −4.00000 6.92820i −0.154649 0.267860i
\(670\) 0 0
\(671\) 6.00000 0.231627
\(672\) 0 0
\(673\) 32.0000 1.23351 0.616755 0.787155i \(-0.288447\pi\)
0.616755 + 0.787155i \(0.288447\pi\)
\(674\) 0 0
\(675\) −2.50000 4.33013i −0.0962250 0.166667i
\(676\) 0 0
\(677\) −9.00000 + 15.5885i −0.345898 + 0.599113i −0.985517 0.169580i \(-0.945759\pi\)
0.639618 + 0.768693i \(0.279092\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 6.00000 10.3923i 0.229920 0.398234i
\(682\) 0 0
\(683\) 7.50000 + 12.9904i 0.286980 + 0.497063i 0.973087 0.230437i \(-0.0740155\pi\)
−0.686108 + 0.727500i \(0.740682\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) 2.00000 0.0763048
\(688\) 0 0
\(689\) 12.0000 + 20.7846i 0.457164 + 0.791831i
\(690\) 0 0
\(691\) 7.00000 12.1244i 0.266293 0.461232i −0.701609 0.712562i \(-0.747535\pi\)
0.967901 + 0.251330i \(0.0808679\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.00000 1.73205i 0.0379322 0.0657004i
\(696\) 0 0
\(697\) −9.00000 15.5885i −0.340899 0.590455i
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 27.0000 1.01978 0.509888 0.860241i \(-0.329687\pi\)
0.509888 + 0.860241i \(0.329687\pi\)
\(702\) 0 0
\(703\) 32.0000 + 55.4256i 1.20690 + 2.09042i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.500000 0.866025i 0.0187779 0.0325243i −0.856484 0.516174i \(-0.827356\pi\)
0.875262 + 0.483650i \(0.160689\pi\)
\(710\) 0 0
\(711\) −4.00000 6.92820i −0.150012 0.259828i
\(712\) 0 0
\(713\) −6.00000 −0.224702
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 0 0
\(717\) 3.00000 + 5.19615i 0.112037 + 0.194054i
\(718\) 0 0
\(719\) −15.0000 + 25.9808i −0.559406 + 0.968919i 0.438141 + 0.898906i \(0.355637\pi\)
−0.997546 + 0.0700124i \(0.977696\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −13.0000 + 22.5167i −0.483475 + 0.837404i
\(724\) 0 0
\(725\) −1.50000 2.59808i −0.0557086 0.0964901i
\(726\) 0 0
\(727\) −23.0000 −0.853023 −0.426511 0.904482i \(-0.640258\pi\)
−0.426511 + 0.904482i \(0.640258\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −15.0000 25.9808i −0.554795 0.960933i
\(732\) 0 0
\(733\) 1.00000 1.73205i 0.0369358 0.0639748i −0.846967 0.531646i \(-0.821574\pi\)
0.883902 + 0.467671i \(0.154907\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.0000 36.3731i 0.773545 1.33982i
\(738\) 0 0
\(739\) 23.0000 + 39.8372i 0.846069 + 1.46543i 0.884690 + 0.466180i \(0.154370\pi\)
−0.0386212 + 0.999254i \(0.512297\pi\)
\(740\) 0 0
\(741\) −16.0000 −0.587775
\(742\) 0 0
\(743\) −39.0000 −1.43077 −0.715386 0.698730i \(-0.753749\pi\)
−0.715386 + 0.698730i \(0.753749\pi\)
\(744\) 0 0
\(745\) 7.50000 + 12.9904i 0.274779 + 0.475931i
\(746\) 0 0
\(747\) −3.00000 + 5.19615i −0.109764 + 0.190117i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −10.0000 + 17.3205i −0.364905 + 0.632034i −0.988761 0.149505i \(-0.952232\pi\)
0.623856 + 0.781540i \(0.285565\pi\)
\(752\) 0 0
\(753\) 9.00000 + 15.5885i 0.327978 + 0.568075i
\(754\) 0 0
\(755\) −10.0000 −0.363937
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 9.00000 + 15.5885i 0.326679 + 0.565825i
\(760\) 0 0
\(761\) 15.0000 25.9808i 0.543750 0.941802i −0.454935 0.890525i \(-0.650337\pi\)
0.998684 0.0512772i \(-0.0163292\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 6.00000 10.3923i 0.216930 0.375735i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) 0 0
\(771\) −24.0000 −0.864339
\(772\) 0 0
\(773\) −21.0000 36.3731i −0.755318 1.30825i −0.945216 0.326445i \(-0.894149\pi\)
0.189899 0.981804i \(-0.439184\pi\)
\(774\) 0 0
\(775\) 1.00000 1.73205i 0.0359211 0.0622171i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.0000 20.7846i 0.429945 0.744686i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 15.0000 0.536056
\(784\) 0 0
\(785\) −14.0000 −0.499681
\(786\) 0 0
\(787\) −15.5000 26.8468i −0.552515 0.956985i −0.998092 0.0617409i \(-0.980335\pi\)
0.445577 0.895244i \(-0.352999\pi\)
\(788\) 0 0
\(789\) −1.50000 + 2.59808i −0.0534014 + 0.0924940i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.00000 1.73205i 0.0355110 0.0615069i
\(794\) 0 0