Properties

Label 980.2.i.b.361.1
Level $980$
Weight $2$
Character 980.361
Analytic conductor $7.825$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(361,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 980.361
Dual form 980.2.i.b.961.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 2.59808i) q^{3} +(0.500000 + 0.866025i) q^{5} +(-3.00000 - 5.19615i) q^{9} +(2.50000 - 4.33013i) q^{11} -3.00000 q^{13} -3.00000 q^{15} +(0.500000 - 0.866025i) q^{17} +(-3.00000 - 5.19615i) q^{19} +(-3.00000 - 5.19615i) q^{23} +(-0.500000 + 0.866025i) q^{25} +9.00000 q^{27} -9.00000 q^{29} +(2.00000 - 3.46410i) q^{31} +(7.50000 + 12.9904i) q^{33} +(-1.00000 - 1.73205i) q^{37} +(4.50000 - 7.79423i) q^{39} -4.00000 q^{41} +10.0000 q^{43} +(3.00000 - 5.19615i) q^{45} +(0.500000 + 0.866025i) q^{47} +(1.50000 + 2.59808i) q^{51} +(-2.00000 + 3.46410i) q^{53} +5.00000 q^{55} +18.0000 q^{57} +(4.00000 - 6.92820i) q^{59} +(4.00000 + 6.92820i) q^{61} +(-1.50000 - 2.59808i) q^{65} +(-6.00000 + 10.3923i) q^{67} +18.0000 q^{69} +8.00000 q^{71} +(-1.00000 + 1.73205i) q^{73} +(-1.50000 - 2.59808i) q^{75} +(-6.50000 - 11.2583i) q^{79} +(-4.50000 + 7.79423i) q^{81} -4.00000 q^{83} +1.00000 q^{85} +(13.5000 - 23.3827i) q^{87} +(-2.00000 - 3.46410i) q^{89} +(6.00000 + 10.3923i) q^{93} +(3.00000 - 5.19615i) q^{95} -13.0000 q^{97} -30.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{3} + q^{5} - 6 q^{9} + 5 q^{11} - 6 q^{13} - 6 q^{15} + q^{17} - 6 q^{19} - 6 q^{23} - q^{25} + 18 q^{27} - 18 q^{29} + 4 q^{31} + 15 q^{33} - 2 q^{37} + 9 q^{39} - 8 q^{41} + 20 q^{43} + 6 q^{45}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 + 2.59808i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −3.00000 5.19615i −1.00000 1.73205i
\(10\) 0 0
\(11\) 2.50000 4.33013i 0.753778 1.30558i −0.192201 0.981356i \(-0.561563\pi\)
0.945979 0.324227i \(-0.105104\pi\)
\(12\) 0 0
\(13\) −3.00000 −0.832050 −0.416025 0.909353i \(-0.636577\pi\)
−0.416025 + 0.909353i \(0.636577\pi\)
\(14\) 0 0
\(15\) −3.00000 −0.774597
\(16\) 0 0
\(17\) 0.500000 0.866025i 0.121268 0.210042i −0.799000 0.601331i \(-0.794637\pi\)
0.920268 + 0.391289i \(0.127971\pi\)
\(18\) 0 0
\(19\) −3.00000 5.19615i −0.688247 1.19208i −0.972404 0.233301i \(-0.925047\pi\)
0.284157 0.958778i \(-0.408286\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 9.00000 1.73205
\(28\) 0 0
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) 2.00000 3.46410i 0.359211 0.622171i −0.628619 0.777714i \(-0.716379\pi\)
0.987829 + 0.155543i \(0.0497126\pi\)
\(32\) 0 0
\(33\) 7.50000 + 12.9904i 1.30558 + 2.26134i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 1.73205i −0.164399 0.284747i 0.772043 0.635571i \(-0.219235\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(38\) 0 0
\(39\) 4.50000 7.79423i 0.720577 1.24808i
\(40\) 0 0
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) 3.00000 5.19615i 0.447214 0.774597i
\(46\) 0 0
\(47\) 0.500000 + 0.866025i 0.0729325 + 0.126323i 0.900185 0.435507i \(-0.143431\pi\)
−0.827253 + 0.561830i \(0.810098\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 1.50000 + 2.59808i 0.210042 + 0.363803i
\(52\) 0 0
\(53\) −2.00000 + 3.46410i −0.274721 + 0.475831i −0.970065 0.242846i \(-0.921919\pi\)
0.695344 + 0.718677i \(0.255252\pi\)
\(54\) 0 0
\(55\) 5.00000 0.674200
\(56\) 0 0
\(57\) 18.0000 2.38416
\(58\) 0 0
\(59\) 4.00000 6.92820i 0.520756 0.901975i −0.478953 0.877841i \(-0.658984\pi\)
0.999709 0.0241347i \(-0.00768307\pi\)
\(60\) 0 0
\(61\) 4.00000 + 6.92820i 0.512148 + 0.887066i 0.999901 + 0.0140840i \(0.00448323\pi\)
−0.487753 + 0.872982i \(0.662183\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.50000 2.59808i −0.186052 0.322252i
\(66\) 0 0
\(67\) −6.00000 + 10.3923i −0.733017 + 1.26962i 0.222571 + 0.974916i \(0.428555\pi\)
−0.955588 + 0.294706i \(0.904778\pi\)
\(68\) 0 0
\(69\) 18.0000 2.16695
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i \(-0.870674\pi\)
0.801553 + 0.597924i \(0.204008\pi\)
\(74\) 0 0
\(75\) −1.50000 2.59808i −0.173205 0.300000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.50000 11.2583i −0.731307 1.26666i −0.956325 0.292306i \(-0.905577\pi\)
0.225018 0.974355i \(-0.427756\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 0 0
\(87\) 13.5000 23.3827i 1.44735 2.50689i
\(88\) 0 0
\(89\) −2.00000 3.46410i −0.212000 0.367194i 0.740341 0.672232i \(-0.234664\pi\)
−0.952340 + 0.305038i \(0.901331\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.00000 + 10.3923i 0.622171 + 1.07763i
\(94\) 0 0
\(95\) 3.00000 5.19615i 0.307794 0.533114i
\(96\) 0 0
\(97\) −13.0000 −1.31995 −0.659975 0.751288i \(-0.729433\pi\)
−0.659975 + 0.751288i \(0.729433\pi\)
\(98\) 0 0
\(99\) −30.0000 −3.01511
\(100\) 0 0
\(101\) −3.00000 + 5.19615i −0.298511 + 0.517036i −0.975796 0.218685i \(-0.929823\pi\)
0.677284 + 0.735721i \(0.263157\pi\)
\(102\) 0 0
\(103\) −9.50000 16.4545i −0.936063 1.62131i −0.772728 0.634738i \(-0.781108\pi\)
−0.163335 0.986571i \(-0.552225\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000 + 5.19615i 0.290021 + 0.502331i 0.973814 0.227345i \(-0.0730044\pi\)
−0.683793 + 0.729676i \(0.739671\pi\)
\(108\) 0 0
\(109\) 1.50000 2.59808i 0.143674 0.248851i −0.785203 0.619238i \(-0.787442\pi\)
0.928877 + 0.370387i \(0.120775\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) 3.00000 5.19615i 0.279751 0.484544i
\(116\) 0 0
\(117\) 9.00000 + 15.5885i 0.832050 + 1.44115i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 12.1244i −0.636364 1.10221i
\(122\) 0 0
\(123\) 6.00000 10.3923i 0.541002 0.937043i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) −15.0000 + 25.9808i −1.32068 + 2.28748i
\(130\) 0 0
\(131\) 5.00000 + 8.66025i 0.436852 + 0.756650i 0.997445 0.0714417i \(-0.0227600\pi\)
−0.560593 + 0.828092i \(0.689427\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.50000 + 7.79423i 0.387298 + 0.670820i
\(136\) 0 0
\(137\) 6.00000 10.3923i 0.512615 0.887875i −0.487278 0.873247i \(-0.662010\pi\)
0.999893 0.0146279i \(-0.00465636\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) 0 0
\(143\) −7.50000 + 12.9904i −0.627182 + 1.08631i
\(144\) 0 0
\(145\) −4.50000 7.79423i −0.373705 0.647275i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.00000 + 5.19615i 0.245770 + 0.425685i 0.962348 0.271821i \(-0.0876260\pi\)
−0.716578 + 0.697507i \(0.754293\pi\)
\(150\) 0 0
\(151\) −2.50000 + 4.33013i −0.203447 + 0.352381i −0.949637 0.313353i \(-0.898548\pi\)
0.746190 + 0.665733i \(0.231881\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 1.00000 1.73205i 0.0798087 0.138233i −0.823359 0.567521i \(-0.807902\pi\)
0.903167 + 0.429289i \(0.141236\pi\)
\(158\) 0 0
\(159\) −6.00000 10.3923i −0.475831 0.824163i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 5.00000 + 8.66025i 0.391630 + 0.678323i 0.992665 0.120900i \(-0.0385779\pi\)
−0.601035 + 0.799223i \(0.705245\pi\)
\(164\) 0 0
\(165\) −7.50000 + 12.9904i −0.583874 + 1.01130i
\(166\) 0 0
\(167\) 3.00000 0.232147 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) 0 0
\(171\) −18.0000 + 31.1769i −1.37649 + 2.38416i
\(172\) 0 0
\(173\) 0.500000 + 0.866025i 0.0380143 + 0.0658427i 0.884407 0.466717i \(-0.154563\pi\)
−0.846392 + 0.532560i \(0.821230\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 12.0000 + 20.7846i 0.901975 + 1.56227i
\(178\) 0 0
\(179\) 6.00000 10.3923i 0.448461 0.776757i −0.549825 0.835280i \(-0.685306\pi\)
0.998286 + 0.0585225i \(0.0186389\pi\)
\(180\) 0 0
\(181\) −20.0000 −1.48659 −0.743294 0.668965i \(-0.766738\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) −24.0000 −1.77413
\(184\) 0 0
\(185\) 1.00000 1.73205i 0.0735215 0.127343i
\(186\) 0 0
\(187\) −2.50000 4.33013i −0.182818 0.316650i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.50000 2.59808i −0.108536 0.187990i 0.806641 0.591041i \(-0.201283\pi\)
−0.915177 + 0.403051i \(0.867950\pi\)
\(192\) 0 0
\(193\) 2.00000 3.46410i 0.143963 0.249351i −0.785022 0.619467i \(-0.787349\pi\)
0.928986 + 0.370116i \(0.120682\pi\)
\(194\) 0 0
\(195\) 9.00000 0.644503
\(196\) 0 0
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) 0 0
\(199\) −4.00000 + 6.92820i −0.283552 + 0.491127i −0.972257 0.233915i \(-0.924846\pi\)
0.688705 + 0.725042i \(0.258180\pi\)
\(200\) 0 0
\(201\) −18.0000 31.1769i −1.26962 2.19905i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.00000 3.46410i −0.139686 0.241943i
\(206\) 0 0
\(207\) −18.0000 + 31.1769i −1.25109 + 2.16695i
\(208\) 0 0
\(209\) −30.0000 −2.07514
\(210\) 0 0
\(211\) −11.0000 −0.757271 −0.378636 0.925546i \(-0.623607\pi\)
−0.378636 + 0.925546i \(0.623607\pi\)
\(212\) 0 0
\(213\) −12.0000 + 20.7846i −0.822226 + 1.42414i
\(214\) 0 0
\(215\) 5.00000 + 8.66025i 0.340997 + 0.590624i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −3.00000 5.19615i −0.202721 0.351123i
\(220\) 0 0
\(221\) −1.50000 + 2.59808i −0.100901 + 0.174766i
\(222\) 0 0
\(223\) −5.00000 −0.334825 −0.167412 0.985887i \(-0.553541\pi\)
−0.167412 + 0.985887i \(0.553541\pi\)
\(224\) 0 0
\(225\) 6.00000 0.400000
\(226\) 0 0
\(227\) 0.500000 0.866025i 0.0331862 0.0574801i −0.848955 0.528465i \(-0.822768\pi\)
0.882141 + 0.470985i \(0.156101\pi\)
\(228\) 0 0
\(229\) −2.00000 3.46410i −0.132164 0.228914i 0.792347 0.610071i \(-0.208859\pi\)
−0.924510 + 0.381157i \(0.875526\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.0000 20.7846i −0.786146 1.36165i −0.928312 0.371802i \(-0.878740\pi\)
0.142166 0.989843i \(-0.454593\pi\)
\(234\) 0 0
\(235\) −0.500000 + 0.866025i −0.0326164 + 0.0564933i
\(236\) 0 0
\(237\) 39.0000 2.53332
\(238\) 0 0
\(239\) 1.00000 0.0646846 0.0323423 0.999477i \(-0.489703\pi\)
0.0323423 + 0.999477i \(0.489703\pi\)
\(240\) 0 0
\(241\) 13.0000 22.5167i 0.837404 1.45043i −0.0546547 0.998505i \(-0.517406\pi\)
0.892058 0.451920i \(-0.149261\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 9.00000 + 15.5885i 0.572656 + 0.991870i
\(248\) 0 0
\(249\) 6.00000 10.3923i 0.380235 0.658586i
\(250\) 0 0
\(251\) 30.0000 1.89358 0.946792 0.321847i \(-0.104304\pi\)
0.946792 + 0.321847i \(0.104304\pi\)
\(252\) 0 0
\(253\) −30.0000 −1.88608
\(254\) 0 0
\(255\) −1.50000 + 2.59808i −0.0939336 + 0.162698i
\(256\) 0 0
\(257\) −7.00000 12.1244i −0.436648 0.756297i 0.560781 0.827964i \(-0.310501\pi\)
−0.997429 + 0.0716680i \(0.977168\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 27.0000 + 46.7654i 1.67126 + 2.89470i
\(262\) 0 0
\(263\) −1.00000 + 1.73205i −0.0616626 + 0.106803i −0.895209 0.445647i \(-0.852974\pi\)
0.833546 + 0.552450i \(0.186307\pi\)
\(264\) 0 0
\(265\) −4.00000 −0.245718
\(266\) 0 0
\(267\) 12.0000 0.734388
\(268\) 0 0
\(269\) −9.00000 + 15.5885i −0.548740 + 0.950445i 0.449622 + 0.893219i \(0.351559\pi\)
−0.998361 + 0.0572259i \(0.981774\pi\)
\(270\) 0 0
\(271\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.50000 + 4.33013i 0.150756 + 0.261116i
\(276\) 0 0
\(277\) −3.00000 + 5.19615i −0.180253 + 0.312207i −0.941966 0.335707i \(-0.891025\pi\)
0.761714 + 0.647913i \(0.224358\pi\)
\(278\) 0 0
\(279\) −24.0000 −1.43684
\(280\) 0 0
\(281\) 11.0000 0.656205 0.328102 0.944642i \(-0.393591\pi\)
0.328102 + 0.944642i \(0.393591\pi\)
\(282\) 0 0
\(283\) 15.5000 26.8468i 0.921379 1.59588i 0.124096 0.992270i \(-0.460397\pi\)
0.797283 0.603606i \(-0.206270\pi\)
\(284\) 0 0
\(285\) 9.00000 + 15.5885i 0.533114 + 0.923381i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.00000 + 13.8564i 0.470588 + 0.815083i
\(290\) 0 0
\(291\) 19.5000 33.7750i 1.14311 1.97993i
\(292\) 0 0
\(293\) −5.00000 −0.292103 −0.146052 0.989277i \(-0.546657\pi\)
−0.146052 + 0.989277i \(0.546657\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) 0 0
\(297\) 22.5000 38.9711i 1.30558 2.26134i
\(298\) 0 0
\(299\) 9.00000 + 15.5885i 0.520483 + 0.901504i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −9.00000 15.5885i −0.517036 0.895533i
\(304\) 0 0
\(305\) −4.00000 + 6.92820i −0.229039 + 0.396708i
\(306\) 0 0
\(307\) −23.0000 −1.31268 −0.656340 0.754466i \(-0.727896\pi\)
−0.656340 + 0.754466i \(0.727896\pi\)
\(308\) 0 0
\(309\) 57.0000 3.24262
\(310\) 0 0
\(311\) 9.00000 15.5885i 0.510343 0.883940i −0.489585 0.871956i \(-0.662852\pi\)
0.999928 0.0119847i \(-0.00381495\pi\)
\(312\) 0 0
\(313\) 3.50000 + 6.06218i 0.197832 + 0.342655i 0.947825 0.318791i \(-0.103277\pi\)
−0.749993 + 0.661445i \(0.769943\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.0000 + 22.5167i 0.730153 + 1.26466i 0.956818 + 0.290689i \(0.0938844\pi\)
−0.226665 + 0.973973i \(0.572782\pi\)
\(318\) 0 0
\(319\) −22.5000 + 38.9711i −1.25976 + 2.18197i
\(320\) 0 0
\(321\) −18.0000 −1.00466
\(322\) 0 0
\(323\) −6.00000 −0.333849
\(324\) 0 0
\(325\) 1.50000 2.59808i 0.0832050 0.144115i
\(326\) 0 0
\(327\) 4.50000 + 7.79423i 0.248851 + 0.431022i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −14.0000 24.2487i −0.769510 1.33283i −0.937829 0.347097i \(-0.887167\pi\)
0.168320 0.985732i \(-0.446166\pi\)
\(332\) 0 0
\(333\) −6.00000 + 10.3923i −0.328798 + 0.569495i
\(334\) 0 0
\(335\) −12.0000 −0.655630
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 0 0
\(339\) −21.0000 + 36.3731i −1.14056 + 1.97551i
\(340\) 0 0
\(341\) −10.0000 17.3205i −0.541530 0.937958i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 9.00000 + 15.5885i 0.484544 + 0.839254i
\(346\) 0 0
\(347\) −5.00000 + 8.66025i −0.268414 + 0.464907i −0.968452 0.249198i \(-0.919833\pi\)
0.700038 + 0.714105i \(0.253166\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) −27.0000 −1.44115
\(352\) 0 0
\(353\) −1.50000 + 2.59808i −0.0798369 + 0.138282i −0.903179 0.429263i \(-0.858773\pi\)
0.823343 + 0.567545i \(0.192107\pi\)
\(354\) 0 0
\(355\) 4.00000 + 6.92820i 0.212298 + 0.367711i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.00000 + 13.8564i 0.422224 + 0.731313i 0.996157 0.0875892i \(-0.0279163\pi\)
−0.573933 + 0.818902i \(0.694583\pi\)
\(360\) 0 0
\(361\) −8.50000 + 14.7224i −0.447368 + 0.774865i
\(362\) 0 0
\(363\) 42.0000 2.20443
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) 8.50000 14.7224i 0.443696 0.768505i −0.554264 0.832341i \(-0.687000\pi\)
0.997960 + 0.0638362i \(0.0203335\pi\)
\(368\) 0 0
\(369\) 12.0000 + 20.7846i 0.624695 + 1.08200i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.00000 + 3.46410i 0.103556 + 0.179364i 0.913147 0.407630i \(-0.133645\pi\)
−0.809591 + 0.586994i \(0.800311\pi\)
\(374\) 0 0
\(375\) 1.50000 2.59808i 0.0774597 0.134164i
\(376\) 0 0
\(377\) 27.0000 1.39057
\(378\) 0 0
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) 0 0
\(381\) 12.0000 20.7846i 0.614779 1.06483i
\(382\) 0 0
\(383\) −18.0000 31.1769i −0.919757 1.59307i −0.799783 0.600289i \(-0.795052\pi\)
−0.119974 0.992777i \(-0.538281\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −30.0000 51.9615i −1.52499 2.64135i
\(388\) 0 0
\(389\) 15.5000 26.8468i 0.785881 1.36119i −0.142590 0.989782i \(-0.545543\pi\)
0.928471 0.371404i \(-0.121124\pi\)
\(390\) 0 0
\(391\) −6.00000 −0.303433
\(392\) 0 0
\(393\) −30.0000 −1.51330
\(394\) 0 0
\(395\) 6.50000 11.2583i 0.327050 0.566468i
\(396\) 0 0
\(397\) −3.50000 6.06218i −0.175660 0.304252i 0.764730 0.644351i \(-0.222873\pi\)
−0.940389 + 0.340099i \(0.889539\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.5000 21.6506i −0.624220 1.08118i −0.988691 0.149966i \(-0.952083\pi\)
0.364471 0.931215i \(-0.381250\pi\)
\(402\) 0 0
\(403\) −6.00000 + 10.3923i −0.298881 + 0.517678i
\(404\) 0 0
\(405\) −9.00000 −0.447214
\(406\) 0 0
\(407\) −10.0000 −0.495682
\(408\) 0 0
\(409\) −3.00000 + 5.19615i −0.148340 + 0.256933i −0.930614 0.366002i \(-0.880726\pi\)
0.782274 + 0.622935i \(0.214060\pi\)
\(410\) 0 0
\(411\) 18.0000 + 31.1769i 0.887875 + 1.53784i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.00000 3.46410i −0.0981761 0.170046i
\(416\) 0 0
\(417\) 21.0000 36.3731i 1.02837 1.78120i
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) 3.00000 5.19615i 0.145865 0.252646i
\(424\) 0 0
\(425\) 0.500000 + 0.866025i 0.0242536 + 0.0420084i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −22.5000 38.9711i −1.08631 1.88154i
\(430\) 0 0
\(431\) 4.50000 7.79423i 0.216757 0.375435i −0.737057 0.675830i \(-0.763785\pi\)
0.953815 + 0.300395i \(0.0971186\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 27.0000 1.29455
\(436\) 0 0
\(437\) −18.0000 + 31.1769i −0.861057 + 1.49139i
\(438\) 0 0
\(439\) 1.00000 + 1.73205i 0.0477274 + 0.0826663i 0.888902 0.458097i \(-0.151469\pi\)
−0.841175 + 0.540763i \(0.818135\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.00000 + 12.1244i 0.332580 + 0.576046i 0.983017 0.183515i \(-0.0587475\pi\)
−0.650437 + 0.759560i \(0.725414\pi\)
\(444\) 0 0
\(445\) 2.00000 3.46410i 0.0948091 0.164214i
\(446\) 0 0
\(447\) −18.0000 −0.851371
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) −10.0000 + 17.3205i −0.470882 + 0.815591i
\(452\) 0 0
\(453\) −7.50000 12.9904i −0.352381 0.610341i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −8.00000 13.8564i −0.374224 0.648175i 0.615986 0.787757i \(-0.288758\pi\)
−0.990211 + 0.139581i \(0.955424\pi\)
\(458\) 0 0
\(459\) 4.50000 7.79423i 0.210042 0.363803i
\(460\) 0 0
\(461\) 40.0000 1.86299 0.931493 0.363760i \(-0.118507\pi\)
0.931493 + 0.363760i \(0.118507\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) −6.00000 + 10.3923i −0.278243 + 0.481932i
\(466\) 0 0
\(467\) −2.50000 4.33013i −0.115686 0.200374i 0.802368 0.596830i \(-0.203573\pi\)
−0.918054 + 0.396456i \(0.870240\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.00000 + 5.19615i 0.138233 + 0.239426i
\(472\) 0 0
\(473\) 25.0000 43.3013i 1.14950 1.99099i
\(474\) 0 0
\(475\) 6.00000 0.275299
\(476\) 0 0
\(477\) 24.0000 1.09888
\(478\) 0 0
\(479\) −3.00000 + 5.19615i −0.137073 + 0.237418i −0.926388 0.376571i \(-0.877103\pi\)
0.789314 + 0.613990i \(0.210436\pi\)
\(480\) 0 0
\(481\) 3.00000 + 5.19615i 0.136788 + 0.236924i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.50000 11.2583i −0.295150 0.511214i
\(486\) 0 0
\(487\) −13.0000 + 22.5167i −0.589086 + 1.02033i 0.405266 + 0.914199i \(0.367179\pi\)
−0.994352 + 0.106129i \(0.966154\pi\)
\(488\) 0 0
\(489\) −30.0000 −1.35665
\(490\) 0 0
\(491\) −15.0000 −0.676941 −0.338470 0.940977i \(-0.609909\pi\)
−0.338470 + 0.940977i \(0.609909\pi\)
\(492\) 0 0
\(493\) −4.50000 + 7.79423i −0.202670 + 0.351034i
\(494\) 0 0
\(495\) −15.0000 25.9808i −0.674200 1.16775i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.50000 + 7.79423i 0.201448 + 0.348918i 0.948995 0.315291i \(-0.102102\pi\)
−0.747547 + 0.664208i \(0.768769\pi\)
\(500\) 0 0
\(501\) −4.50000 + 7.79423i −0.201045 + 0.348220i
\(502\) 0 0
\(503\) −3.00000 −0.133763 −0.0668817 0.997761i \(-0.521305\pi\)
−0.0668817 + 0.997761i \(0.521305\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) 6.00000 10.3923i 0.266469 0.461538i
\(508\) 0 0
\(509\) 7.00000 + 12.1244i 0.310270 + 0.537403i 0.978421 0.206623i \(-0.0662474\pi\)
−0.668151 + 0.744026i \(0.732914\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −27.0000 46.7654i −1.19208 2.06474i
\(514\) 0 0
\(515\) 9.50000 16.4545i 0.418620 0.725071i
\(516\) 0 0
\(517\) 5.00000 0.219900
\(518\) 0 0
\(519\) −3.00000 −0.131685
\(520\) 0 0
\(521\) −7.00000 + 12.1244i −0.306676 + 0.531178i −0.977633 0.210318i \(-0.932550\pi\)
0.670957 + 0.741496i \(0.265883\pi\)
\(522\) 0 0
\(523\) −2.00000 3.46410i −0.0874539 0.151475i 0.818980 0.573822i \(-0.194540\pi\)
−0.906434 + 0.422347i \(0.861206\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.00000 3.46410i −0.0871214 0.150899i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) −48.0000 −2.08302
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) −3.00000 + 5.19615i −0.129701 + 0.224649i
\(536\) 0 0
\(537\) 18.0000 + 31.1769i 0.776757 + 1.34538i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −19.5000 33.7750i −0.838370 1.45210i −0.891256 0.453500i \(-0.850175\pi\)
0.0528859 0.998601i \(-0.483158\pi\)
\(542\) 0 0
\(543\) 30.0000 51.9615i 1.28742 2.22988i
\(544\) 0 0
\(545\) 3.00000 0.128506
\(546\) 0 0
\(547\) −24.0000 −1.02617 −0.513083 0.858339i \(-0.671497\pi\)
−0.513083 + 0.858339i \(0.671497\pi\)
\(548\) 0 0
\(549\) 24.0000 41.5692i 1.02430 1.77413i
\(550\) 0 0
\(551\) 27.0000 + 46.7654i 1.15024 + 1.99227i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3.00000 + 5.19615i 0.127343 + 0.220564i
\(556\) 0 0
\(557\) −20.0000 + 34.6410i −0.847427 + 1.46779i 0.0360693 + 0.999349i \(0.488516\pi\)
−0.883497 + 0.468438i \(0.844817\pi\)
\(558\) 0 0
\(559\) −30.0000 −1.26886
\(560\) 0 0
\(561\) 15.0000 0.633300
\(562\) 0 0
\(563\) 14.0000 24.2487i 0.590030 1.02196i −0.404198 0.914671i \(-0.632449\pi\)
0.994228 0.107290i \(-0.0342173\pi\)
\(564\) 0 0
\(565\) 7.00000 + 12.1244i 0.294492 + 0.510075i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.0000 + 25.9808i 0.628833 + 1.08917i 0.987786 + 0.155815i \(0.0498003\pi\)
−0.358954 + 0.933355i \(0.616866\pi\)
\(570\) 0 0
\(571\) 6.00000 10.3923i 0.251092 0.434904i −0.712735 0.701434i \(-0.752544\pi\)
0.963827 + 0.266529i \(0.0858769\pi\)
\(572\) 0 0
\(573\) 9.00000 0.375980
\(574\) 0 0
\(575\) 6.00000 0.250217
\(576\) 0 0
\(577\) −6.50000 + 11.2583i −0.270599 + 0.468690i −0.969015 0.247001i \(-0.920555\pi\)
0.698417 + 0.715691i \(0.253888\pi\)
\(578\) 0 0
\(579\) 6.00000 + 10.3923i 0.249351 + 0.431889i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 10.0000 + 17.3205i 0.414158 + 0.717342i
\(584\) 0 0
\(585\) −9.00000 + 15.5885i −0.372104 + 0.644503i
\(586\) 0 0
\(587\) −16.0000 −0.660391 −0.330195 0.943913i \(-0.607115\pi\)
−0.330195 + 0.943913i \(0.607115\pi\)
\(588\) 0 0
\(589\) −24.0000 −0.988903
\(590\) 0 0
\(591\) −12.0000 + 20.7846i −0.493614 + 0.854965i
\(592\) 0 0
\(593\) 13.5000 + 23.3827i 0.554379 + 0.960212i 0.997952 + 0.0639736i \(0.0203773\pi\)
−0.443573 + 0.896238i \(0.646289\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −12.0000 20.7846i −0.491127 0.850657i
\(598\) 0 0
\(599\) −7.50000 + 12.9904i −0.306442 + 0.530773i −0.977581 0.210558i \(-0.932472\pi\)
0.671140 + 0.741331i \(0.265805\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 0 0
\(603\) 72.0000 2.93207
\(604\) 0 0
\(605\) 7.00000 12.1244i 0.284590 0.492925i
\(606\) 0 0
\(607\) −6.50000 11.2583i −0.263827 0.456962i 0.703429 0.710766i \(-0.251651\pi\)
−0.967256 + 0.253804i \(0.918318\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.50000 2.59808i −0.0606835 0.105107i
\(612\) 0 0
\(613\) −21.0000 + 36.3731i −0.848182 + 1.46909i 0.0346469 + 0.999400i \(0.488969\pi\)
−0.882829 + 0.469695i \(0.844364\pi\)
\(614\) 0 0
\(615\) 12.0000 0.483887
\(616\) 0 0
\(617\) −46.0000 −1.85189 −0.925945 0.377658i \(-0.876729\pi\)
−0.925945 + 0.377658i \(0.876729\pi\)
\(618\) 0 0
\(619\) 5.00000 8.66025i 0.200967 0.348085i −0.747873 0.663842i \(-0.768925\pi\)
0.948840 + 0.315757i \(0.102258\pi\)
\(620\) 0 0
\(621\) −27.0000 46.7654i −1.08347 1.87663i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 45.0000 77.9423i 1.79713 3.11272i
\(628\) 0 0
\(629\) −2.00000 −0.0797452
\(630\) 0 0
\(631\) 47.0000 1.87104 0.935520 0.353273i \(-0.114931\pi\)
0.935520 + 0.353273i \(0.114931\pi\)
\(632\) 0 0
\(633\) 16.5000 28.5788i 0.655816 1.13591i
\(634\) 0 0
\(635\) −4.00000 6.92820i −0.158735 0.274937i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −24.0000 41.5692i −0.949425 1.64445i
\(640\) 0 0
\(641\) −1.00000 + 1.73205i −0.0394976 + 0.0684119i −0.885098 0.465404i \(-0.845909\pi\)
0.845601 + 0.533816i \(0.179242\pi\)
\(642\) 0 0
\(643\) 19.0000 0.749287 0.374643 0.927169i \(-0.377765\pi\)
0.374643 + 0.927169i \(0.377765\pi\)
\(644\) 0 0
\(645\) −30.0000 −1.18125
\(646\) 0 0
\(647\) 4.00000 6.92820i 0.157256 0.272376i −0.776622 0.629967i \(-0.783068\pi\)
0.933878 + 0.357591i \(0.116402\pi\)
\(648\) 0 0
\(649\) −20.0000 34.6410i −0.785069 1.35978i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.00000 1.73205i −0.0391330 0.0677804i 0.845796 0.533507i \(-0.179126\pi\)
−0.884929 + 0.465727i \(0.845793\pi\)
\(654\) 0 0
\(655\) −5.00000 + 8.66025i −0.195366 + 0.338384i
\(656\) 0 0
\(657\) 12.0000 0.468165
\(658\) 0 0
\(659\) 31.0000 1.20759 0.603794 0.797140i \(-0.293655\pi\)
0.603794 + 0.797140i \(0.293655\pi\)
\(660\) 0 0
\(661\) 16.0000 27.7128i 0.622328 1.07790i −0.366723 0.930330i \(-0.619520\pi\)
0.989051 0.147573i \(-0.0471463\pi\)
\(662\) 0 0
\(663\) −4.50000 7.79423i −0.174766 0.302703i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 27.0000 + 46.7654i 1.04544 + 1.81076i
\(668\) 0 0
\(669\) 7.50000 12.9904i 0.289967 0.502237i
\(670\) 0 0
\(671\) 40.0000 1.54418
\(672\) 0 0
\(673\) 4.00000 0.154189 0.0770943 0.997024i \(-0.475436\pi\)
0.0770943 + 0.997024i \(0.475436\pi\)
\(674\) 0 0
\(675\) −4.50000 + 7.79423i −0.173205 + 0.300000i
\(676\) 0 0
\(677\) 13.5000 + 23.3827i 0.518847 + 0.898670i 0.999760 + 0.0219013i \(0.00697196\pi\)
−0.480913 + 0.876768i \(0.659695\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.50000 + 2.59808i 0.0574801 + 0.0995585i
\(682\) 0 0
\(683\) −4.00000 + 6.92820i −0.153056 + 0.265100i −0.932349 0.361559i \(-0.882245\pi\)
0.779294 + 0.626659i \(0.215578\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) 0 0
\(687\) 12.0000 0.457829
\(688\) 0 0
\(689\) 6.00000 10.3923i 0.228582 0.395915i
\(690\) 0 0
\(691\) −14.0000 24.2487i −0.532585 0.922464i −0.999276 0.0380440i \(-0.987887\pi\)
0.466691 0.884420i \(-0.345446\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.00000 12.1244i −0.265525 0.459903i
\(696\) 0 0
\(697\) −2.00000 + 3.46410i −0.0757554 + 0.131212i
\(698\) 0 0
\(699\) 72.0000 2.72329
\(700\) 0 0
\(701\) −5.00000 −0.188847 −0.0944237 0.995532i \(-0.530101\pi\)
−0.0944237 + 0.995532i \(0.530101\pi\)
\(702\) 0 0
\(703\) −6.00000 + 10.3923i −0.226294 + 0.391953i
\(704\) 0 0
\(705\) −1.50000 2.59808i −0.0564933 0.0978492i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −15.5000 26.8468i −0.582115 1.00825i −0.995228 0.0975728i \(-0.968892\pi\)
0.413114 0.910679i \(-0.364441\pi\)
\(710\) 0 0
\(711\) −39.0000 + 67.5500i −1.46261 + 2.53332i
\(712\) 0 0
\(713\) −24.0000 −0.898807
\(714\) 0 0
\(715\) −15.0000 −0.560968
\(716\) 0 0
\(717\) −1.50000 + 2.59808i −0.0560185 + 0.0970269i
\(718\) 0 0
\(719\) −3.00000 5.19615i −0.111881 0.193784i 0.804648 0.593753i \(-0.202354\pi\)
−0.916529 + 0.399969i \(0.869021\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 39.0000 + 67.5500i 1.45043 + 2.51221i
\(724\) 0 0
\(725\) 4.50000 7.79423i 0.167126 0.289470i
\(726\) 0 0
\(727\) 24.0000 0.890111 0.445055 0.895503i \(-0.353184\pi\)
0.445055 + 0.895503i \(0.353184\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 5.00000 8.66025i 0.184932 0.320311i
\(732\) 0 0
\(733\) 23.5000 + 40.7032i 0.867992 + 1.50341i 0.864045 + 0.503415i \(0.167923\pi\)
0.00394730 + 0.999992i \(0.498744\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 30.0000 + 51.9615i 1.10506 + 1.91403i
\(738\) 0 0
\(739\) 2.50000 4.33013i 0.0919640 0.159286i −0.816373 0.577524i \(-0.804019\pi\)
0.908337 + 0.418238i \(0.137352\pi\)
\(740\) 0 0
\(741\) −54.0000 −1.98374
\(742\) 0 0
\(743\) 36.0000 1.32071 0.660356 0.750953i \(-0.270405\pi\)
0.660356 + 0.750953i \(0.270405\pi\)
\(744\) 0 0
\(745\) −3.00000 + 5.19615i −0.109911 + 0.190372i
\(746\) 0 0
\(747\) 12.0000 + 20.7846i 0.439057 + 0.760469i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 9.50000 + 16.4545i 0.346660 + 0.600433i 0.985654 0.168779i \(-0.0539825\pi\)
−0.638994 + 0.769212i \(0.720649\pi\)
\(752\) 0 0
\(753\) −45.0000 + 77.9423i −1.63989 + 2.84037i
\(754\) 0 0
\(755\) −5.00000 −0.181969
\(756\) 0 0
\(757\) −32.0000 −1.16306 −0.581530 0.813525i \(-0.697546\pi\)
−0.581530 + 0.813525i \(0.697546\pi\)
\(758\) 0 0
\(759\) 45.0000 77.9423i 1.63340 2.82913i
\(760\) 0 0
\(761\) 9.00000 + 15.5885i 0.326250 + 0.565081i 0.981764 0.190101i \(-0.0608816\pi\)
−0.655515 + 0.755182i \(0.727548\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −3.00000 5.19615i −0.108465 0.187867i
\(766\) 0 0
\(767\) −12.0000 + 20.7846i −0.433295 + 0.750489i
\(768\) 0 0
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) 42.0000 1.51259
\(772\) 0 0
\(773\) −22.5000 + 38.9711i −0.809269 + 1.40169i 0.104102 + 0.994567i \(0.466803\pi\)
−0.913371 + 0.407128i \(0.866530\pi\)
\(774\) 0 0
\(775\) 2.00000 + 3.46410i 0.0718421 + 0.124434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.0000 + 20.7846i 0.429945 + 0.744686i
\(780\) 0 0
\(781\) 20.0000 34.6410i 0.715656 1.23955i
\(782\) 0 0
\(783\) −81.0000 −2.89470
\(784\) 0 0
\(785\) 2.00000 0.0713831
\(786\) 0 0
\(787\) −15.5000 + 26.8468i −0.552515 + 0.956985i 0.445577 + 0.895244i \(0.352999\pi\)
−0.998092 + 0.0617409i \(0.980335\pi\)
\(788\) 0 0
\(789\) −3.00000 5.19615i −0.106803 0.184988i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −12.0000 20.7846i −0.426132 0.738083i