Properties

Label 980.2.i.b
Level $980$
Weight $2$
Character orbit 980.i
Analytic conductor $7.825$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(361,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (3 \zeta_{6} - 3) q^{3} + \zeta_{6} q^{5} - 6 \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (3 \zeta_{6} - 3) q^{3} + \zeta_{6} q^{5} - 6 \zeta_{6} q^{9} + ( - 5 \zeta_{6} + 5) q^{11} - 3 q^{13} - 3 q^{15} + ( - \zeta_{6} + 1) q^{17} - 6 \zeta_{6} q^{19} - 6 \zeta_{6} q^{23} + (\zeta_{6} - 1) q^{25} + 9 q^{27} - 9 q^{29} + ( - 4 \zeta_{6} + 4) q^{31} + 15 \zeta_{6} q^{33} - 2 \zeta_{6} q^{37} + ( - 9 \zeta_{6} + 9) q^{39} - 4 q^{41} + 10 q^{43} + ( - 6 \zeta_{6} + 6) q^{45} + \zeta_{6} q^{47} + 3 \zeta_{6} q^{51} + (4 \zeta_{6} - 4) q^{53} + 5 q^{55} + 18 q^{57} + ( - 8 \zeta_{6} + 8) q^{59} + 8 \zeta_{6} q^{61} - 3 \zeta_{6} q^{65} + (12 \zeta_{6} - 12) q^{67} + 18 q^{69} + 8 q^{71} + (2 \zeta_{6} - 2) q^{73} - 3 \zeta_{6} q^{75} - 13 \zeta_{6} q^{79} + (9 \zeta_{6} - 9) q^{81} - 4 q^{83} + q^{85} + ( - 27 \zeta_{6} + 27) q^{87} - 4 \zeta_{6} q^{89} + 12 \zeta_{6} q^{93} + ( - 6 \zeta_{6} + 6) q^{95} - 13 q^{97} - 30 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{3} + q^{5} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{3} + q^{5} - 6 q^{9} + 5 q^{11} - 6 q^{13} - 6 q^{15} + q^{17} - 6 q^{19} - 6 q^{23} - q^{25} + 18 q^{27} - 18 q^{29} + 4 q^{31} + 15 q^{33} - 2 q^{37} + 9 q^{39} - 8 q^{41} + 20 q^{43} + 6 q^{45} + q^{47} + 3 q^{51} - 4 q^{53} + 10 q^{55} + 36 q^{57} + 8 q^{59} + 8 q^{61} - 3 q^{65} - 12 q^{67} + 36 q^{69} + 16 q^{71} - 2 q^{73} - 3 q^{75} - 13 q^{79} - 9 q^{81} - 8 q^{83} + 2 q^{85} + 27 q^{87} - 4 q^{89} + 12 q^{93} + 6 q^{95} - 26 q^{97} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −1.50000 + 2.59808i 0 0.500000 + 0.866025i 0 0 0 −3.00000 5.19615i 0
961.1 0 −1.50000 2.59808i 0 0.500000 0.866025i 0 0 0 −3.00000 + 5.19615i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.2.i.b 2
7.b odd 2 1 980.2.i.j 2
7.c even 3 1 140.2.a.b 1
7.c even 3 1 inner 980.2.i.b 2
7.d odd 6 1 980.2.a.b 1
7.d odd 6 1 980.2.i.j 2
21.g even 6 1 8820.2.a.n 1
21.h odd 6 1 1260.2.a.h 1
28.f even 6 1 3920.2.a.bl 1
28.g odd 6 1 560.2.a.a 1
35.i odd 6 1 4900.2.a.u 1
35.j even 6 1 700.2.a.b 1
35.k even 12 2 4900.2.e.a 2
35.l odd 12 2 700.2.e.a 2
56.k odd 6 1 2240.2.a.bb 1
56.p even 6 1 2240.2.a.c 1
84.n even 6 1 5040.2.a.bd 1
105.o odd 6 1 6300.2.a.bf 1
105.x even 12 2 6300.2.k.p 2
140.p odd 6 1 2800.2.a.be 1
140.w even 12 2 2800.2.g.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.a.b 1 7.c even 3 1
560.2.a.a 1 28.g odd 6 1
700.2.a.b 1 35.j even 6 1
700.2.e.a 2 35.l odd 12 2
980.2.a.b 1 7.d odd 6 1
980.2.i.b 2 1.a even 1 1 trivial
980.2.i.b 2 7.c even 3 1 inner
980.2.i.j 2 7.b odd 2 1
980.2.i.j 2 7.d odd 6 1
1260.2.a.h 1 21.h odd 6 1
2240.2.a.c 1 56.p even 6 1
2240.2.a.bb 1 56.k odd 6 1
2800.2.a.be 1 140.p odd 6 1
2800.2.g.c 2 140.w even 12 2
3920.2.a.bl 1 28.f even 6 1
4900.2.a.u 1 35.i odd 6 1
4900.2.e.a 2 35.k even 12 2
5040.2.a.bd 1 84.n even 6 1
6300.2.a.bf 1 105.o odd 6 1
6300.2.k.p 2 105.x even 12 2
8820.2.a.n 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(980, [\chi])\):

\( T_{3}^{2} + 3T_{3} + 9 \) Copy content Toggle raw display
\( T_{11}^{2} - 5T_{11} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$13$ \( (T + 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$19$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$23$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$29$ \( (T + 9)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$37$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$41$ \( (T + 4)^{2} \) Copy content Toggle raw display
$43$ \( (T - 10)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$53$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$59$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$61$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$67$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$71$ \( (T - 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} + 13T + 169 \) Copy content Toggle raw display
$83$ \( (T + 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$97$ \( (T + 13)^{2} \) Copy content Toggle raw display
show more
show less