Properties

Label 980.2.g.a.391.25
Level $980$
Weight $2$
Character 980.391
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(391,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.391");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 391.25
Character \(\chi\) \(=\) 980.391
Dual form 980.2.g.a.391.27

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.17639 - 0.784927i) q^{2} -2.99814 q^{3} +(0.767779 - 1.84676i) q^{4} +1.00000i q^{5} +(-3.52698 + 2.35332i) q^{6} +(-0.546365 - 2.77516i) q^{8} +5.98886 q^{9} +(0.784927 + 1.17639i) q^{10} +2.23657i q^{11} +(-2.30191 + 5.53685i) q^{12} -3.17109i q^{13} -2.99814i q^{15} +(-2.82103 - 2.83580i) q^{16} -3.44551i q^{17} +(7.04523 - 4.70082i) q^{18} +2.05235 q^{19} +(1.84676 + 0.767779i) q^{20} +(1.75554 + 2.63107i) q^{22} -2.66137i q^{23} +(1.63808 + 8.32031i) q^{24} -1.00000 q^{25} +(-2.48908 - 3.73043i) q^{26} -8.96105 q^{27} -7.38092 q^{29} +(-2.35332 - 3.52698i) q^{30} -4.89199 q^{31} +(-5.54453 - 1.12170i) q^{32} -6.70555i q^{33} +(-2.70447 - 4.05325i) q^{34} +(4.59812 - 11.0600i) q^{36} -11.1938 q^{37} +(2.41436 - 1.61095i) q^{38} +9.50739i q^{39} +(2.77516 - 0.546365i) q^{40} -1.46011i q^{41} -9.95752i q^{43} +(4.13040 + 1.71719i) q^{44} +5.98886i q^{45} +(-2.08898 - 3.13080i) q^{46} +6.12686 q^{47} +(8.45786 + 8.50215i) q^{48} +(-1.17639 + 0.784927i) q^{50} +10.3301i q^{51} +(-5.85624 - 2.43470i) q^{52} +4.65777 q^{53} +(-10.5417 + 7.03377i) q^{54} -2.23657 q^{55} -6.15325 q^{57} +(-8.68283 + 5.79348i) q^{58} -7.11876 q^{59} +(-5.53685 - 2.30191i) q^{60} +2.53665i q^{61} +(-5.75488 + 3.83985i) q^{62} +(-7.40297 + 3.03249i) q^{64} +3.17109 q^{65} +(-5.26337 - 7.88833i) q^{66} +0.0527695i q^{67} +(-6.36302 - 2.64539i) q^{68} +7.97917i q^{69} -0.212347i q^{71} +(-3.27210 - 16.6200i) q^{72} -14.8744i q^{73} +(-13.1682 + 8.78631i) q^{74} +2.99814 q^{75} +(1.57575 - 3.79020i) q^{76} +(7.46261 + 11.1844i) q^{78} +0.461203i q^{79} +(2.83580 - 2.82103i) q^{80} +8.89991 q^{81} +(-1.14608 - 1.71766i) q^{82} -10.9174 q^{83} +3.44551 q^{85} +(-7.81593 - 11.7139i) q^{86} +22.1291 q^{87} +(6.20682 - 1.22198i) q^{88} -7.02049i q^{89} +(4.70082 + 7.04523i) q^{90} +(-4.91490 - 2.04334i) q^{92} +14.6669 q^{93} +(7.20756 - 4.80914i) q^{94} +2.05235i q^{95} +(16.6233 + 3.36302i) q^{96} +0.185459i q^{97} +13.3945i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{2} + 4 q^{4} - 4 q^{8} + 32 q^{9} + 28 q^{16} - 8 q^{22} - 32 q^{25} - 40 q^{29} - 4 q^{32} + 60 q^{36} - 16 q^{37} + 36 q^{44} - 4 q^{46} + 4 q^{50} + 16 q^{53} + 48 q^{57} - 4 q^{58} - 28 q^{60}+ \cdots + 16 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17639 0.784927i 0.831832 0.555027i
\(3\) −2.99814 −1.73098 −0.865490 0.500927i \(-0.832992\pi\)
−0.865490 + 0.500927i \(0.832992\pi\)
\(4\) 0.767779 1.84676i 0.383889 0.923379i
\(5\) 1.00000i 0.447214i
\(6\) −3.52698 + 2.35332i −1.43988 + 0.960741i
\(7\) 0 0
\(8\) −0.546365 2.77516i −0.193169 0.981165i
\(9\) 5.98886 1.99629
\(10\) 0.784927 + 1.17639i 0.248216 + 0.372007i
\(11\) 2.23657i 0.674351i 0.941442 + 0.337175i \(0.109472\pi\)
−0.941442 + 0.337175i \(0.890528\pi\)
\(12\) −2.30191 + 5.53685i −0.664504 + 1.59835i
\(13\) 3.17109i 0.879502i −0.898120 0.439751i \(-0.855067\pi\)
0.898120 0.439751i \(-0.144933\pi\)
\(14\) 0 0
\(15\) 2.99814i 0.774117i
\(16\) −2.82103 2.83580i −0.705258 0.708951i
\(17\) 3.44551i 0.835658i −0.908526 0.417829i \(-0.862791\pi\)
0.908526 0.417829i \(-0.137209\pi\)
\(18\) 7.04523 4.70082i 1.66058 1.10799i
\(19\) 2.05235 0.470842 0.235421 0.971893i \(-0.424353\pi\)
0.235421 + 0.971893i \(0.424353\pi\)
\(20\) 1.84676 + 0.767779i 0.412948 + 0.171681i
\(21\) 0 0
\(22\) 1.75554 + 2.63107i 0.374283 + 0.560947i
\(23\) 2.66137i 0.554934i −0.960735 0.277467i \(-0.910505\pi\)
0.960735 0.277467i \(-0.0894949\pi\)
\(24\) 1.63808 + 8.32031i 0.334372 + 1.69838i
\(25\) −1.00000 −0.200000
\(26\) −2.48908 3.73043i −0.488148 0.731598i
\(27\) −8.96105 −1.72455
\(28\) 0 0
\(29\) −7.38092 −1.37060 −0.685301 0.728260i \(-0.740329\pi\)
−0.685301 + 0.728260i \(0.740329\pi\)
\(30\) −2.35332 3.52698i −0.429656 0.643936i
\(31\) −4.89199 −0.878627 −0.439313 0.898334i \(-0.644778\pi\)
−0.439313 + 0.898334i \(0.644778\pi\)
\(32\) −5.54453 1.12170i −0.980143 0.198291i
\(33\) 6.70555i 1.16729i
\(34\) −2.70447 4.05325i −0.463813 0.695127i
\(35\) 0 0
\(36\) 4.59812 11.0600i 0.766354 1.84333i
\(37\) −11.1938 −1.84025 −0.920123 0.391628i \(-0.871912\pi\)
−0.920123 + 0.391628i \(0.871912\pi\)
\(38\) 2.41436 1.61095i 0.391662 0.261330i
\(39\) 9.50739i 1.52240i
\(40\) 2.77516 0.546365i 0.438791 0.0863878i
\(41\) 1.46011i 0.228031i −0.993479 0.114016i \(-0.963629\pi\)
0.993479 0.114016i \(-0.0363714\pi\)
\(42\) 0 0
\(43\) 9.95752i 1.51851i −0.650794 0.759254i \(-0.725564\pi\)
0.650794 0.759254i \(-0.274436\pi\)
\(44\) 4.13040 + 1.71719i 0.622681 + 0.258876i
\(45\) 5.98886i 0.892767i
\(46\) −2.08898 3.13080i −0.308003 0.461612i
\(47\) 6.12686 0.893694 0.446847 0.894610i \(-0.352547\pi\)
0.446847 + 0.894610i \(0.352547\pi\)
\(48\) 8.45786 + 8.50215i 1.22079 + 1.22718i
\(49\) 0 0
\(50\) −1.17639 + 0.784927i −0.166366 + 0.111005i
\(51\) 10.3301i 1.44651i
\(52\) −5.85624 2.43470i −0.812114 0.337632i
\(53\) 4.65777 0.639793 0.319897 0.947452i \(-0.396352\pi\)
0.319897 + 0.947452i \(0.396352\pi\)
\(54\) −10.5417 + 7.03377i −1.43454 + 0.957175i
\(55\) −2.23657 −0.301579
\(56\) 0 0
\(57\) −6.15325 −0.815018
\(58\) −8.68283 + 5.79348i −1.14011 + 0.760722i
\(59\) −7.11876 −0.926784 −0.463392 0.886153i \(-0.653368\pi\)
−0.463392 + 0.886153i \(0.653368\pi\)
\(60\) −5.53685 2.30191i −0.714804 0.297175i
\(61\) 2.53665i 0.324785i 0.986726 + 0.162393i \(0.0519211\pi\)
−0.986726 + 0.162393i \(0.948079\pi\)
\(62\) −5.75488 + 3.83985i −0.730870 + 0.487662i
\(63\) 0 0
\(64\) −7.40297 + 3.03249i −0.925371 + 0.379062i
\(65\) 3.17109 0.393325
\(66\) −5.26337 7.88833i −0.647876 0.970987i
\(67\) 0.0527695i 0.00644683i 0.999995 + 0.00322341i \(0.00102605\pi\)
−0.999995 + 0.00322341i \(0.998974\pi\)
\(68\) −6.36302 2.64539i −0.771629 0.320800i
\(69\) 7.97917i 0.960579i
\(70\) 0 0
\(71\) 0.212347i 0.0252009i −0.999921 0.0126005i \(-0.995989\pi\)
0.999921 0.0126005i \(-0.00401095\pi\)
\(72\) −3.27210 16.6200i −0.385621 1.95869i
\(73\) 14.8744i 1.74092i −0.492241 0.870459i \(-0.663822\pi\)
0.492241 0.870459i \(-0.336178\pi\)
\(74\) −13.1682 + 8.78631i −1.53078 + 1.02139i
\(75\) 2.99814 0.346196
\(76\) 1.57575 3.79020i 0.180751 0.434766i
\(77\) 0 0
\(78\) 7.46261 + 11.1844i 0.844974 + 1.26638i
\(79\) 0.461203i 0.0518894i 0.999663 + 0.0259447i \(0.00825938\pi\)
−0.999663 + 0.0259447i \(0.991741\pi\)
\(80\) 2.83580 2.82103i 0.317052 0.315401i
\(81\) 8.89991 0.988879
\(82\) −1.14608 1.71766i −0.126564 0.189684i
\(83\) −10.9174 −1.19834 −0.599168 0.800624i \(-0.704502\pi\)
−0.599168 + 0.800624i \(0.704502\pi\)
\(84\) 0 0
\(85\) 3.44551 0.373718
\(86\) −7.81593 11.7139i −0.842813 1.26314i
\(87\) 22.1291 2.37248
\(88\) 6.20682 1.22198i 0.661650 0.130264i
\(89\) 7.02049i 0.744170i −0.928199 0.372085i \(-0.878643\pi\)
0.928199 0.372085i \(-0.121357\pi\)
\(90\) 4.70082 + 7.04523i 0.495510 + 0.742633i
\(91\) 0 0
\(92\) −4.91490 2.04334i −0.512414 0.213033i
\(93\) 14.6669 1.52088
\(94\) 7.20756 4.80914i 0.743403 0.496025i
\(95\) 2.05235i 0.210567i
\(96\) 16.6233 + 3.36302i 1.69661 + 0.343237i
\(97\) 0.185459i 0.0188305i 0.999956 + 0.00941523i \(0.00299701\pi\)
−0.999956 + 0.00941523i \(0.997003\pi\)
\(98\) 0 0
\(99\) 13.3945i 1.34620i
\(100\) −0.767779 + 1.84676i −0.0767779 + 0.184676i
\(101\) 6.24891i 0.621790i −0.950444 0.310895i \(-0.899371\pi\)
0.950444 0.310895i \(-0.100629\pi\)
\(102\) 8.10839 + 12.1522i 0.802850 + 1.20325i
\(103\) −11.4184 −1.12508 −0.562542 0.826769i \(-0.690176\pi\)
−0.562542 + 0.826769i \(0.690176\pi\)
\(104\) −8.80027 + 1.73257i −0.862937 + 0.169893i
\(105\) 0 0
\(106\) 5.47934 3.65601i 0.532201 0.355103i
\(107\) 2.60387i 0.251726i 0.992048 + 0.125863i \(0.0401700\pi\)
−0.992048 + 0.125863i \(0.959830\pi\)
\(108\) −6.88010 + 16.5489i −0.662038 + 1.59242i
\(109\) 1.00189 0.0959638 0.0479819 0.998848i \(-0.484721\pi\)
0.0479819 + 0.998848i \(0.484721\pi\)
\(110\) −2.63107 + 1.75554i −0.250863 + 0.167384i
\(111\) 33.5606 3.18543
\(112\) 0 0
\(113\) 14.8588 1.39780 0.698899 0.715220i \(-0.253674\pi\)
0.698899 + 0.715220i \(0.253674\pi\)
\(114\) −7.23861 + 4.82985i −0.677958 + 0.452357i
\(115\) 2.66137 0.248174
\(116\) −5.66691 + 13.6308i −0.526160 + 1.26559i
\(117\) 18.9912i 1.75574i
\(118\) −8.37443 + 5.58771i −0.770929 + 0.514391i
\(119\) 0 0
\(120\) −8.32031 + 1.63808i −0.759537 + 0.149536i
\(121\) 5.99776 0.545251
\(122\) 1.99109 + 2.98409i 0.180265 + 0.270167i
\(123\) 4.37763i 0.394718i
\(124\) −3.75596 + 9.03432i −0.337295 + 0.811306i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 3.02360i 0.268301i 0.990961 + 0.134151i \(0.0428306\pi\)
−0.990961 + 0.134151i \(0.957169\pi\)
\(128\) −6.32848 + 9.37818i −0.559364 + 0.828922i
\(129\) 29.8541i 2.62851i
\(130\) 3.73043 2.48908i 0.327181 0.218306i
\(131\) 15.7053 1.37218 0.686091 0.727516i \(-0.259325\pi\)
0.686091 + 0.727516i \(0.259325\pi\)
\(132\) −12.3835 5.14838i −1.07785 0.448109i
\(133\) 0 0
\(134\) 0.0414202 + 0.0620775i 0.00357816 + 0.00536268i
\(135\) 8.96105i 0.771244i
\(136\) −9.56181 + 1.88250i −0.819919 + 0.161423i
\(137\) 9.61436 0.821410 0.410705 0.911768i \(-0.365283\pi\)
0.410705 + 0.911768i \(0.365283\pi\)
\(138\) 6.26306 + 9.38660i 0.533147 + 0.799040i
\(139\) 7.49745 0.635925 0.317963 0.948103i \(-0.397001\pi\)
0.317963 + 0.948103i \(0.397001\pi\)
\(140\) 0 0
\(141\) −18.3692 −1.54697
\(142\) −0.166677 0.249802i −0.0139872 0.0209629i
\(143\) 7.09236 0.593093
\(144\) −16.8948 16.9832i −1.40790 1.41527i
\(145\) 7.38092i 0.612952i
\(146\) −11.6753 17.4981i −0.966257 1.44815i
\(147\) 0 0
\(148\) −8.59435 + 20.6722i −0.706451 + 1.69925i
\(149\) 6.50132 0.532609 0.266305 0.963889i \(-0.414197\pi\)
0.266305 + 0.963889i \(0.414197\pi\)
\(150\) 3.52698 2.35332i 0.287977 0.192148i
\(151\) 23.6747i 1.92662i −0.268396 0.963309i \(-0.586494\pi\)
0.268396 0.963309i \(-0.413506\pi\)
\(152\) −1.12133 5.69560i −0.0909521 0.461974i
\(153\) 20.6347i 1.66821i
\(154\) 0 0
\(155\) 4.89199i 0.392934i
\(156\) 17.5578 + 7.29957i 1.40575 + 0.584433i
\(157\) 7.83249i 0.625100i 0.949901 + 0.312550i \(0.101183\pi\)
−0.949901 + 0.312550i \(0.898817\pi\)
\(158\) 0.362011 + 0.542554i 0.0288000 + 0.0431632i
\(159\) −13.9647 −1.10747
\(160\) 1.12170 5.54453i 0.0886783 0.438333i
\(161\) 0 0
\(162\) 10.4697 6.98578i 0.822581 0.548855i
\(163\) 10.8516i 0.849961i −0.905203 0.424980i \(-0.860281\pi\)
0.905203 0.424980i \(-0.139719\pi\)
\(164\) −2.69648 1.12104i −0.210560 0.0875389i
\(165\) 6.70555 0.522027
\(166\) −12.8430 + 8.56933i −0.996814 + 0.665109i
\(167\) 11.7476 0.909058 0.454529 0.890732i \(-0.349808\pi\)
0.454529 + 0.890732i \(0.349808\pi\)
\(168\) 0 0
\(169\) 2.94418 0.226476
\(170\) 4.05325 2.70447i 0.310870 0.207423i
\(171\) 12.2913 0.939937
\(172\) −18.3891 7.64517i −1.40216 0.582939i
\(173\) 16.4874i 1.25352i 0.779214 + 0.626758i \(0.215618\pi\)
−0.779214 + 0.626758i \(0.784382\pi\)
\(174\) 26.0324 17.3697i 1.97351 1.31679i
\(175\) 0 0
\(176\) 6.34247 6.30943i 0.478082 0.475591i
\(177\) 21.3431 1.60424
\(178\) −5.51057 8.25882i −0.413035 0.619025i
\(179\) 9.10959i 0.680883i 0.940266 + 0.340441i \(0.110577\pi\)
−0.940266 + 0.340441i \(0.889423\pi\)
\(180\) 11.0600 + 4.59812i 0.824363 + 0.342724i
\(181\) 16.5755i 1.23205i 0.787728 + 0.616023i \(0.211257\pi\)
−0.787728 + 0.616023i \(0.788743\pi\)
\(182\) 0 0
\(183\) 7.60525i 0.562196i
\(184\) −7.38571 + 1.45408i −0.544482 + 0.107196i
\(185\) 11.1938i 0.822983i
\(186\) 17.2539 11.5124i 1.26512 0.844132i
\(187\) 7.70611 0.563527
\(188\) 4.70407 11.3148i 0.343080 0.825218i
\(189\) 0 0
\(190\) 1.61095 + 2.41436i 0.116870 + 0.175156i
\(191\) 2.99295i 0.216562i −0.994120 0.108281i \(-0.965465\pi\)
0.994120 0.108281i \(-0.0345347\pi\)
\(192\) 22.1952 9.09185i 1.60180 0.656148i
\(193\) −14.7088 −1.05877 −0.529383 0.848383i \(-0.677577\pi\)
−0.529383 + 0.848383i \(0.677577\pi\)
\(194\) 0.145571 + 0.218171i 0.0104514 + 0.0156638i
\(195\) −9.50739 −0.680838
\(196\) 0 0
\(197\) 4.81748 0.343231 0.171616 0.985164i \(-0.445101\pi\)
0.171616 + 0.985164i \(0.445101\pi\)
\(198\) 10.5137 + 15.7571i 0.747177 + 1.11981i
\(199\) −1.27436 −0.0903370 −0.0451685 0.998979i \(-0.514382\pi\)
−0.0451685 + 0.998979i \(0.514382\pi\)
\(200\) 0.546365 + 2.77516i 0.0386338 + 0.196233i
\(201\) 0.158211i 0.0111593i
\(202\) −4.90494 7.35115i −0.345110 0.517225i
\(203\) 0 0
\(204\) 19.0772 + 7.93125i 1.33567 + 0.555298i
\(205\) 1.46011 0.101979
\(206\) −13.4324 + 8.96257i −0.935881 + 0.624452i
\(207\) 15.9386i 1.10781i
\(208\) −8.99259 + 8.94575i −0.623524 + 0.620276i
\(209\) 4.59023i 0.317513i
\(210\) 0 0
\(211\) 3.70986i 0.255397i 0.991813 + 0.127698i \(0.0407590\pi\)
−0.991813 + 0.127698i \(0.959241\pi\)
\(212\) 3.57613 8.60177i 0.245610 0.590772i
\(213\) 0.636646i 0.0436222i
\(214\) 2.04385 + 3.06317i 0.139715 + 0.209394i
\(215\) 9.95752 0.679097
\(216\) 4.89600 + 24.8683i 0.333131 + 1.69207i
\(217\) 0 0
\(218\) 1.17861 0.786412i 0.0798258 0.0532625i
\(219\) 44.5956i 3.01349i
\(220\) −1.71719 + 4.13040i −0.115773 + 0.278472i
\(221\) −10.9260 −0.734963
\(222\) 39.4803 26.3426i 2.64974 1.76800i
\(223\) 12.9581 0.867737 0.433869 0.900976i \(-0.357148\pi\)
0.433869 + 0.900976i \(0.357148\pi\)
\(224\) 0 0
\(225\) −5.98886 −0.399258
\(226\) 17.4797 11.6631i 1.16273 0.775816i
\(227\) −8.89253 −0.590218 −0.295109 0.955464i \(-0.595356\pi\)
−0.295109 + 0.955464i \(0.595356\pi\)
\(228\) −4.72433 + 11.3636i −0.312877 + 0.752570i
\(229\) 12.9457i 0.855478i 0.903902 + 0.427739i \(0.140690\pi\)
−0.903902 + 0.427739i \(0.859310\pi\)
\(230\) 3.13080 2.08898i 0.206439 0.137743i
\(231\) 0 0
\(232\) 4.03267 + 20.4832i 0.264758 + 1.34479i
\(233\) −15.2162 −0.996846 −0.498423 0.866934i \(-0.666087\pi\)
−0.498423 + 0.866934i \(0.666087\pi\)
\(234\) −14.9067 22.3411i −0.974484 1.46048i
\(235\) 6.12686i 0.399672i
\(236\) −5.46564 + 13.1466i −0.355783 + 0.855773i
\(237\) 1.38275i 0.0898194i
\(238\) 0 0
\(239\) 0.0438513i 0.00283650i −0.999999 0.00141825i \(-0.999549\pi\)
0.999999 0.00141825i \(-0.000451444\pi\)
\(240\) −8.50215 + 8.45786i −0.548811 + 0.545952i
\(241\) 2.30058i 0.148194i 0.997251 + 0.0740968i \(0.0236074\pi\)
−0.997251 + 0.0740968i \(0.976393\pi\)
\(242\) 7.05570 4.70781i 0.453557 0.302629i
\(243\) 0.199935 0.0128258
\(244\) 4.68458 + 1.94759i 0.299900 + 0.124682i
\(245\) 0 0
\(246\) 3.43612 + 5.14979i 0.219079 + 0.328339i
\(247\) 6.50820i 0.414107i
\(248\) 2.67281 + 13.5760i 0.169724 + 0.862078i
\(249\) 32.7318 2.07429
\(250\) −0.784927 1.17639i −0.0496432 0.0744013i
\(251\) −6.32409 −0.399173 −0.199587 0.979880i \(-0.563960\pi\)
−0.199587 + 0.979880i \(0.563960\pi\)
\(252\) 0 0
\(253\) 5.95233 0.374220
\(254\) 2.37331 + 3.55693i 0.148914 + 0.223181i
\(255\) −10.3301 −0.646897
\(256\) −0.0835627 + 15.9998i −0.00522267 + 0.999986i
\(257\) 14.2414i 0.888351i 0.895940 + 0.444176i \(0.146503\pi\)
−0.895940 + 0.444176i \(0.853497\pi\)
\(258\) 23.4333 + 35.1200i 1.45889 + 2.18648i
\(259\) 0 0
\(260\) 2.43470 5.85624i 0.150993 0.363188i
\(261\) −44.2033 −2.73612
\(262\) 18.4756 12.3275i 1.14142 0.761598i
\(263\) 11.7484i 0.724438i −0.932093 0.362219i \(-0.882019\pi\)
0.932093 0.362219i \(-0.117981\pi\)
\(264\) −18.6089 + 3.66368i −1.14530 + 0.225484i
\(265\) 4.65777i 0.286124i
\(266\) 0 0
\(267\) 21.0484i 1.28814i
\(268\) 0.0974526 + 0.0405153i 0.00595286 + 0.00247487i
\(269\) 8.48931i 0.517603i −0.965931 0.258801i \(-0.916673\pi\)
0.965931 0.258801i \(-0.0833275\pi\)
\(270\) −7.03377 10.5417i −0.428062 0.641546i
\(271\) −7.97372 −0.484369 −0.242184 0.970230i \(-0.577864\pi\)
−0.242184 + 0.970230i \(0.577864\pi\)
\(272\) −9.77078 + 9.71988i −0.592440 + 0.589354i
\(273\) 0 0
\(274\) 11.3102 7.54657i 0.683275 0.455905i
\(275\) 2.23657i 0.134870i
\(276\) 14.7356 + 6.12623i 0.886978 + 0.368756i
\(277\) −13.5951 −0.816849 −0.408425 0.912792i \(-0.633922\pi\)
−0.408425 + 0.912792i \(0.633922\pi\)
\(278\) 8.81991 5.88495i 0.528983 0.352956i
\(279\) −29.2974 −1.75399
\(280\) 0 0
\(281\) 9.48286 0.565700 0.282850 0.959164i \(-0.408720\pi\)
0.282850 + 0.959164i \(0.408720\pi\)
\(282\) −21.6093 + 14.4185i −1.28682 + 0.858608i
\(283\) −21.5492 −1.28097 −0.640483 0.767972i \(-0.721266\pi\)
−0.640483 + 0.767972i \(0.721266\pi\)
\(284\) −0.392153 0.163035i −0.0232700 0.00967436i
\(285\) 6.15325i 0.364487i
\(286\) 8.34337 5.56699i 0.493354 0.329183i
\(287\) 0 0
\(288\) −33.2054 6.71772i −1.95665 0.395845i
\(289\) 5.12849 0.301676
\(290\) −5.79348 8.68283i −0.340205 0.509873i
\(291\) 0.556031i 0.0325951i
\(292\) −27.4694 11.4203i −1.60753 0.668320i
\(293\) 28.9496i 1.69125i −0.533776 0.845626i \(-0.679227\pi\)
0.533776 0.845626i \(-0.320773\pi\)
\(294\) 0 0
\(295\) 7.11876i 0.414470i
\(296\) 6.11589 + 31.0645i 0.355479 + 1.80559i
\(297\) 20.0420i 1.16295i
\(298\) 7.64808 5.10306i 0.443041 0.295613i
\(299\) −8.43944 −0.488066
\(300\) 2.30191 5.53685i 0.132901 0.319670i
\(301\) 0 0
\(302\) −18.5829 27.8506i −1.06933 1.60262i
\(303\) 18.7351i 1.07631i
\(304\) −5.78975 5.82007i −0.332065 0.333804i
\(305\) −2.53665 −0.145248
\(306\) −16.1967 24.2744i −0.925904 1.38767i
\(307\) 8.00589 0.456920 0.228460 0.973553i \(-0.426631\pi\)
0.228460 + 0.973553i \(0.426631\pi\)
\(308\) 0 0
\(309\) 34.2339 1.94750
\(310\) −3.83985 5.75488i −0.218089 0.326855i
\(311\) 13.7527 0.779841 0.389921 0.920848i \(-0.372502\pi\)
0.389921 + 0.920848i \(0.372502\pi\)
\(312\) 26.3845 5.19450i 1.49373 0.294081i
\(313\) 10.6358i 0.601173i −0.953754 0.300587i \(-0.902818\pi\)
0.953754 0.300587i \(-0.0971825\pi\)
\(314\) 6.14793 + 9.21404i 0.346948 + 0.519979i
\(315\) 0 0
\(316\) 0.851730 + 0.354102i 0.0479136 + 0.0199198i
\(317\) −16.9835 −0.953888 −0.476944 0.878934i \(-0.658256\pi\)
−0.476944 + 0.878934i \(0.658256\pi\)
\(318\) −16.4279 + 10.9612i −0.921228 + 0.614676i
\(319\) 16.5079i 0.924267i
\(320\) −3.03249 7.40297i −0.169522 0.413839i
\(321\) 7.80679i 0.435732i
\(322\) 0 0
\(323\) 7.07140i 0.393463i
\(324\) 6.83316 16.4360i 0.379620 0.913110i
\(325\) 3.17109i 0.175900i
\(326\) −8.51770 12.7657i −0.471752 0.707025i
\(327\) −3.00381 −0.166111
\(328\) −4.05204 + 0.797755i −0.223737 + 0.0440486i
\(329\) 0 0
\(330\) 7.88833 5.26337i 0.434239 0.289739i
\(331\) 8.33018i 0.457868i 0.973442 + 0.228934i \(0.0735240\pi\)
−0.973442 + 0.228934i \(0.926476\pi\)
\(332\) −8.38211 + 20.1617i −0.460028 + 1.10652i
\(333\) −67.0381 −3.67366
\(334\) 13.8198 9.22102i 0.756183 0.504552i
\(335\) −0.0527695 −0.00288311
\(336\) 0 0
\(337\) −27.0772 −1.47499 −0.737495 0.675353i \(-0.763991\pi\)
−0.737495 + 0.675353i \(0.763991\pi\)
\(338\) 3.46350 2.31097i 0.188390 0.125700i
\(339\) −44.5488 −2.41956
\(340\) 2.64539 6.36302i 0.143466 0.345083i
\(341\) 10.9413i 0.592503i
\(342\) 14.4593 9.64775i 0.781870 0.521690i
\(343\) 0 0
\(344\) −27.6337 + 5.44044i −1.48991 + 0.293329i
\(345\) −7.97917 −0.429584
\(346\) 12.9414 + 19.3956i 0.695735 + 1.04271i
\(347\) 27.7721i 1.49089i 0.666569 + 0.745443i \(0.267762\pi\)
−0.666569 + 0.745443i \(0.732238\pi\)
\(348\) 16.9902 40.8670i 0.910771 2.19070i
\(349\) 9.64063i 0.516051i −0.966138 0.258026i \(-0.916928\pi\)
0.966138 0.258026i \(-0.0830719\pi\)
\(350\) 0 0
\(351\) 28.4163i 1.51675i
\(352\) 2.50876 12.4007i 0.133718 0.660960i
\(353\) 16.3139i 0.868304i −0.900840 0.434152i \(-0.857048\pi\)
0.900840 0.434152i \(-0.142952\pi\)
\(354\) 25.1077 16.7528i 1.33446 0.890399i
\(355\) 0.212347 0.0112702
\(356\) −12.9651 5.39018i −0.687151 0.285679i
\(357\) 0 0
\(358\) 7.15037 + 10.7164i 0.377909 + 0.566380i
\(359\) 1.60208i 0.0845545i 0.999106 + 0.0422773i \(0.0134613\pi\)
−0.999106 + 0.0422773i \(0.986539\pi\)
\(360\) 16.6200 3.27210i 0.875952 0.172455i
\(361\) −14.7878 −0.778308
\(362\) 13.0106 + 19.4992i 0.683819 + 1.02486i
\(363\) −17.9822 −0.943818
\(364\) 0 0
\(365\) 14.8744 0.778562
\(366\) −5.96957 8.94673i −0.312034 0.467653i
\(367\) −1.26052 −0.0657985 −0.0328993 0.999459i \(-0.510474\pi\)
−0.0328993 + 0.999459i \(0.510474\pi\)
\(368\) −7.54712 + 7.50781i −0.393421 + 0.391371i
\(369\) 8.74443i 0.455217i
\(370\) −8.78631 13.1682i −0.456778 0.684584i
\(371\) 0 0
\(372\) 11.2609 27.0862i 0.583851 1.40435i
\(373\) 9.22744 0.477779 0.238889 0.971047i \(-0.423217\pi\)
0.238889 + 0.971047i \(0.423217\pi\)
\(374\) 9.06538 6.04873i 0.468759 0.312773i
\(375\) 2.99814i 0.154823i
\(376\) −3.34750 17.0030i −0.172634 0.876862i
\(377\) 23.4056i 1.20545i
\(378\) 0 0
\(379\) 2.53516i 0.130223i 0.997878 + 0.0651113i \(0.0207403\pi\)
−0.997878 + 0.0651113i \(0.979260\pi\)
\(380\) 3.79020 + 1.57575i 0.194433 + 0.0808344i
\(381\) 9.06518i 0.464423i
\(382\) −2.34925 3.52087i −0.120198 0.180144i
\(383\) −1.32487 −0.0676977 −0.0338489 0.999427i \(-0.510776\pi\)
−0.0338489 + 0.999427i \(0.510776\pi\)
\(384\) 18.9737 28.1171i 0.968248 1.43485i
\(385\) 0 0
\(386\) −17.3033 + 11.5454i −0.880715 + 0.587644i
\(387\) 59.6343i 3.03138i
\(388\) 0.342497 + 0.142391i 0.0173877 + 0.00722882i
\(389\) 32.2269 1.63397 0.816983 0.576662i \(-0.195645\pi\)
0.816983 + 0.576662i \(0.195645\pi\)
\(390\) −11.1844 + 7.46261i −0.566343 + 0.377884i
\(391\) −9.16976 −0.463735
\(392\) 0 0
\(393\) −47.0869 −2.37522
\(394\) 5.66723 3.78137i 0.285511 0.190503i
\(395\) −0.461203 −0.0232056
\(396\) 24.7364 + 10.2840i 1.24305 + 0.516791i
\(397\) 35.1742i 1.76534i 0.469993 + 0.882670i \(0.344257\pi\)
−0.469993 + 0.882670i \(0.655743\pi\)
\(398\) −1.49914 + 1.00028i −0.0751452 + 0.0501395i
\(399\) 0 0
\(400\) 2.82103 + 2.83580i 0.141052 + 0.141790i
\(401\) 31.9246 1.59424 0.797120 0.603820i \(-0.206356\pi\)
0.797120 + 0.603820i \(0.206356\pi\)
\(402\) −0.124184 0.186117i −0.00619373 0.00928268i
\(403\) 15.5129i 0.772754i
\(404\) −11.5402 4.79778i −0.574148 0.238699i
\(405\) 8.89991i 0.442240i
\(406\) 0 0
\(407\) 25.0357i 1.24097i
\(408\) 28.6677 5.64401i 1.41926 0.279420i
\(409\) 16.4142i 0.811632i 0.913955 + 0.405816i \(0.133013\pi\)
−0.913955 + 0.405816i \(0.866987\pi\)
\(410\) 1.71766 1.14608i 0.0848292 0.0566010i
\(411\) −28.8252 −1.42184
\(412\) −8.76677 + 21.0869i −0.431908 + 1.03888i
\(413\) 0 0
\(414\) −12.5106 18.7500i −0.614864 0.921510i
\(415\) 10.9174i 0.535912i
\(416\) −3.55702 + 17.5822i −0.174397 + 0.862038i
\(417\) −22.4784 −1.10077
\(418\) 3.60299 + 5.39989i 0.176228 + 0.264117i
\(419\) 11.8654 0.579665 0.289832 0.957077i \(-0.406400\pi\)
0.289832 + 0.957077i \(0.406400\pi\)
\(420\) 0 0
\(421\) 10.3433 0.504101 0.252051 0.967714i \(-0.418895\pi\)
0.252051 + 0.967714i \(0.418895\pi\)
\(422\) 2.91197 + 4.36423i 0.141752 + 0.212447i
\(423\) 36.6929 1.78407
\(424\) −2.54484 12.9260i −0.123588 0.627743i
\(425\) 3.44551i 0.167132i
\(426\) 0.499720 + 0.748942i 0.0242115 + 0.0362864i
\(427\) 0 0
\(428\) 4.80873 + 1.99920i 0.232439 + 0.0966349i
\(429\) −21.2639 −1.02663
\(430\) 11.7139 7.81593i 0.564895 0.376918i
\(431\) 29.6571i 1.42853i 0.699874 + 0.714267i \(0.253240\pi\)
−0.699874 + 0.714267i \(0.746760\pi\)
\(432\) 25.2794 + 25.4118i 1.21626 + 1.22262i
\(433\) 29.4107i 1.41339i 0.707520 + 0.706693i \(0.249814\pi\)
−0.707520 + 0.706693i \(0.750186\pi\)
\(434\) 0 0
\(435\) 22.1291i 1.06101i
\(436\) 0.769231 1.85025i 0.0368395 0.0886110i
\(437\) 5.46207i 0.261286i
\(438\) 35.0043 + 52.4617i 1.67257 + 2.50672i
\(439\) 8.82381 0.421138 0.210569 0.977579i \(-0.432468\pi\)
0.210569 + 0.977579i \(0.432468\pi\)
\(440\) 1.22198 + 6.20682i 0.0582557 + 0.295899i
\(441\) 0 0
\(442\) −12.8532 + 8.57612i −0.611366 + 0.407925i
\(443\) 19.5668i 0.929649i −0.885403 0.464824i \(-0.846117\pi\)
0.885403 0.464824i \(-0.153883\pi\)
\(444\) 25.7671 61.9783i 1.22285 2.94136i
\(445\) 7.02049 0.332803
\(446\) 15.2437 10.1711i 0.721812 0.481618i
\(447\) −19.4919 −0.921935
\(448\) 0 0
\(449\) 5.02309 0.237054 0.118527 0.992951i \(-0.462183\pi\)
0.118527 + 0.992951i \(0.462183\pi\)
\(450\) −7.04523 + 4.70082i −0.332115 + 0.221599i
\(451\) 3.26564 0.153773
\(452\) 11.4083 27.4406i 0.536600 1.29070i
\(453\) 70.9801i 3.33493i
\(454\) −10.4611 + 6.97998i −0.490962 + 0.327587i
\(455\) 0 0
\(456\) 3.36192 + 17.0762i 0.157436 + 0.799667i
\(457\) −27.8449 −1.30253 −0.651265 0.758851i \(-0.725761\pi\)
−0.651265 + 0.758851i \(0.725761\pi\)
\(458\) 10.1615 + 15.2292i 0.474814 + 0.711614i
\(459\) 30.8753i 1.44114i
\(460\) 2.04334 4.91490i 0.0952713 0.229159i
\(461\) 19.8494i 0.924481i −0.886755 0.462240i \(-0.847046\pi\)
0.886755 0.462240i \(-0.152954\pi\)
\(462\) 0 0
\(463\) 35.7118i 1.65967i 0.558012 + 0.829833i \(0.311564\pi\)
−0.558012 + 0.829833i \(0.688436\pi\)
\(464\) 20.8218 + 20.9308i 0.966628 + 0.971690i
\(465\) 14.6669i 0.680160i
\(466\) −17.9001 + 11.9436i −0.829208 + 0.553277i
\(467\) 22.6111 1.04632 0.523158 0.852236i \(-0.324754\pi\)
0.523158 + 0.852236i \(0.324754\pi\)
\(468\) −35.0722 14.5811i −1.62121 0.674010i
\(469\) 0 0
\(470\) 4.80914 + 7.20756i 0.221829 + 0.332460i
\(471\) 23.4829i 1.08204i
\(472\) 3.88944 + 19.7557i 0.179026 + 0.909329i
\(473\) 22.2707 1.02401
\(474\) −1.08536 1.62665i −0.0498522 0.0747147i
\(475\) −2.05235 −0.0941684
\(476\) 0 0
\(477\) 27.8947 1.27721
\(478\) −0.0344201 0.0515861i −0.00157434 0.00235949i
\(479\) −8.56399 −0.391299 −0.195649 0.980674i \(-0.562681\pi\)
−0.195649 + 0.980674i \(0.562681\pi\)
\(480\) −3.36302 + 16.6233i −0.153500 + 0.758746i
\(481\) 35.4965i 1.61850i
\(482\) 1.80579 + 2.70638i 0.0822515 + 0.123272i
\(483\) 0 0
\(484\) 4.60495 11.0764i 0.209316 0.503473i
\(485\) −0.185459 −0.00842124
\(486\) 0.235201 0.156934i 0.0106689 0.00711869i
\(487\) 31.6451i 1.43397i −0.697086 0.716987i \(-0.745521\pi\)
0.697086 0.716987i \(-0.254479\pi\)
\(488\) 7.03961 1.38594i 0.318668 0.0627384i
\(489\) 32.5346i 1.47126i
\(490\) 0 0
\(491\) 35.7781i 1.61464i −0.590113 0.807321i \(-0.700917\pi\)
0.590113 0.807321i \(-0.299083\pi\)
\(492\) 8.08443 + 3.36105i 0.364474 + 0.151528i
\(493\) 25.4310i 1.14535i
\(494\) −5.10846 7.65617i −0.229841 0.344467i
\(495\) −13.3945 −0.602038
\(496\) 13.8004 + 13.8727i 0.619658 + 0.622903i
\(497\) 0 0
\(498\) 38.5053 25.6921i 1.72546 1.15129i
\(499\) 41.3148i 1.84950i −0.380569 0.924752i \(-0.624272\pi\)
0.380569 0.924752i \(-0.375728\pi\)
\(500\) −1.84676 0.767779i −0.0825895 0.0343361i
\(501\) −35.2210 −1.57356
\(502\) −7.43959 + 4.96395i −0.332045 + 0.221552i
\(503\) 29.0170 1.29381 0.646903 0.762572i \(-0.276064\pi\)
0.646903 + 0.762572i \(0.276064\pi\)
\(504\) 0 0
\(505\) 6.24891 0.278073
\(506\) 7.00226 4.67215i 0.311288 0.207702i
\(507\) −8.82708 −0.392024
\(508\) 5.58386 + 2.32146i 0.247744 + 0.102998i
\(509\) 20.0311i 0.887861i −0.896061 0.443931i \(-0.853584\pi\)
0.896061 0.443931i \(-0.146416\pi\)
\(510\) −12.1522 + 8.10839i −0.538110 + 0.359046i
\(511\) 0 0
\(512\) 12.4604 + 18.8875i 0.550675 + 0.834720i
\(513\) −18.3912 −0.811993
\(514\) 11.1784 + 16.7534i 0.493059 + 0.738959i
\(515\) 11.4184i 0.503153i
\(516\) 55.1333 + 22.9213i 2.42711 + 1.00906i
\(517\) 13.7031i 0.602663i
\(518\) 0 0
\(519\) 49.4317i 2.16981i
\(520\) −1.73257 8.80027i −0.0759783 0.385917i
\(521\) 21.4442i 0.939487i 0.882803 + 0.469743i \(0.155654\pi\)
−0.882803 + 0.469743i \(0.844346\pi\)
\(522\) −52.0003 + 34.6964i −2.27599 + 1.51862i
\(523\) −41.0040 −1.79298 −0.896491 0.443063i \(-0.853892\pi\)
−0.896491 + 0.443063i \(0.853892\pi\)
\(524\) 12.0582 29.0040i 0.526766 1.26704i
\(525\) 0 0
\(526\) −9.22165 13.8207i −0.402083 0.602611i
\(527\) 16.8554i 0.734231i
\(528\) −19.0156 + 18.9166i −0.827549 + 0.823238i
\(529\) 15.9171 0.692049
\(530\) 3.65601 + 5.47934i 0.158807 + 0.238007i
\(531\) −42.6333 −1.85013
\(532\) 0 0
\(533\) −4.63015 −0.200554
\(534\) 16.5215 + 24.7611i 0.714954 + 1.07152i
\(535\) −2.60387 −0.112575
\(536\) 0.146444 0.0288314i 0.00632540 0.00124533i
\(537\) 27.3119i 1.17859i
\(538\) −6.66349 9.98673i −0.287284 0.430559i
\(539\) 0 0
\(540\) −16.5489 6.88010i −0.712151 0.296072i
\(541\) 3.45282 0.148448 0.0742242 0.997242i \(-0.476352\pi\)
0.0742242 + 0.997242i \(0.476352\pi\)
\(542\) −9.38019 + 6.25879i −0.402914 + 0.268838i
\(543\) 49.6957i 2.13265i
\(544\) −3.86483 + 19.1037i −0.165703 + 0.819064i
\(545\) 1.00189i 0.0429163i
\(546\) 0 0
\(547\) 28.2607i 1.20834i −0.796855 0.604170i \(-0.793505\pi\)
0.796855 0.604170i \(-0.206495\pi\)
\(548\) 7.38170 17.7554i 0.315331 0.758473i
\(549\) 15.1917i 0.648365i
\(550\) −1.75554 2.63107i −0.0748566 0.112189i
\(551\) −15.1483 −0.645337
\(552\) 22.1434 4.35953i 0.942487 0.185554i
\(553\) 0 0
\(554\) −15.9931 + 10.6711i −0.679481 + 0.453374i
\(555\) 33.5606i 1.42457i
\(556\) 5.75638 13.8460i 0.244125 0.587200i
\(557\) 2.07653 0.0879854 0.0439927 0.999032i \(-0.485992\pi\)
0.0439927 + 0.999032i \(0.485992\pi\)
\(558\) −34.4652 + 22.9964i −1.45903 + 0.973514i
\(559\) −31.5762 −1.33553
\(560\) 0 0
\(561\) −23.1040 −0.975453
\(562\) 11.1555 7.44335i 0.470567 0.313979i
\(563\) 45.9095 1.93485 0.967426 0.253152i \(-0.0814673\pi\)
0.967426 + 0.253152i \(0.0814673\pi\)
\(564\) −14.1035 + 33.9235i −0.593864 + 1.42844i
\(565\) 14.8588i 0.625115i
\(566\) −25.3502 + 16.9145i −1.06555 + 0.710971i
\(567\) 0 0
\(568\) −0.589295 + 0.116019i −0.0247263 + 0.00486803i
\(569\) 7.92825 0.332370 0.166185 0.986095i \(-0.446855\pi\)
0.166185 + 0.986095i \(0.446855\pi\)
\(570\) −4.82985 7.23861i −0.202300 0.303192i
\(571\) 21.1673i 0.885825i −0.896565 0.442912i \(-0.853945\pi\)
0.896565 0.442912i \(-0.146055\pi\)
\(572\) 5.44536 13.0979i 0.227682 0.547650i
\(573\) 8.97330i 0.374865i
\(574\) 0 0
\(575\) 2.66137i 0.110987i
\(576\) −44.3354 + 18.1612i −1.84731 + 0.756716i
\(577\) 10.3315i 0.430104i 0.976603 + 0.215052i \(0.0689922\pi\)
−0.976603 + 0.215052i \(0.931008\pi\)
\(578\) 6.03309 4.02549i 0.250944 0.167438i
\(579\) 44.0992 1.83270
\(580\) −13.6308 5.66691i −0.565987 0.235306i
\(581\) 0 0
\(582\) −0.436444 0.654109i −0.0180912 0.0271137i
\(583\) 10.4174i 0.431445i
\(584\) −41.2788 + 8.12685i −1.70813 + 0.336291i
\(585\) 18.9912 0.785191
\(586\) −22.7233 34.0559i −0.938691 1.40684i
\(587\) 20.4660 0.844722 0.422361 0.906428i \(-0.361201\pi\)
0.422361 + 0.906428i \(0.361201\pi\)
\(588\) 0 0
\(589\) −10.0401 −0.413694
\(590\) −5.58771 8.37443i −0.230042 0.344770i
\(591\) −14.4435 −0.594126
\(592\) 31.5780 + 31.7434i 1.29785 + 1.30464i
\(593\) 44.8473i 1.84166i −0.389968 0.920828i \(-0.627514\pi\)
0.389968 0.920828i \(-0.372486\pi\)
\(594\) −15.7315 23.5772i −0.645471 0.967383i
\(595\) 0 0
\(596\) 4.99158 12.0064i 0.204463 0.491800i
\(597\) 3.82072 0.156371
\(598\) −9.92806 + 6.62435i −0.405989 + 0.270890i
\(599\) 16.3388i 0.667587i 0.942646 + 0.333793i \(0.108329\pi\)
−0.942646 + 0.333793i \(0.891671\pi\)
\(600\) −1.63808 8.32031i −0.0668743 0.339675i
\(601\) 39.8029i 1.62359i −0.583941 0.811796i \(-0.698490\pi\)
0.583941 0.811796i \(-0.301510\pi\)
\(602\) 0 0
\(603\) 0.316030i 0.0128697i
\(604\) −43.7214 18.1769i −1.77900 0.739608i
\(605\) 5.99776i 0.243844i
\(606\) 14.7057 + 22.0398i 0.597379 + 0.895305i
\(607\) 9.40746 0.381837 0.190919 0.981606i \(-0.438853\pi\)
0.190919 + 0.981606i \(0.438853\pi\)
\(608\) −11.3793 2.30213i −0.461493 0.0933636i
\(609\) 0 0
\(610\) −2.98409 + 1.99109i −0.120822 + 0.0806168i
\(611\) 19.4288i 0.786006i
\(612\) −38.1072 15.8429i −1.54039 0.640410i
\(613\) 13.6359 0.550750 0.275375 0.961337i \(-0.411198\pi\)
0.275375 + 0.961337i \(0.411198\pi\)
\(614\) 9.41803 6.28404i 0.380081 0.253603i
\(615\) −4.37763 −0.176523
\(616\) 0 0
\(617\) 39.1144 1.57469 0.787343 0.616515i \(-0.211456\pi\)
0.787343 + 0.616515i \(0.211456\pi\)
\(618\) 40.2723 26.8711i 1.61999 1.08091i
\(619\) 19.0190 0.764438 0.382219 0.924072i \(-0.375160\pi\)
0.382219 + 0.924072i \(0.375160\pi\)
\(620\) −9.03432 3.75596i −0.362827 0.150843i
\(621\) 23.8487i 0.957013i
\(622\) 16.1785 10.7948i 0.648697 0.432833i
\(623\) 0 0
\(624\) 26.9611 26.8206i 1.07931 1.07368i
\(625\) 1.00000 0.0400000
\(626\) −8.34836 12.5119i −0.333668 0.500075i
\(627\) 13.7622i 0.549608i
\(628\) 14.4647 + 6.01362i 0.577205 + 0.239969i
\(629\) 38.5683i 1.53782i
\(630\) 0 0
\(631\) 16.4987i 0.656802i 0.944538 + 0.328401i \(0.106510\pi\)
−0.944538 + 0.328401i \(0.893490\pi\)
\(632\) 1.27991 0.251985i 0.0509121 0.0100234i
\(633\) 11.1227i 0.442087i
\(634\) −19.9792 + 13.3308i −0.793475 + 0.529434i
\(635\) −3.02360 −0.119988
\(636\) −10.7218 + 25.7893i −0.425146 + 1.02261i
\(637\) 0 0
\(638\) −12.9575 19.4197i −0.512993 0.768835i
\(639\) 1.27171i 0.0503083i
\(640\) −9.37818 6.32848i −0.370705 0.250155i
\(641\) 26.9446 1.06425 0.532124 0.846667i \(-0.321394\pi\)
0.532124 + 0.846667i \(0.321394\pi\)
\(642\) −6.12776 9.18381i −0.241843 0.362456i
\(643\) 43.6730 1.72229 0.861147 0.508355i \(-0.169746\pi\)
0.861147 + 0.508355i \(0.169746\pi\)
\(644\) 0 0
\(645\) −29.8541 −1.17550
\(646\) −5.55053 8.31871i −0.218383 0.327295i
\(647\) 28.1079 1.10504 0.552518 0.833501i \(-0.313667\pi\)
0.552518 + 0.833501i \(0.313667\pi\)
\(648\) −4.86260 24.6986i −0.191021 0.970254i
\(649\) 15.9216i 0.624978i
\(650\) 2.48908 + 3.73043i 0.0976296 + 0.146320i
\(651\) 0 0
\(652\) −20.0402 8.33161i −0.784836 0.326291i
\(653\) −41.6734 −1.63081 −0.815403 0.578893i \(-0.803485\pi\)
−0.815403 + 0.578893i \(0.803485\pi\)
\(654\) −3.53365 + 2.35778i −0.138177 + 0.0921963i
\(655\) 15.7053i 0.613658i
\(656\) −4.14060 + 4.11903i −0.161663 + 0.160821i
\(657\) 89.0808i 3.47537i
\(658\) 0 0
\(659\) 47.0951i 1.83457i 0.398236 + 0.917283i \(0.369622\pi\)
−0.398236 + 0.917283i \(0.630378\pi\)
\(660\) 5.14838 12.3835i 0.200400 0.482028i
\(661\) 11.6385i 0.452685i −0.974048 0.226342i \(-0.927323\pi\)
0.974048 0.226342i \(-0.0726768\pi\)
\(662\) 6.53858 + 9.79952i 0.254129 + 0.380869i
\(663\) 32.7578 1.27221
\(664\) 5.96486 + 30.2973i 0.231481 + 1.17577i
\(665\) 0 0
\(666\) −78.8628 + 52.6200i −3.05587 + 2.03898i
\(667\) 19.6434i 0.760594i
\(668\) 9.01957 21.6950i 0.348978 0.839405i
\(669\) −38.8502 −1.50203
\(670\) −0.0620775 + 0.0414202i −0.00239826 + 0.00160020i
\(671\) −5.67340 −0.219019
\(672\) 0 0
\(673\) 14.9849 0.577626 0.288813 0.957385i \(-0.406739\pi\)
0.288813 + 0.957385i \(0.406739\pi\)
\(674\) −31.8533 + 21.2536i −1.22694 + 0.818659i
\(675\) 8.96105 0.344911
\(676\) 2.26048 5.43719i 0.0869416 0.209123i
\(677\) 23.0186i 0.884678i −0.896848 0.442339i \(-0.854149\pi\)
0.896848 0.442339i \(-0.145851\pi\)
\(678\) −52.4067 + 34.9676i −2.01267 + 1.34292i
\(679\) 0 0
\(680\) −1.88250 9.56181i −0.0721907 0.366679i
\(681\) 26.6611 1.02165
\(682\) −8.58809 12.8712i −0.328855 0.492863i
\(683\) 37.2694i 1.42607i −0.701126 0.713037i \(-0.747319\pi\)
0.701126 0.713037i \(-0.252681\pi\)
\(684\) 9.43697 22.6990i 0.360832 0.867918i
\(685\) 9.61436i 0.367346i
\(686\) 0 0
\(687\) 38.8132i 1.48082i
\(688\) −28.2376 + 28.0905i −1.07655 + 1.07094i
\(689\) 14.7702i 0.562700i
\(690\) −9.38660 + 6.26306i −0.357342 + 0.238431i
\(691\) −27.9938 −1.06493 −0.532467 0.846451i \(-0.678735\pi\)
−0.532467 + 0.846451i \(0.678735\pi\)
\(692\) 30.4483 + 12.6587i 1.15747 + 0.481211i
\(693\) 0 0
\(694\) 21.7991 + 32.6708i 0.827483 + 1.24017i
\(695\) 7.49745i 0.284394i
\(696\) −12.0905 61.4116i −0.458291 2.32780i
\(697\) −5.03083 −0.190556
\(698\) −7.56719 11.3411i −0.286423 0.429268i
\(699\) 45.6203 1.72552
\(700\) 0 0
\(701\) 29.2334 1.10413 0.552065 0.833801i \(-0.313840\pi\)
0.552065 + 0.833801i \(0.313840\pi\)
\(702\) 22.3047 + 33.4286i 0.841837 + 1.26168i
\(703\) −22.9736 −0.866466
\(704\) −6.78238 16.5573i −0.255621 0.624025i
\(705\) 18.3692i 0.691824i
\(706\) −12.8053 19.1915i −0.481932 0.722283i
\(707\) 0 0
\(708\) 16.3868 39.4155i 0.615852 1.48133i
\(709\) −4.16149 −0.156288 −0.0781440 0.996942i \(-0.524899\pi\)
−0.0781440 + 0.996942i \(0.524899\pi\)
\(710\) 0.249802 0.166677i 0.00937490 0.00625526i
\(711\) 2.76208i 0.103586i
\(712\) −19.4829 + 3.83575i −0.730154 + 0.143751i
\(713\) 13.0194i 0.487580i
\(714\) 0 0
\(715\) 7.09236i 0.265239i
\(716\) 16.8232 + 6.99415i 0.628713 + 0.261384i
\(717\) 0.131472i 0.00490993i
\(718\) 1.25752 + 1.88467i 0.0469301 + 0.0703352i
\(719\) −42.2226 −1.57464 −0.787318 0.616547i \(-0.788531\pi\)
−0.787318 + 0.616547i \(0.788531\pi\)
\(720\) 16.9832 16.8948i 0.632928 0.629631i
\(721\) 0 0
\(722\) −17.3962 + 11.6074i −0.647421 + 0.431982i
\(723\) 6.89748i 0.256520i
\(724\) 30.6109 + 12.7263i 1.13765 + 0.472970i
\(725\) 7.38092 0.274120
\(726\) −21.1540 + 14.1147i −0.785098 + 0.523845i
\(727\) −27.2605 −1.01104 −0.505519 0.862816i \(-0.668699\pi\)
−0.505519 + 0.862816i \(0.668699\pi\)
\(728\) 0 0
\(729\) −27.2992 −1.01108
\(730\) 17.4981 11.6753i 0.647633 0.432123i
\(731\) −34.3087 −1.26895
\(732\) −14.0451 5.83915i −0.519120 0.215821i
\(733\) 15.3060i 0.565340i −0.959217 0.282670i \(-0.908780\pi\)
0.959217 0.282670i \(-0.0912201\pi\)
\(734\) −1.48286 + 0.989415i −0.0547333 + 0.0365200i
\(735\) 0 0
\(736\) −2.98526 + 14.7560i −0.110038 + 0.543915i
\(737\) −0.118023 −0.00434742
\(738\) −6.86374 10.2868i −0.252658 0.378664i
\(739\) 49.1549i 1.80819i −0.427330 0.904096i \(-0.640546\pi\)
0.427330 0.904096i \(-0.359454\pi\)
\(740\) −20.6722 8.59435i −0.759926 0.315935i
\(741\) 19.5125i 0.716810i
\(742\) 0 0
\(743\) 35.2067i 1.29161i 0.763503 + 0.645805i \(0.223478\pi\)
−0.763503 + 0.645805i \(0.776522\pi\)
\(744\) −8.01346 40.7029i −0.293788 1.49224i
\(745\) 6.50132i 0.238190i
\(746\) 10.8551 7.24287i 0.397432 0.265180i
\(747\) −65.3825 −2.39222
\(748\) 5.91659 14.2313i 0.216332 0.520349i
\(749\) 0 0
\(750\) 2.35332 + 3.52698i 0.0859313 + 0.128787i
\(751\) 0.674682i 0.0246195i 0.999924 + 0.0123098i \(0.00391841\pi\)
−0.999924 + 0.0123098i \(0.996082\pi\)
\(752\) −17.2841 17.3746i −0.630285 0.633585i
\(753\) 18.9605 0.690960
\(754\) 18.3717 + 27.5340i 0.669057 + 1.00273i
\(755\) 23.6747 0.861609
\(756\) 0 0
\(757\) −45.8640 −1.66695 −0.833477 0.552553i \(-0.813654\pi\)
−0.833477 + 0.552553i \(0.813654\pi\)
\(758\) 1.98992 + 2.98234i 0.0722771 + 0.108323i
\(759\) −17.8460 −0.647767
\(760\) 5.69560 1.12133i 0.206601 0.0406750i
\(761\) 21.8503i 0.792074i −0.918235 0.396037i \(-0.870385\pi\)
0.918235 0.396037i \(-0.129615\pi\)
\(762\) −7.11551 10.6642i −0.257768 0.386322i
\(763\) 0 0
\(764\) −5.52726 2.29793i −0.199969 0.0831360i
\(765\) 20.6347 0.746048
\(766\) −1.55856 + 1.03993i −0.0563131 + 0.0375741i
\(767\) 22.5742i 0.815109i
\(768\) 0.250533 47.9696i 0.00904033 1.73096i
\(769\) 16.0214i 0.577745i 0.957368 + 0.288872i \(0.0932803\pi\)
−0.957368 + 0.288872i \(0.906720\pi\)
\(770\) 0 0
\(771\) 42.6976i 1.53772i
\(772\) −11.2931 + 27.1637i −0.406449 + 0.977642i
\(773\) 42.3415i 1.52292i −0.648214 0.761458i \(-0.724484\pi\)
0.648214 0.761458i \(-0.275516\pi\)
\(774\) −46.8085 70.1530i −1.68250 2.52160i
\(775\) 4.89199 0.175725
\(776\) 0.514676 0.101328i 0.0184758 0.00363746i
\(777\) 0 0
\(778\) 37.9113 25.2957i 1.35919 0.906896i
\(779\) 2.99667i 0.107367i
\(780\) −7.29957 + 17.5578i −0.261367 + 0.628672i
\(781\) 0.474928 0.0169942
\(782\) −10.7872 + 7.19760i −0.385750 + 0.257385i
\(783\) 66.1408 2.36368
\(784\) 0