Properties

Label 980.2.g.a.391.21
Level $980$
Weight $2$
Character 980.391
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(391,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.391");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 391.21
Character \(\chi\) \(=\) 980.391
Dual form 980.2.g.a.391.23

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.486718 - 1.32782i) q^{2} -0.812042 q^{3} +(-1.52621 - 1.29255i) q^{4} -1.00000i q^{5} +(-0.395235 + 1.07825i) q^{6} +(-2.45910 + 1.39743i) q^{8} -2.34059 q^{9} +(-1.32782 - 0.486718i) q^{10} -4.86043i q^{11} +(1.23935 + 1.04960i) q^{12} +0.895933i q^{13} +0.812042i q^{15} +(0.658646 + 3.94540i) q^{16} +5.89164i q^{17} +(-1.13921 + 3.10788i) q^{18} -2.91636 q^{19} +(-1.29255 + 1.52621i) q^{20} +(-6.45377 - 2.36566i) q^{22} -1.56151i q^{23} +(1.99689 - 1.13477i) q^{24} -1.00000 q^{25} +(1.18964 + 0.436066i) q^{26} +4.33678 q^{27} -9.73084 q^{29} +(1.07825 + 0.395235i) q^{30} +4.41515 q^{31} +(5.55936 + 1.04573i) q^{32} +3.94687i q^{33} +(7.82304 + 2.86757i) q^{34} +(3.57223 + 3.02532i) q^{36} -1.82136 q^{37} +(-1.41945 + 3.87241i) q^{38} -0.727535i q^{39} +(1.39743 + 2.45910i) q^{40} +10.4920i q^{41} +3.04581i q^{43} +(-6.28233 + 7.41804i) q^{44} +2.34059i q^{45} +(-2.07340 - 0.760014i) q^{46} -5.21932 q^{47} +(-0.534848 - 3.20383i) q^{48} +(-0.486718 + 1.32782i) q^{50} -4.78426i q^{51} +(1.15804 - 1.36738i) q^{52} +0.179724 q^{53} +(2.11079 - 5.75846i) q^{54} -4.86043 q^{55} +2.36821 q^{57} +(-4.73617 + 12.9208i) q^{58} -11.3657 q^{59} +(1.04960 - 1.23935i) q^{60} +6.15579i q^{61} +(2.14893 - 5.86252i) q^{62} +(4.09438 - 6.87285i) q^{64} +0.895933 q^{65} +(5.24073 + 1.92101i) q^{66} -7.79905i q^{67} +(7.61522 - 8.99190i) q^{68} +1.26801i q^{69} +8.38078i q^{71} +(5.75575 - 3.27081i) q^{72} -8.78095i q^{73} +(-0.886490 + 2.41844i) q^{74} +0.812042 q^{75} +(4.45099 + 3.76954i) q^{76} +(-0.966036 - 0.354104i) q^{78} +3.63368i q^{79} +(3.94540 - 0.658646i) q^{80} +3.50012 q^{81} +(13.9315 + 5.10665i) q^{82} +2.03796 q^{83} +5.89164 q^{85} +(4.04428 + 1.48245i) q^{86} +7.90185 q^{87} +(6.79211 + 11.9523i) q^{88} -1.76452i q^{89} +(3.10788 + 1.13921i) q^{90} +(-2.01832 + 2.38320i) q^{92} -3.58528 q^{93} +(-2.54034 + 6.93032i) q^{94} +2.91636i q^{95} +(-4.51443 - 0.849178i) q^{96} -7.83641i q^{97} +11.3763i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{2} + 4 q^{4} - 4 q^{8} + 32 q^{9} + 28 q^{16} - 8 q^{22} - 32 q^{25} - 40 q^{29} - 4 q^{32} + 60 q^{36} - 16 q^{37} + 36 q^{44} - 4 q^{46} + 4 q^{50} + 16 q^{53} + 48 q^{57} - 4 q^{58} - 28 q^{60}+ \cdots + 16 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.486718 1.32782i 0.344161 0.938911i
\(3\) −0.812042 −0.468833 −0.234416 0.972136i \(-0.575318\pi\)
−0.234416 + 0.972136i \(0.575318\pi\)
\(4\) −1.52621 1.29255i −0.763106 0.646273i
\(5\) 1.00000i 0.447214i
\(6\) −0.395235 + 1.07825i −0.161354 + 0.440192i
\(7\) 0 0
\(8\) −2.45910 + 1.39743i −0.869424 + 0.494066i
\(9\) −2.34059 −0.780196
\(10\) −1.32782 0.486718i −0.419894 0.153914i
\(11\) 4.86043i 1.46547i −0.680512 0.732737i \(-0.738243\pi\)
0.680512 0.732737i \(-0.261757\pi\)
\(12\) 1.23935 + 1.04960i 0.357769 + 0.302994i
\(13\) 0.895933i 0.248487i 0.992252 + 0.124244i \(0.0396504\pi\)
−0.992252 + 0.124244i \(0.960350\pi\)
\(14\) 0 0
\(15\) 0.812042i 0.209668i
\(16\) 0.658646 + 3.94540i 0.164662 + 0.986350i
\(17\) 5.89164i 1.42893i 0.699670 + 0.714467i \(0.253331\pi\)
−0.699670 + 0.714467i \(0.746669\pi\)
\(18\) −1.13921 + 3.10788i −0.268513 + 0.732534i
\(19\) −2.91636 −0.669060 −0.334530 0.942385i \(-0.608578\pi\)
−0.334530 + 0.942385i \(0.608578\pi\)
\(20\) −1.29255 + 1.52621i −0.289022 + 0.341271i
\(21\) 0 0
\(22\) −6.45377 2.36566i −1.37595 0.504359i
\(23\) 1.56151i 0.325597i −0.986659 0.162799i \(-0.947948\pi\)
0.986659 0.162799i \(-0.0520521\pi\)
\(24\) 1.99689 1.13477i 0.407614 0.231634i
\(25\) −1.00000 −0.200000
\(26\) 1.18964 + 0.436066i 0.233307 + 0.0855197i
\(27\) 4.33678 0.834614
\(28\) 0 0
\(29\) −9.73084 −1.80697 −0.903486 0.428618i \(-0.859001\pi\)
−0.903486 + 0.428618i \(0.859001\pi\)
\(30\) 1.07825 + 0.395235i 0.196860 + 0.0721597i
\(31\) 4.41515 0.792984 0.396492 0.918038i \(-0.370227\pi\)
0.396492 + 0.918038i \(0.370227\pi\)
\(32\) 5.55936 + 1.04573i 0.982765 + 0.184861i
\(33\) 3.94687i 0.687062i
\(34\) 7.82304 + 2.86757i 1.34164 + 0.491783i
\(35\) 0 0
\(36\) 3.57223 + 3.02532i 0.595372 + 0.504220i
\(37\) −1.82136 −0.299431 −0.149715 0.988729i \(-0.547836\pi\)
−0.149715 + 0.988729i \(0.547836\pi\)
\(38\) −1.41945 + 3.87241i −0.230264 + 0.628187i
\(39\) 0.727535i 0.116499i
\(40\) 1.39743 + 2.45910i 0.220953 + 0.388818i
\(41\) 10.4920i 1.63858i 0.573381 + 0.819289i \(0.305632\pi\)
−0.573381 + 0.819289i \(0.694368\pi\)
\(42\) 0 0
\(43\) 3.04581i 0.464481i 0.972658 + 0.232240i \(0.0746056\pi\)
−0.972658 + 0.232240i \(0.925394\pi\)
\(44\) −6.28233 + 7.41804i −0.947097 + 1.11831i
\(45\) 2.34059i 0.348914i
\(46\) −2.07340 0.760014i −0.305707 0.112058i
\(47\) −5.21932 −0.761316 −0.380658 0.924716i \(-0.624303\pi\)
−0.380658 + 0.924716i \(0.624303\pi\)
\(48\) −0.534848 3.20383i −0.0771987 0.462433i
\(49\) 0 0
\(50\) −0.486718 + 1.32782i −0.0688323 + 0.187782i
\(51\) 4.78426i 0.669930i
\(52\) 1.15804 1.36738i 0.160591 0.189622i
\(53\) 0.179724 0.0246870 0.0123435 0.999924i \(-0.496071\pi\)
0.0123435 + 0.999924i \(0.496071\pi\)
\(54\) 2.11079 5.75846i 0.287242 0.783628i
\(55\) −4.86043 −0.655380
\(56\) 0 0
\(57\) 2.36821 0.313677
\(58\) −4.73617 + 12.9208i −0.621890 + 1.69658i
\(59\) −11.3657 −1.47969 −0.739846 0.672776i \(-0.765102\pi\)
−0.739846 + 0.672776i \(0.765102\pi\)
\(60\) 1.04960 1.23935i 0.135503 0.159999i
\(61\) 6.15579i 0.788168i 0.919075 + 0.394084i \(0.128938\pi\)
−0.919075 + 0.394084i \(0.871062\pi\)
\(62\) 2.14893 5.86252i 0.272914 0.744541i
\(63\) 0 0
\(64\) 4.09438 6.87285i 0.511798 0.859106i
\(65\) 0.895933 0.111127
\(66\) 5.24073 + 1.92101i 0.645090 + 0.236460i
\(67\) 7.79905i 0.952806i −0.879227 0.476403i \(-0.841940\pi\)
0.879227 0.476403i \(-0.158060\pi\)
\(68\) 7.61522 8.99190i 0.923481 1.09043i
\(69\) 1.26801i 0.152651i
\(70\) 0 0
\(71\) 8.38078i 0.994616i 0.867574 + 0.497308i \(0.165678\pi\)
−0.867574 + 0.497308i \(0.834322\pi\)
\(72\) 5.75575 3.27081i 0.678321 0.385468i
\(73\) 8.78095i 1.02773i −0.857870 0.513866i \(-0.828213\pi\)
0.857870 0.513866i \(-0.171787\pi\)
\(74\) −0.886490 + 2.41844i −0.103052 + 0.281138i
\(75\) 0.812042 0.0937665
\(76\) 4.45099 + 3.76954i 0.510564 + 0.432396i
\(77\) 0 0
\(78\) −0.966036 0.354104i −0.109382 0.0400944i
\(79\) 3.63368i 0.408821i 0.978885 + 0.204410i \(0.0655277\pi\)
−0.978885 + 0.204410i \(0.934472\pi\)
\(80\) 3.94540 0.658646i 0.441109 0.0736389i
\(81\) 3.50012 0.388902
\(82\) 13.9315 + 5.10665i 1.53848 + 0.563935i
\(83\) 2.03796 0.223695 0.111847 0.993725i \(-0.464323\pi\)
0.111847 + 0.993725i \(0.464323\pi\)
\(84\) 0 0
\(85\) 5.89164 0.639038
\(86\) 4.04428 + 1.48245i 0.436106 + 0.159856i
\(87\) 7.90185 0.847167
\(88\) 6.79211 + 11.9523i 0.724041 + 1.27412i
\(89\) 1.76452i 0.187039i −0.995617 0.0935195i \(-0.970188\pi\)
0.995617 0.0935195i \(-0.0298118\pi\)
\(90\) 3.10788 + 1.13921i 0.327599 + 0.120083i
\(91\) 0 0
\(92\) −2.01832 + 2.38320i −0.210425 + 0.248465i
\(93\) −3.58528 −0.371777
\(94\) −2.54034 + 6.93032i −0.262016 + 0.714808i
\(95\) 2.91636i 0.299213i
\(96\) −4.51443 0.849178i −0.460752 0.0866689i
\(97\) 7.83641i 0.795667i −0.917458 0.397834i \(-0.869762\pi\)
0.917458 0.397834i \(-0.130238\pi\)
\(98\) 0 0
\(99\) 11.3763i 1.14336i
\(100\) 1.52621 + 1.29255i 0.152621 + 0.129255i
\(101\) 7.28536i 0.724920i −0.931999 0.362460i \(-0.881937\pi\)
0.931999 0.362460i \(-0.118063\pi\)
\(102\) −6.35264 2.32858i −0.629005 0.230564i
\(103\) −9.21049 −0.907537 −0.453768 0.891120i \(-0.649921\pi\)
−0.453768 + 0.891120i \(0.649921\pi\)
\(104\) −1.25200 2.20319i −0.122769 0.216041i
\(105\) 0 0
\(106\) 0.0874748 0.238641i 0.00849630 0.0231789i
\(107\) 14.9889i 1.44903i −0.689258 0.724516i \(-0.742063\pi\)
0.689258 0.724516i \(-0.257937\pi\)
\(108\) −6.61885 5.60549i −0.636899 0.539389i
\(109\) 1.59122 0.152411 0.0762056 0.997092i \(-0.475719\pi\)
0.0762056 + 0.997092i \(0.475719\pi\)
\(110\) −2.36566 + 6.45377i −0.225556 + 0.615343i
\(111\) 1.47902 0.140383
\(112\) 0 0
\(113\) 3.57866 0.336652 0.168326 0.985731i \(-0.446164\pi\)
0.168326 + 0.985731i \(0.446164\pi\)
\(114\) 1.15265 3.14456i 0.107955 0.294515i
\(115\) −1.56151 −0.145612
\(116\) 14.8513 + 12.5776i 1.37891 + 1.16780i
\(117\) 2.09701i 0.193869i
\(118\) −5.53190 + 15.0917i −0.509253 + 1.38930i
\(119\) 0 0
\(120\) −1.13477 1.99689i −0.103590 0.182291i
\(121\) −12.6238 −1.14761
\(122\) 8.17377 + 2.99613i 0.740019 + 0.271257i
\(123\) 8.51996i 0.768219i
\(124\) −6.73845 5.70678i −0.605131 0.512484i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 7.67404i 0.680961i −0.940252 0.340481i \(-0.889410\pi\)
0.940252 0.340481i \(-0.110590\pi\)
\(128\) −7.13310 8.78174i −0.630483 0.776203i
\(129\) 2.47332i 0.217764i
\(130\) 0.436066 1.18964i 0.0382456 0.104338i
\(131\) −19.9081 −1.73938 −0.869689 0.493600i \(-0.835681\pi\)
−0.869689 + 0.493600i \(0.835681\pi\)
\(132\) 5.10151 6.02376i 0.444030 0.524301i
\(133\) 0 0
\(134\) −10.3557 3.79593i −0.894599 0.327919i
\(135\) 4.33678i 0.373251i
\(136\) −8.23316 14.4882i −0.705987 1.24235i
\(137\) −8.83618 −0.754926 −0.377463 0.926025i \(-0.623203\pi\)
−0.377463 + 0.926025i \(0.623203\pi\)
\(138\) 1.68369 + 0.617163i 0.143325 + 0.0525364i
\(139\) −7.91285 −0.671159 −0.335580 0.942012i \(-0.608932\pi\)
−0.335580 + 0.942012i \(0.608932\pi\)
\(140\) 0 0
\(141\) 4.23831 0.356930
\(142\) 11.1282 + 4.07907i 0.933855 + 0.342308i
\(143\) 4.35462 0.364152
\(144\) −1.54162 9.23456i −0.128468 0.769546i
\(145\) 9.73084i 0.808102i
\(146\) −11.6595 4.27384i −0.964949 0.353706i
\(147\) 0 0
\(148\) 2.77979 + 2.35420i 0.228497 + 0.193514i
\(149\) −1.72300 −0.141154 −0.0705770 0.997506i \(-0.522484\pi\)
−0.0705770 + 0.997506i \(0.522484\pi\)
\(150\) 0.395235 1.07825i 0.0322708 0.0880384i
\(151\) 0.814130i 0.0662529i −0.999451 0.0331265i \(-0.989454\pi\)
0.999451 0.0331265i \(-0.0105464\pi\)
\(152\) 7.17164 4.07541i 0.581697 0.330560i
\(153\) 13.7899i 1.11485i
\(154\) 0 0
\(155\) 4.41515i 0.354633i
\(156\) −0.940373 + 1.11037i −0.0752901 + 0.0889010i
\(157\) 13.3553i 1.06587i 0.846157 + 0.532934i \(0.178911\pi\)
−0.846157 + 0.532934i \(0.821089\pi\)
\(158\) 4.82487 + 1.76858i 0.383846 + 0.140700i
\(159\) −0.145943 −0.0115741
\(160\) 1.04573 5.55936i 0.0826724 0.439506i
\(161\) 0 0
\(162\) 1.70357 4.64753i 0.133845 0.365144i
\(163\) 8.97711i 0.703142i −0.936161 0.351571i \(-0.885648\pi\)
0.936161 0.351571i \(-0.114352\pi\)
\(164\) 13.5614 16.0130i 1.05897 1.25041i
\(165\) 3.94687 0.307263
\(166\) 0.991910 2.70604i 0.0769871 0.210029i
\(167\) −17.0324 −1.31801 −0.659003 0.752140i \(-0.729022\pi\)
−0.659003 + 0.752140i \(0.729022\pi\)
\(168\) 0 0
\(169\) 12.1973 0.938254
\(170\) 2.86757 7.82304i 0.219932 0.600000i
\(171\) 6.82601 0.521998
\(172\) 3.93685 4.64854i 0.300182 0.354448i
\(173\) 16.4660i 1.25188i −0.779869 0.625942i \(-0.784715\pi\)
0.779869 0.625942i \(-0.215285\pi\)
\(174\) 3.84597 10.4922i 0.291562 0.795414i
\(175\) 0 0
\(176\) 19.1763 3.20130i 1.44547 0.241307i
\(177\) 9.22945 0.693728
\(178\) −2.34297 0.858824i −0.175613 0.0643716i
\(179\) 10.6983i 0.799629i 0.916596 + 0.399815i \(0.130926\pi\)
−0.916596 + 0.399815i \(0.869074\pi\)
\(180\) 3.02532 3.57223i 0.225494 0.266259i
\(181\) 10.8661i 0.807672i −0.914831 0.403836i \(-0.867677\pi\)
0.914831 0.403836i \(-0.132323\pi\)
\(182\) 0 0
\(183\) 4.99875i 0.369519i
\(184\) 2.18210 + 3.83992i 0.160867 + 0.283082i
\(185\) 1.82136i 0.133909i
\(186\) −1.74502 + 4.76061i −0.127951 + 0.349065i
\(187\) 28.6359 2.09406
\(188\) 7.96579 + 6.74622i 0.580965 + 0.492018i
\(189\) 0 0
\(190\) 3.87241 + 1.41945i 0.280934 + 0.102977i
\(191\) 0.507180i 0.0366983i 0.999832 + 0.0183491i \(0.00584104\pi\)
−0.999832 + 0.0183491i \(0.994159\pi\)
\(192\) −3.32481 + 5.58104i −0.239947 + 0.402777i
\(193\) −20.8195 −1.49862 −0.749311 0.662218i \(-0.769615\pi\)
−0.749311 + 0.662218i \(0.769615\pi\)
\(194\) −10.4053 3.81412i −0.747060 0.273838i
\(195\) −0.727535 −0.0520999
\(196\) 0 0
\(197\) −8.86095 −0.631317 −0.315658 0.948873i \(-0.602225\pi\)
−0.315658 + 0.948873i \(0.602225\pi\)
\(198\) 15.1056 + 5.53702i 1.07351 + 0.393499i
\(199\) −23.2162 −1.64576 −0.822878 0.568218i \(-0.807633\pi\)
−0.822878 + 0.568218i \(0.807633\pi\)
\(200\) 2.45910 1.39743i 0.173885 0.0988132i
\(201\) 6.33315i 0.446706i
\(202\) −9.67365 3.54591i −0.680635 0.249490i
\(203\) 0 0
\(204\) −6.18388 + 7.30179i −0.432958 + 0.511228i
\(205\) 10.4920 0.732794
\(206\) −4.48291 + 12.2299i −0.312339 + 0.852096i
\(207\) 3.65485i 0.254030i
\(208\) −3.53482 + 0.590103i −0.245095 + 0.0409163i
\(209\) 14.1748i 0.980490i
\(210\) 0 0
\(211\) 6.21092i 0.427578i −0.976880 0.213789i \(-0.931420\pi\)
0.976880 0.213789i \(-0.0685804\pi\)
\(212\) −0.274297 0.232301i −0.0188388 0.0159545i
\(213\) 6.80555i 0.466308i
\(214\) −19.9026 7.29536i −1.36051 0.498701i
\(215\) 3.04581 0.207722
\(216\) −10.6646 + 6.06035i −0.725634 + 0.412354i
\(217\) 0 0
\(218\) 0.774475 2.11285i 0.0524541 0.143101i
\(219\) 7.13050i 0.481835i
\(220\) 7.41804 + 6.28233i 0.500124 + 0.423555i
\(221\) −5.27852 −0.355072
\(222\) 0.719867 1.96388i 0.0483143 0.131807i
\(223\) 12.8221 0.858632 0.429316 0.903154i \(-0.358755\pi\)
0.429316 + 0.903154i \(0.358755\pi\)
\(224\) 0 0
\(225\) 2.34059 0.156039
\(226\) 1.74180 4.75182i 0.115863 0.316086i
\(227\) −3.60664 −0.239381 −0.119691 0.992811i \(-0.538190\pi\)
−0.119691 + 0.992811i \(0.538190\pi\)
\(228\) −3.61439 3.06102i −0.239369 0.202721i
\(229\) 17.7880i 1.17546i −0.809055 0.587732i \(-0.800021\pi\)
0.809055 0.587732i \(-0.199979\pi\)
\(230\) −0.760014 + 2.07340i −0.0501139 + 0.136716i
\(231\) 0 0
\(232\) 23.9291 13.5982i 1.57103 0.892763i
\(233\) 0.274073 0.0179551 0.00897756 0.999960i \(-0.497142\pi\)
0.00897756 + 0.999960i \(0.497142\pi\)
\(234\) −2.78445 1.02065i −0.182025 0.0667221i
\(235\) 5.21932i 0.340471i
\(236\) 17.3465 + 14.6907i 1.12916 + 0.956286i
\(237\) 2.95070i 0.191668i
\(238\) 0 0
\(239\) 23.0254i 1.48939i −0.667406 0.744694i \(-0.732595\pi\)
0.667406 0.744694i \(-0.267405\pi\)
\(240\) −3.20383 + 0.534848i −0.206806 + 0.0345243i
\(241\) 3.75520i 0.241894i 0.992659 + 0.120947i \(0.0385930\pi\)
−0.992659 + 0.120947i \(0.961407\pi\)
\(242\) −6.14420 + 16.7621i −0.394964 + 1.07751i
\(243\) −15.8526 −1.01694
\(244\) 7.95664 9.39503i 0.509372 0.601455i
\(245\) 0 0
\(246\) −11.3130 4.14681i −0.721289 0.264391i
\(247\) 2.61287i 0.166253i
\(248\) −10.8573 + 6.16986i −0.689440 + 0.391786i
\(249\) −1.65491 −0.104875
\(250\) 1.32782 + 0.486718i 0.0839787 + 0.0307827i
\(251\) −0.268218 −0.0169298 −0.00846489 0.999964i \(-0.502694\pi\)
−0.00846489 + 0.999964i \(0.502694\pi\)
\(252\) 0 0
\(253\) −7.58961 −0.477155
\(254\) −10.1897 3.73509i −0.639362 0.234360i
\(255\) −4.78426 −0.299602
\(256\) −15.1324 + 5.19725i −0.945773 + 0.324828i
\(257\) 31.0853i 1.93905i 0.244997 + 0.969524i \(0.421213\pi\)
−0.244997 + 0.969524i \(0.578787\pi\)
\(258\) −3.28413 1.20381i −0.204461 0.0749459i
\(259\) 0 0
\(260\) −1.36738 1.15804i −0.0848016 0.0718183i
\(261\) 22.7759 1.40979
\(262\) −9.68962 + 26.4344i −0.598627 + 1.63312i
\(263\) 27.8461i 1.71706i −0.512760 0.858532i \(-0.671377\pi\)
0.512760 0.858532i \(-0.328623\pi\)
\(264\) −5.51547 9.70576i −0.339454 0.597348i
\(265\) 0.179724i 0.0110404i
\(266\) 0 0
\(267\) 1.43287i 0.0876900i
\(268\) −10.0806 + 11.9030i −0.615773 + 0.727092i
\(269\) 1.44485i 0.0880939i −0.999029 0.0440470i \(-0.985975\pi\)
0.999029 0.0440470i \(-0.0140251\pi\)
\(270\) −5.75846 2.11079i −0.350449 0.128458i
\(271\) 13.9942 0.850085 0.425042 0.905173i \(-0.360259\pi\)
0.425042 + 0.905173i \(0.360259\pi\)
\(272\) −23.2449 + 3.88051i −1.40943 + 0.235290i
\(273\) 0 0
\(274\) −4.30072 + 11.7329i −0.259816 + 0.708808i
\(275\) 4.86043i 0.293095i
\(276\) 1.63896 1.93525i 0.0986540 0.116489i
\(277\) 18.5135 1.11237 0.556184 0.831059i \(-0.312265\pi\)
0.556184 + 0.831059i \(0.312265\pi\)
\(278\) −3.85132 + 10.5068i −0.230987 + 0.630159i
\(279\) −10.3340 −0.618683
\(280\) 0 0
\(281\) −9.00853 −0.537404 −0.268702 0.963223i \(-0.586595\pi\)
−0.268702 + 0.963223i \(0.586595\pi\)
\(282\) 2.06286 5.62771i 0.122841 0.335125i
\(283\) 27.2951 1.62252 0.811261 0.584684i \(-0.198781\pi\)
0.811261 + 0.584684i \(0.198781\pi\)
\(284\) 10.8326 12.7909i 0.642794 0.758997i
\(285\) 2.36821i 0.140281i
\(286\) 2.11947 5.78215i 0.125327 0.341906i
\(287\) 0 0
\(288\) −13.0122 2.44763i −0.766749 0.144228i
\(289\) −17.7114 −1.04185
\(290\) 12.9208 + 4.73617i 0.758736 + 0.278118i
\(291\) 6.36350i 0.373035i
\(292\) −11.3498 + 13.4016i −0.664196 + 0.784269i
\(293\) 10.6330i 0.621188i −0.950543 0.310594i \(-0.899472\pi\)
0.950543 0.310594i \(-0.100528\pi\)
\(294\) 0 0
\(295\) 11.3657i 0.661739i
\(296\) 4.47892 2.54523i 0.260332 0.147938i
\(297\) 21.0786i 1.22310i
\(298\) −0.838617 + 2.28784i −0.0485798 + 0.132531i
\(299\) 1.39901 0.0809068
\(300\) −1.23935 1.04960i −0.0715538 0.0605988i
\(301\) 0 0
\(302\) −1.08102 0.396251i −0.0622056 0.0228017i
\(303\) 5.91602i 0.339866i
\(304\) −1.92085 11.5062i −0.110168 0.659927i
\(305\) 6.15579 0.352479
\(306\) −18.3105 6.71179i −1.04674 0.383688i
\(307\) 17.9812 1.02624 0.513120 0.858317i \(-0.328490\pi\)
0.513120 + 0.858317i \(0.328490\pi\)
\(308\) 0 0
\(309\) 7.47930 0.425483
\(310\) −5.86252 2.14893i −0.332969 0.122051i
\(311\) −28.3158 −1.60564 −0.802821 0.596220i \(-0.796669\pi\)
−0.802821 + 0.596220i \(0.796669\pi\)
\(312\) 1.01668 + 1.78908i 0.0575581 + 0.101287i
\(313\) 5.59496i 0.316246i 0.987419 + 0.158123i \(0.0505442\pi\)
−0.987419 + 0.158123i \(0.949456\pi\)
\(314\) 17.7334 + 6.50025i 1.00075 + 0.366830i
\(315\) 0 0
\(316\) 4.69670 5.54576i 0.264210 0.311974i
\(317\) 31.3472 1.76064 0.880318 0.474383i \(-0.157329\pi\)
0.880318 + 0.474383i \(0.157329\pi\)
\(318\) −0.0710332 + 0.193786i −0.00398334 + 0.0108670i
\(319\) 47.2960i 2.64807i
\(320\) −6.87285 4.09438i −0.384204 0.228883i
\(321\) 12.1716i 0.679353i
\(322\) 0 0
\(323\) 17.1822i 0.956042i
\(324\) −5.34192 4.52406i −0.296773 0.251337i
\(325\) 0.895933i 0.0496974i
\(326\) −11.9200 4.36932i −0.660187 0.241994i
\(327\) −1.29214 −0.0714554
\(328\) −14.6619 25.8010i −0.809566 1.42462i
\(329\) 0 0
\(330\) 1.92101 5.24073i 0.105748 0.288493i
\(331\) 21.5135i 1.18249i 0.806493 + 0.591244i \(0.201363\pi\)
−0.806493 + 0.591244i \(0.798637\pi\)
\(332\) −3.11035 2.63415i −0.170703 0.144568i
\(333\) 4.26306 0.233615
\(334\) −8.28997 + 22.6160i −0.453607 + 1.23749i
\(335\) −7.79905 −0.426108
\(336\) 0 0
\(337\) −0.0584151 −0.00318207 −0.00159104 0.999999i \(-0.500506\pi\)
−0.00159104 + 0.999999i \(0.500506\pi\)
\(338\) 5.93664 16.1958i 0.322911 0.880937i
\(339\) −2.90602 −0.157833
\(340\) −8.99190 7.61522i −0.487654 0.412993i
\(341\) 21.4595i 1.16210i
\(342\) 3.32234 9.06371i 0.179651 0.490109i
\(343\) 0 0
\(344\) −4.25630 7.48995i −0.229484 0.403831i
\(345\) 1.26801 0.0682674
\(346\) −21.8638 8.01428i −1.17541 0.430850i
\(347\) 8.81362i 0.473140i −0.971614 0.236570i \(-0.923977\pi\)
0.971614 0.236570i \(-0.0760233\pi\)
\(348\) −12.0599 10.2135i −0.646478 0.547502i
\(349\) 1.78555i 0.0955784i 0.998857 + 0.0477892i \(0.0152176\pi\)
−0.998857 + 0.0477892i \(0.984782\pi\)
\(350\) 0 0
\(351\) 3.88547i 0.207391i
\(352\) 5.08270 27.0208i 0.270909 1.44022i
\(353\) 27.4929i 1.46330i 0.681679 + 0.731651i \(0.261250\pi\)
−0.681679 + 0.731651i \(0.738750\pi\)
\(354\) 4.49214 12.2551i 0.238754 0.651349i
\(355\) 8.38078 0.444806
\(356\) −2.28073 + 2.69304i −0.120878 + 0.142731i
\(357\) 0 0
\(358\) 14.2054 + 5.20706i 0.750780 + 0.275201i
\(359\) 18.6043i 0.981895i 0.871189 + 0.490948i \(0.163349\pi\)
−0.871189 + 0.490948i \(0.836651\pi\)
\(360\) −3.27081 5.75575i −0.172387 0.303355i
\(361\) −10.4948 −0.552359
\(362\) −14.4283 5.28873i −0.758332 0.277970i
\(363\) 10.2510 0.538039
\(364\) 0 0
\(365\) −8.78095 −0.459616
\(366\) −6.63745 2.43298i −0.346945 0.127174i
\(367\) 21.9844 1.14758 0.573788 0.819004i \(-0.305474\pi\)
0.573788 + 0.819004i \(0.305474\pi\)
\(368\) 6.16078 1.02848i 0.321153 0.0536134i
\(369\) 24.5575i 1.27841i
\(370\) 2.41844 + 0.886490i 0.125729 + 0.0460864i
\(371\) 0 0
\(372\) 5.47190 + 4.63415i 0.283705 + 0.240269i
\(373\) 0.565616 0.0292865 0.0146433 0.999893i \(-0.495339\pi\)
0.0146433 + 0.999893i \(0.495339\pi\)
\(374\) 13.9376 38.0233i 0.720696 1.96614i
\(375\) 0.812042i 0.0419337i
\(376\) 12.8348 7.29363i 0.661907 0.376140i
\(377\) 8.71818i 0.449009i
\(378\) 0 0
\(379\) 28.3294i 1.45518i 0.686010 + 0.727592i \(0.259361\pi\)
−0.686010 + 0.727592i \(0.740639\pi\)
\(380\) 3.76954 4.45099i 0.193373 0.228331i
\(381\) 6.23164i 0.319257i
\(382\) 0.673444 + 0.246854i 0.0344564 + 0.0126301i
\(383\) 3.08601 0.157688 0.0788438 0.996887i \(-0.474877\pi\)
0.0788438 + 0.996887i \(0.474877\pi\)
\(384\) 5.79237 + 7.13114i 0.295591 + 0.363909i
\(385\) 0 0
\(386\) −10.1332 + 27.6446i −0.515768 + 1.40707i
\(387\) 7.12898i 0.362386i
\(388\) −10.1289 + 11.9600i −0.514219 + 0.607179i
\(389\) 16.3537 0.829165 0.414583 0.910012i \(-0.363928\pi\)
0.414583 + 0.910012i \(0.363928\pi\)
\(390\) −0.354104 + 0.966036i −0.0179308 + 0.0489171i
\(391\) 9.19986 0.465257
\(392\) 0 0
\(393\) 16.1662 0.815477
\(394\) −4.31278 + 11.7658i −0.217275 + 0.592750i
\(395\) 3.63368 0.182830
\(396\) 14.7043 17.3626i 0.738921 0.872503i
\(397\) 7.82460i 0.392706i 0.980533 + 0.196353i \(0.0629098\pi\)
−0.980533 + 0.196353i \(0.937090\pi\)
\(398\) −11.2998 + 30.8270i −0.566406 + 1.54522i
\(399\) 0 0
\(400\) −0.658646 3.94540i −0.0329323 0.197270i
\(401\) −19.7876 −0.988145 −0.494072 0.869421i \(-0.664492\pi\)
−0.494072 + 0.869421i \(0.664492\pi\)
\(402\) 8.40929 + 3.08246i 0.419417 + 0.153739i
\(403\) 3.95568i 0.197046i
\(404\) −9.41667 + 11.1190i −0.468497 + 0.553191i
\(405\) 3.50012i 0.173922i
\(406\) 0 0
\(407\) 8.85261i 0.438808i
\(408\) 6.68567 + 11.7650i 0.330990 + 0.582454i
\(409\) 25.3014i 1.25107i 0.780195 + 0.625536i \(0.215120\pi\)
−0.780195 + 0.625536i \(0.784880\pi\)
\(410\) 5.10665 13.9315i 0.252199 0.688028i
\(411\) 7.17535 0.353934
\(412\) 14.0572 + 11.9050i 0.692547 + 0.586517i
\(413\) 0 0
\(414\) 4.85299 + 1.77888i 0.238511 + 0.0874272i
\(415\) 2.03796i 0.100039i
\(416\) −0.936906 + 4.98081i −0.0459356 + 0.244204i
\(417\) 6.42557 0.314661
\(418\) 18.8216 + 6.89911i 0.920592 + 0.337447i
\(419\) −16.6804 −0.814889 −0.407445 0.913230i \(-0.633580\pi\)
−0.407445 + 0.913230i \(0.633580\pi\)
\(420\) 0 0
\(421\) 3.13305 0.152695 0.0763477 0.997081i \(-0.475674\pi\)
0.0763477 + 0.997081i \(0.475674\pi\)
\(422\) −8.24699 3.02296i −0.401457 0.147156i
\(423\) 12.2163 0.593976
\(424\) −0.441960 + 0.251151i −0.0214635 + 0.0121970i
\(425\) 5.89164i 0.285787i
\(426\) −9.03654 3.31238i −0.437822 0.160485i
\(427\) 0 0
\(428\) −19.3739 + 22.8762i −0.936470 + 1.10576i
\(429\) −3.53613 −0.170726
\(430\) 1.48245 4.04428i 0.0714899 0.195033i
\(431\) 27.1921i 1.30980i −0.755717 0.654898i \(-0.772711\pi\)
0.755717 0.654898i \(-0.227289\pi\)
\(432\) 2.85640 + 17.1103i 0.137429 + 0.823221i
\(433\) 32.0204i 1.53880i 0.638766 + 0.769401i \(0.279445\pi\)
−0.638766 + 0.769401i \(0.720555\pi\)
\(434\) 0 0
\(435\) 7.90185i 0.378865i
\(436\) −2.42854 2.05673i −0.116306 0.0984994i
\(437\) 4.55393i 0.217844i
\(438\) 9.46802 + 3.47054i 0.452400 + 0.165829i
\(439\) 20.1003 0.959335 0.479668 0.877450i \(-0.340757\pi\)
0.479668 + 0.877450i \(0.340757\pi\)
\(440\) 11.9523 6.79211i 0.569803 0.323801i
\(441\) 0 0
\(442\) −2.56915 + 7.00892i −0.122202 + 0.333380i
\(443\) 14.8968i 0.707768i 0.935289 + 0.353884i \(0.115139\pi\)
−0.935289 + 0.353884i \(0.884861\pi\)
\(444\) −2.25730 1.91171i −0.107127 0.0907256i
\(445\) −1.76452 −0.0836464
\(446\) 6.24074 17.0255i 0.295508 0.806178i
\(447\) 1.39915 0.0661776
\(448\) 0 0
\(449\) −6.18602 −0.291936 −0.145968 0.989289i \(-0.546630\pi\)
−0.145968 + 0.989289i \(0.546630\pi\)
\(450\) 1.13921 3.10788i 0.0537027 0.146507i
\(451\) 50.9957 2.40129
\(452\) −5.46180 4.62559i −0.256901 0.217569i
\(453\) 0.661107i 0.0310615i
\(454\) −1.75542 + 4.78898i −0.0823858 + 0.224758i
\(455\) 0 0
\(456\) −5.82367 + 3.30941i −0.272718 + 0.154977i
\(457\) −23.3503 −1.09228 −0.546140 0.837694i \(-0.683903\pi\)
−0.546140 + 0.837694i \(0.683903\pi\)
\(458\) −23.6193 8.65774i −1.10366 0.404549i
\(459\) 25.5508i 1.19261i
\(460\) 2.38320 + 2.01832i 0.111117 + 0.0941049i
\(461\) 17.4080i 0.810772i −0.914146 0.405386i \(-0.867137\pi\)
0.914146 0.405386i \(-0.132863\pi\)
\(462\) 0 0
\(463\) 0.962509i 0.0447316i 0.999750 + 0.0223658i \(0.00711985\pi\)
−0.999750 + 0.0223658i \(0.992880\pi\)
\(464\) −6.40918 38.3921i −0.297539 1.78231i
\(465\) 3.58528i 0.166264i
\(466\) 0.133396 0.363920i 0.00617946 0.0168583i
\(467\) 0.290981 0.0134650 0.00673249 0.999977i \(-0.497857\pi\)
0.00673249 + 0.999977i \(0.497857\pi\)
\(468\) −2.71048 + 3.20048i −0.125292 + 0.147942i
\(469\) 0 0
\(470\) 6.93032 + 2.54034i 0.319672 + 0.117177i
\(471\) 10.8450i 0.499713i
\(472\) 27.9495 15.8828i 1.28648 0.731066i
\(473\) 14.8039 0.680685
\(474\) −3.91800 1.43616i −0.179960 0.0659649i
\(475\) 2.91636 0.133812
\(476\) 0 0
\(477\) −0.420660 −0.0192607
\(478\) −30.5736 11.2069i −1.39840 0.512590i
\(479\) −19.7896 −0.904211 −0.452106 0.891964i \(-0.649327\pi\)
−0.452106 + 0.891964i \(0.649327\pi\)
\(480\) −0.849178 + 4.51443i −0.0387595 + 0.206055i
\(481\) 1.63182i 0.0744047i
\(482\) 4.98623 + 1.82772i 0.227116 + 0.0832504i
\(483\) 0 0
\(484\) 19.2665 + 16.3168i 0.875751 + 0.741672i
\(485\) −7.83641 −0.355833
\(486\) −7.71573 + 21.0494i −0.349993 + 0.954819i
\(487\) 22.6215i 1.02508i 0.858664 + 0.512540i \(0.171295\pi\)
−0.858664 + 0.512540i \(0.828705\pi\)
\(488\) −8.60228 15.1377i −0.389407 0.685252i
\(489\) 7.28979i 0.329656i
\(490\) 0 0
\(491\) 38.9565i 1.75808i −0.476745 0.879042i \(-0.658184\pi\)
0.476745 0.879042i \(-0.341816\pi\)
\(492\) −11.0124 + 13.0033i −0.496479 + 0.586232i
\(493\) 57.3306i 2.58204i
\(494\) −3.46942 1.27173i −0.156097 0.0572178i
\(495\) 11.3763 0.511325
\(496\) 2.90802 + 17.4195i 0.130574 + 0.782160i
\(497\) 0 0
\(498\) −0.805472 + 2.19742i −0.0360941 + 0.0984686i
\(499\) 37.6583i 1.68582i 0.538056 + 0.842909i \(0.319159\pi\)
−0.538056 + 0.842909i \(0.680841\pi\)
\(500\) 1.29255 1.52621i 0.0578044 0.0682543i
\(501\) 13.8310 0.617925
\(502\) −0.130546 + 0.356145i −0.00582657 + 0.0158955i
\(503\) 42.9688 1.91589 0.957943 0.286959i \(-0.0926442\pi\)
0.957943 + 0.286959i \(0.0926442\pi\)
\(504\) 0 0
\(505\) −7.28536 −0.324194
\(506\) −3.69400 + 10.0776i −0.164218 + 0.448005i
\(507\) −9.90472 −0.439884
\(508\) −9.91906 + 11.7122i −0.440087 + 0.519646i
\(509\) 4.77741i 0.211755i −0.994379 0.105877i \(-0.966235\pi\)
0.994379 0.105877i \(-0.0337651\pi\)
\(510\) −2.32858 + 6.35264i −0.103111 + 0.281299i
\(511\) 0 0
\(512\) −0.464182 + 22.6227i −0.0205141 + 0.999790i
\(513\) −12.6476 −0.558407
\(514\) 41.2757 + 15.1298i 1.82059 + 0.667345i
\(515\) 9.21049i 0.405863i
\(516\) −3.19688 + 3.77481i −0.140735 + 0.166177i
\(517\) 25.3681i 1.11569i
\(518\) 0 0
\(519\) 13.3711i 0.586924i
\(520\) −2.20319 + 1.25200i −0.0966164 + 0.0549040i
\(521\) 18.2934i 0.801448i −0.916199 0.400724i \(-0.868759\pi\)
0.916199 0.400724i \(-0.131241\pi\)
\(522\) 11.0854 30.2423i 0.485196 1.32367i
\(523\) 18.5125 0.809494 0.404747 0.914429i \(-0.367360\pi\)
0.404747 + 0.914429i \(0.367360\pi\)
\(524\) 30.3840 + 25.7321i 1.32733 + 1.12411i
\(525\) 0 0
\(526\) −36.9746 13.5532i −1.61217 0.590947i
\(527\) 26.0125i 1.13312i
\(528\) −15.5720 + 2.59959i −0.677684 + 0.113133i
\(529\) 20.5617 0.893986
\(530\) −0.238641 0.0874748i −0.0103659 0.00379966i
\(531\) 26.6025 1.15445
\(532\) 0 0
\(533\) −9.40015 −0.407166
\(534\) 1.90259 + 0.697401i 0.0823331 + 0.0301795i
\(535\) −14.9889 −0.648027
\(536\) 10.8986 + 19.1787i 0.470749 + 0.828392i
\(537\) 8.68748i 0.374892i
\(538\) −1.91850 0.703233i −0.0827123 0.0303185i
\(539\) 0 0
\(540\) −5.60549 + 6.61885i −0.241222 + 0.284830i
\(541\) −3.99622 −0.171811 −0.0859055 0.996303i \(-0.527378\pi\)
−0.0859055 + 0.996303i \(0.527378\pi\)
\(542\) 6.81120 18.5817i 0.292566 0.798153i
\(543\) 8.82374i 0.378663i
\(544\) −6.16108 + 32.7537i −0.264154 + 1.40430i
\(545\) 1.59122i 0.0681604i
\(546\) 0 0
\(547\) 13.3961i 0.572774i −0.958114 0.286387i \(-0.907546\pi\)
0.958114 0.286387i \(-0.0924543\pi\)
\(548\) 13.4859 + 11.4212i 0.576088 + 0.487888i
\(549\) 14.4082i 0.614925i
\(550\) 6.45377 + 2.36566i 0.275190 + 0.100872i
\(551\) 28.3787 1.20897
\(552\) −1.77196 3.11817i −0.0754195 0.132718i
\(553\) 0 0
\(554\) 9.01084 24.5826i 0.382834 1.04441i
\(555\) 1.47902i 0.0627811i
\(556\) 12.0767 + 10.2277i 0.512166 + 0.433752i
\(557\) 14.4120 0.610654 0.305327 0.952248i \(-0.401234\pi\)
0.305327 + 0.952248i \(0.401234\pi\)
\(558\) −5.02976 + 13.7217i −0.212927 + 0.580888i
\(559\) −2.72884 −0.115418
\(560\) 0 0
\(561\) −23.2535 −0.981766
\(562\) −4.38461 + 11.9617i −0.184954 + 0.504574i
\(563\) −6.67914 −0.281492 −0.140746 0.990046i \(-0.544950\pi\)
−0.140746 + 0.990046i \(0.544950\pi\)
\(564\) −6.46855 5.47821i −0.272375 0.230674i
\(565\) 3.57866i 0.150555i
\(566\) 13.2850 36.2429i 0.558410 1.52340i
\(567\) 0 0
\(568\) −11.7116 20.6092i −0.491406 0.864743i
\(569\) 20.9023 0.876269 0.438134 0.898909i \(-0.355639\pi\)
0.438134 + 0.898909i \(0.355639\pi\)
\(570\) −3.14456 1.15265i −0.131711 0.0482792i
\(571\) 5.58864i 0.233877i 0.993139 + 0.116939i \(0.0373081\pi\)
−0.993139 + 0.116939i \(0.962692\pi\)
\(572\) −6.64607 5.62855i −0.277886 0.235341i
\(573\) 0.411852i 0.0172053i
\(574\) 0 0
\(575\) 1.56151i 0.0651195i
\(576\) −9.58326 + 16.0865i −0.399302 + 0.670271i
\(577\) 1.81916i 0.0757328i −0.999283 0.0378664i \(-0.987944\pi\)
0.999283 0.0378664i \(-0.0120561\pi\)
\(578\) −8.62047 + 23.5176i −0.358564 + 0.978204i
\(579\) 16.9063 0.702603
\(580\) 12.5776 14.8513i 0.522255 0.616668i
\(581\) 0 0
\(582\) 8.44958 + 3.09723i 0.350246 + 0.128384i
\(583\) 0.873535i 0.0361781i
\(584\) 12.2708 + 21.5933i 0.507768 + 0.893536i
\(585\) −2.09701 −0.0867007
\(586\) −14.1188 5.17528i −0.583240 0.213789i
\(587\) −26.1792 −1.08053 −0.540265 0.841495i \(-0.681676\pi\)
−0.540265 + 0.841495i \(0.681676\pi\)
\(588\) 0 0
\(589\) −12.8762 −0.530554
\(590\) 15.0917 + 5.53190i 0.621313 + 0.227745i
\(591\) 7.19547 0.295982
\(592\) −1.19964 7.18601i −0.0493047 0.295343i
\(593\) 27.6315i 1.13469i 0.823480 + 0.567345i \(0.192030\pi\)
−0.823480 + 0.567345i \(0.807970\pi\)
\(594\) −27.9886 10.2593i −1.14839 0.420945i
\(595\) 0 0
\(596\) 2.62967 + 2.22706i 0.107716 + 0.0912241i
\(597\) 18.8526 0.771584
\(598\) 0.680922 1.85763i 0.0278450 0.0759642i
\(599\) 5.56954i 0.227565i −0.993506 0.113783i \(-0.963703\pi\)
0.993506 0.113783i \(-0.0362967\pi\)
\(600\) −1.99689 + 1.13477i −0.0815229 + 0.0463268i
\(601\) 30.5902i 1.24780i −0.781504 0.623901i \(-0.785547\pi\)
0.781504 0.623901i \(-0.214453\pi\)
\(602\) 0 0
\(603\) 18.2544i 0.743375i
\(604\) −1.05230 + 1.24253i −0.0428175 + 0.0505580i
\(605\) 12.6238i 0.513229i
\(606\) 7.85541 + 2.87943i 0.319104 + 0.116969i
\(607\) −20.2219 −0.820782 −0.410391 0.911910i \(-0.634608\pi\)
−0.410391 + 0.911910i \(0.634608\pi\)
\(608\) −16.2131 3.04974i −0.657528 0.123683i
\(609\) 0 0
\(610\) 2.99613 8.17377i 0.121310 0.330946i
\(611\) 4.67616i 0.189177i
\(612\) −17.8241 + 21.0463i −0.720497 + 0.850747i
\(613\) −22.5021 −0.908850 −0.454425 0.890785i \(-0.650155\pi\)
−0.454425 + 0.890785i \(0.650155\pi\)
\(614\) 8.75175 23.8758i 0.353192 0.963547i
\(615\) −8.51996 −0.343558
\(616\) 0 0
\(617\) 22.5772 0.908922 0.454461 0.890767i \(-0.349832\pi\)
0.454461 + 0.890767i \(0.349832\pi\)
\(618\) 3.64031 9.93117i 0.146435 0.399490i
\(619\) −12.3143 −0.494952 −0.247476 0.968894i \(-0.579601\pi\)
−0.247476 + 0.968894i \(0.579601\pi\)
\(620\) −5.70678 + 6.73845i −0.229190 + 0.270623i
\(621\) 6.77193i 0.271748i
\(622\) −13.7818 + 37.5983i −0.552600 + 1.50755i
\(623\) 0 0
\(624\) 2.87042 0.479188i 0.114909 0.0191829i
\(625\) 1.00000 0.0400000
\(626\) 7.42909 + 2.72316i 0.296926 + 0.108839i
\(627\) 11.5105i 0.459686i
\(628\) 17.2623 20.3830i 0.688842 0.813370i
\(629\) 10.7308i 0.427866i
\(630\) 0 0
\(631\) 22.9961i 0.915459i 0.889091 + 0.457730i \(0.151337\pi\)
−0.889091 + 0.457730i \(0.848663\pi\)
\(632\) −5.07781 8.93559i −0.201984 0.355439i
\(633\) 5.04353i 0.200462i
\(634\) 15.2573 41.6235i 0.605943 1.65308i
\(635\) −7.67404 −0.304535
\(636\) 0.222740 + 0.188639i 0.00883223 + 0.00748000i
\(637\) 0 0
\(638\) 62.8006 + 23.0198i 2.48630 + 0.911363i
\(639\) 19.6160i 0.775995i
\(640\) −8.78174 + 7.13310i −0.347129 + 0.281961i
\(641\) −35.4754 −1.40120 −0.700598 0.713557i \(-0.747083\pi\)
−0.700598 + 0.713557i \(0.747083\pi\)
\(642\) 16.1617 + 5.92414i 0.637852 + 0.233807i
\(643\) −8.46366 −0.333774 −0.166887 0.985976i \(-0.553372\pi\)
−0.166887 + 0.985976i \(0.553372\pi\)
\(644\) 0 0
\(645\) −2.47332 −0.0973869
\(646\) −22.8148 8.36287i −0.897638 0.329033i
\(647\) 4.95408 0.194765 0.0973826 0.995247i \(-0.468953\pi\)
0.0973826 + 0.995247i \(0.468953\pi\)
\(648\) −8.60715 + 4.89117i −0.338121 + 0.192143i
\(649\) 55.2423i 2.16845i
\(650\) −1.18964 0.436066i −0.0466615 0.0171039i
\(651\) 0 0
\(652\) −11.6033 + 13.7010i −0.454422 + 0.536572i
\(653\) −1.89138 −0.0740153 −0.0370076 0.999315i \(-0.511783\pi\)
−0.0370076 + 0.999315i \(0.511783\pi\)
\(654\) −0.628906 + 1.71573i −0.0245922 + 0.0670902i
\(655\) 19.9081i 0.777873i
\(656\) −41.3952 + 6.91053i −1.61621 + 0.269811i
\(657\) 20.5526i 0.801833i
\(658\) 0 0
\(659\) 4.20598i 0.163842i 0.996639 + 0.0819209i \(0.0261055\pi\)
−0.996639 + 0.0819209i \(0.973895\pi\)
\(660\) −6.02376 5.10151i −0.234475 0.198576i
\(661\) 11.3045i 0.439693i 0.975534 + 0.219847i \(0.0705557\pi\)
−0.975534 + 0.219847i \(0.929444\pi\)
\(662\) 28.5660 + 10.4710i 1.11025 + 0.406967i
\(663\) 4.28638 0.166469
\(664\) −5.01155 + 2.84790i −0.194486 + 0.110520i
\(665\) 0 0
\(666\) 2.07491 5.66058i 0.0804011 0.219343i
\(667\) 15.1948i 0.588345i
\(668\) 25.9951 + 22.0152i 1.00578 + 0.851793i
\(669\) −10.4121 −0.402555
\(670\) −3.79593 + 10.3557i −0.146650 + 0.400077i
\(671\) 29.9197 1.15504
\(672\) 0 0
\(673\) −36.8435 −1.42021 −0.710106 0.704095i \(-0.751353\pi\)
−0.710106 + 0.704095i \(0.751353\pi\)
\(674\) −0.0284316 + 0.0775647i −0.00109515 + 0.00298768i
\(675\) −4.33678 −0.166923
\(676\) −18.6157 15.7656i −0.715987 0.606369i
\(677\) 27.7945i 1.06823i −0.845412 0.534115i \(-0.820645\pi\)
0.845412 0.534115i \(-0.179355\pi\)
\(678\) −1.41441 + 3.85867i −0.0543202 + 0.148191i
\(679\) 0 0
\(680\) −14.4882 + 8.23316i −0.555595 + 0.315727i
\(681\) 2.92875 0.112230
\(682\) −28.4944 10.4447i −1.09111 0.399949i
\(683\) 47.2406i 1.80761i −0.427942 0.903806i \(-0.640761\pi\)
0.427942 0.903806i \(-0.359239\pi\)
\(684\) −10.4179 8.82293i −0.398340 0.337353i
\(685\) 8.83618i 0.337613i
\(686\) 0 0
\(687\) 14.4446i 0.551096i
\(688\) −12.0169 + 2.00611i −0.458141 + 0.0764822i
\(689\) 0.161021i 0.00613440i
\(690\) 0.617163 1.68369i 0.0234950 0.0640970i
\(691\) −34.4431 −1.31028 −0.655139 0.755508i \(-0.727390\pi\)
−0.655139 + 0.755508i \(0.727390\pi\)
\(692\) −21.2830 + 25.1306i −0.809060 + 0.955321i
\(693\) 0 0
\(694\) −11.7029 4.28974i −0.444236 0.162836i
\(695\) 7.91285i 0.300152i
\(696\) −19.4315 + 11.0423i −0.736548 + 0.418556i
\(697\) −61.8152 −2.34142
\(698\) 2.37089 + 0.869059i 0.0897396 + 0.0328944i
\(699\) −0.222559 −0.00841795
\(700\) 0 0
\(701\) −28.7191 −1.08470 −0.542352 0.840151i \(-0.682466\pi\)
−0.542352 + 0.840151i \(0.682466\pi\)
\(702\) 5.15920 + 1.89112i 0.194721 + 0.0713759i
\(703\) 5.31176 0.200337
\(704\) −33.4050 19.9004i −1.25900 0.750026i
\(705\) 4.23831i 0.159624i
\(706\) 36.5057 + 13.3813i 1.37391 + 0.503612i
\(707\) 0 0
\(708\) −14.0861 11.9295i −0.529388 0.448338i
\(709\) 49.4621 1.85759 0.928794 0.370597i \(-0.120847\pi\)
0.928794 + 0.370597i \(0.120847\pi\)
\(710\) 4.07907 11.1282i 0.153085 0.417633i
\(711\) 8.50495i 0.318960i
\(712\) 2.46580 + 4.33915i 0.0924097 + 0.162616i
\(713\) 6.89430i 0.258193i
\(714\) 0 0
\(715\) 4.35462i 0.162854i
\(716\) 13.8281 16.3279i 0.516779 0.610202i
\(717\) 18.6976i 0.698274i
\(718\) 24.7031 + 9.05502i 0.921912 + 0.337930i
\(719\) −4.77325 −0.178012 −0.0890061 0.996031i \(-0.528369\pi\)
−0.0890061 + 0.996031i \(0.528369\pi\)
\(720\) −9.23456 + 1.54162i −0.344152 + 0.0574528i
\(721\) 0 0
\(722\) −5.10801 + 13.9352i −0.190101 + 0.518616i
\(723\) 3.04938i 0.113408i
\(724\) −14.0450 + 16.5840i −0.521977 + 0.616340i
\(725\) 9.73084 0.361394
\(726\) 4.98935 13.6115i 0.185172 0.505170i
\(727\) 20.9881 0.778405 0.389202 0.921152i \(-0.372751\pi\)
0.389202 + 0.921152i \(0.372751\pi\)
\(728\) 0 0
\(729\) 2.37261 0.0878744
\(730\) −4.27384 + 11.6595i −0.158182 + 0.431538i
\(731\) −17.9448 −0.663712
\(732\) −6.46112 + 7.62916i −0.238810 + 0.281982i
\(733\) 18.9976i 0.701693i −0.936433 0.350846i \(-0.885894\pi\)
0.936433 0.350846i \(-0.114106\pi\)
\(734\) 10.7002 29.1913i 0.394951 1.07747i
\(735\) 0 0
\(736\) 1.63292 8.68099i 0.0601903 0.319986i
\(737\) −37.9067 −1.39631
\(738\) −32.6079 11.9526i −1.20031 0.439980i
\(739\) 17.5775i 0.646598i −0.946297 0.323299i \(-0.895208\pi\)
0.946297 0.323299i \(-0.104792\pi\)
\(740\) 2.35420 2.77979i 0.0865421 0.102187i
\(741\) 2.12176i 0.0779447i
\(742\) 0 0
\(743\) 0.624385i 0.0229065i −0.999934 0.0114532i \(-0.996354\pi\)
0.999934 0.0114532i \(-0.00364575\pi\)
\(744\) 8.81658 5.01018i 0.323232 0.183682i
\(745\) 1.72300i 0.0631260i
\(746\) 0.275295 0.751037i 0.0100793 0.0274974i
\(747\) −4.77002 −0.174526
\(748\) −43.7045 37.0132i −1.59799 1.35334i
\(749\) 0 0
\(750\) −1.07825 0.395235i −0.0393720 0.0144319i
\(751\) 33.1412i 1.20934i −0.796476 0.604670i \(-0.793305\pi\)
0.796476 0.604670i \(-0.206695\pi\)
\(752\) −3.43769 20.5923i −0.125360 0.750924i
\(753\) 0.217804 0.00793723
\(754\) −11.5762 4.24329i −0.421580 0.154532i
\(755\) −0.814130 −0.0296292
\(756\) 0 0
\(757\) 43.9649 1.59793 0.798966 0.601376i \(-0.205380\pi\)
0.798966 + 0.601376i \(0.205380\pi\)
\(758\) 37.6164 + 13.7884i 1.36629 + 0.500818i
\(759\) 6.16308 0.223706
\(760\) −4.07541 7.17164i −0.147831 0.260143i
\(761\) 7.42765i 0.269252i 0.990896 + 0.134626i \(0.0429833\pi\)
−0.990896 + 0.134626i \(0.957017\pi\)
\(762\) 8.27450 + 3.03305i 0.299754 + 0.109876i
\(763\) 0 0
\(764\) 0.655554 0.774065i 0.0237171 0.0280047i
\(765\) −13.7899 −0.498575
\(766\) 1.50201 4.09766i 0.0542700 0.148055i
\(767\) 10.1829i 0.367685i
\(768\) 12.2881 4.22038i 0.443409 0.152290i
\(769\) 17.2607i 0.622438i 0.950338 + 0.311219i \(0.100737\pi\)
−0.950338 + 0.311219i \(0.899263\pi\)
\(770\) 0 0
\(771\) 25.2426i 0.909089i
\(772\) 31.7750 + 26.9102i 1.14361 + 0.968519i
\(773\) 35.3653i 1.27200i 0.771689 + 0.636000i \(0.219412\pi\)
−0.771689 + 0.636000i \(0.780588\pi\)
\(774\) −9.46600 3.46980i −0.340248 0.124719i
\(775\) −4.41515 −0.158597
\(776\) 10.9508 + 19.2706i 0.393112 + 0.691773i
\(777\) 0 0
\(778\) 7.95963 21.7148i 0.285367 0.778512i
\(779\) 30.5985i 1.09631i
\(780\) 1.11037 + 0.940373i 0.0397577 + 0.0336708i
\(781\) 40.7342 1.45758
\(782\) 4.47773 12.2158i 0.160123 0.436835i
\(783\) −42.2005 −1.50812