Properties

Label 980.2.g.a.391.13
Level $980$
Weight $2$
Character 980.391
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(391,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.391");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 391.13
Character \(\chi\) \(=\) 980.391
Dual form 980.2.g.a.391.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.431404 - 1.34681i) q^{2} -2.73718 q^{3} +(-1.62778 + 1.16204i) q^{4} -1.00000i q^{5} +(1.18083 + 3.68646i) q^{6} +(2.26727 + 1.69100i) q^{8} +4.49217 q^{9} +O(q^{10})\) \(q+(-0.431404 - 1.34681i) q^{2} -2.73718 q^{3} +(-1.62778 + 1.16204i) q^{4} -1.00000i q^{5} +(1.18083 + 3.68646i) q^{6} +(2.26727 + 1.69100i) q^{8} +4.49217 q^{9} +(-1.34681 + 0.431404i) q^{10} -0.100243i q^{11} +(4.45553 - 3.18071i) q^{12} -4.11735i q^{13} +2.73718i q^{15} +(1.29934 - 3.78308i) q^{16} -5.39735i q^{17} +(-1.93794 - 6.05009i) q^{18} -7.45934 q^{19} +(1.16204 + 1.62778i) q^{20} +(-0.135008 + 0.0432453i) q^{22} +1.50830i q^{23} +(-6.20593 - 4.62858i) q^{24} -1.00000 q^{25} +(-5.54528 + 1.77624i) q^{26} -4.08434 q^{27} -2.37688 q^{29} +(3.68646 - 1.18083i) q^{30} +5.44258 q^{31} +(-5.65562 - 0.117927i) q^{32} +0.274384i q^{33} +(-7.26919 + 2.32844i) q^{34} +(-7.31227 + 5.22007i) q^{36} +1.03852 q^{37} +(3.21799 + 10.0463i) q^{38} +11.2700i q^{39} +(1.69100 - 2.26727i) q^{40} +7.99125i q^{41} -7.04778i q^{43} +(0.116486 + 0.163174i) q^{44} -4.49217i q^{45} +(2.03139 - 0.650688i) q^{46} -4.44376 q^{47} +(-3.55654 + 10.3550i) q^{48} +(0.431404 + 1.34681i) q^{50} +14.7735i q^{51} +(4.78452 + 6.70215i) q^{52} +6.14261 q^{53} +(1.76200 + 5.50082i) q^{54} -0.100243 q^{55} +20.4176 q^{57} +(1.02540 + 3.20120i) q^{58} -8.52297 q^{59} +(-3.18071 - 4.45553i) q^{60} +7.90286i q^{61} +(-2.34795 - 7.33010i) q^{62} +(2.28103 + 7.66791i) q^{64} -4.11735 q^{65} +(0.369542 - 0.118370i) q^{66} +0.109800i q^{67} +(6.27192 + 8.78570i) q^{68} -4.12850i q^{69} +6.73221i q^{71} +(10.1850 + 7.59626i) q^{72} +6.14698i q^{73} +(-0.448022 - 1.39869i) q^{74} +2.73718 q^{75} +(12.1422 - 8.66802i) q^{76} +(15.1785 - 4.86190i) q^{78} +4.27445i q^{79} +(-3.78308 - 1.29934i) q^{80} -2.29692 q^{81} +(10.7627 - 3.44746i) q^{82} -6.50159 q^{83} -5.39735 q^{85} +(-9.49200 + 3.04044i) q^{86} +6.50596 q^{87} +(0.169511 - 0.227278i) q^{88} -3.19179i q^{89} +(-6.05009 + 1.93794i) q^{90} +(-1.75270 - 2.45519i) q^{92} -14.8973 q^{93} +(1.91706 + 5.98489i) q^{94} +7.45934i q^{95} +(15.4805 + 0.322788i) q^{96} +11.0691i q^{97} -0.450309i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{2} + 4 q^{4} - 4 q^{8} + 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 32 q - 4 q^{2} + 4 q^{4} - 4 q^{8} + 32 q^{9} + 28 q^{16} - 8 q^{22} - 32 q^{25} - 40 q^{29} - 4 q^{32} + 60 q^{36} - 16 q^{37} + 36 q^{44} - 4 q^{46} + 4 q^{50} + 16 q^{53} + 48 q^{57} - 4 q^{58} - 28 q^{60} + 4 q^{64} - 8 q^{65} - 8 q^{72} - 76 q^{74} + 120 q^{78} + 72 q^{81} - 56 q^{86} - 8 q^{88} - 4 q^{92} + 16 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.431404 1.34681i −0.305049 0.952337i
\(3\) −2.73718 −1.58031 −0.790157 0.612905i \(-0.790001\pi\)
−0.790157 + 0.612905i \(0.790001\pi\)
\(4\) −1.62778 + 1.16204i −0.813891 + 0.581018i
\(5\) 1.00000i 0.447214i
\(6\) 1.18083 + 3.68646i 0.482073 + 1.50499i
\(7\) 0 0
\(8\) 2.26727 + 1.69100i 0.801601 + 0.597859i
\(9\) 4.49217 1.49739
\(10\) −1.34681 + 0.431404i −0.425898 + 0.136422i
\(11\) 0.100243i 0.0302244i −0.999886 0.0151122i \(-0.995189\pi\)
0.999886 0.0151122i \(-0.00481055\pi\)
\(12\) 4.45553 3.18071i 1.28620 0.918191i
\(13\) 4.11735i 1.14195i −0.820968 0.570974i \(-0.806566\pi\)
0.820968 0.570974i \(-0.193434\pi\)
\(14\) 0 0
\(15\) 2.73718i 0.706738i
\(16\) 1.29934 3.78308i 0.324836 0.945770i
\(17\) 5.39735i 1.30905i −0.756041 0.654525i \(-0.772869\pi\)
0.756041 0.654525i \(-0.227131\pi\)
\(18\) −1.93794 6.05009i −0.456777 1.42602i
\(19\) −7.45934 −1.71129 −0.855645 0.517564i \(-0.826839\pi\)
−0.855645 + 0.517564i \(0.826839\pi\)
\(20\) 1.16204 + 1.62778i 0.259839 + 0.363983i
\(21\) 0 0
\(22\) −0.135008 + 0.0432453i −0.0287838 + 0.00921993i
\(23\) 1.50830i 0.314503i 0.987559 + 0.157251i \(0.0502633\pi\)
−0.987559 + 0.157251i \(0.949737\pi\)
\(24\) −6.20593 4.62858i −1.26678 0.944804i
\(25\) −1.00000 −0.200000
\(26\) −5.54528 + 1.77624i −1.08752 + 0.348350i
\(27\) −4.08434 −0.786032
\(28\) 0 0
\(29\) −2.37688 −0.441376 −0.220688 0.975344i \(-0.570830\pi\)
−0.220688 + 0.975344i \(0.570830\pi\)
\(30\) 3.68646 1.18083i 0.673052 0.215589i
\(31\) 5.44258 0.977516 0.488758 0.872419i \(-0.337450\pi\)
0.488758 + 0.872419i \(0.337450\pi\)
\(32\) −5.65562 0.117927i −0.999783 0.0208468i
\(33\) 0.274384i 0.0477641i
\(34\) −7.26919 + 2.32844i −1.24666 + 0.399324i
\(35\) 0 0
\(36\) −7.31227 + 5.22007i −1.21871 + 0.870011i
\(37\) 1.03852 0.170732 0.0853659 0.996350i \(-0.472794\pi\)
0.0853659 + 0.996350i \(0.472794\pi\)
\(38\) 3.21799 + 10.0463i 0.522027 + 1.62972i
\(39\) 11.2700i 1.80464i
\(40\) 1.69100 2.26727i 0.267371 0.358487i
\(41\) 7.99125i 1.24802i 0.781415 + 0.624012i \(0.214498\pi\)
−0.781415 + 0.624012i \(0.785502\pi\)
\(42\) 0 0
\(43\) 7.04778i 1.07478i −0.843335 0.537388i \(-0.819411\pi\)
0.843335 0.537388i \(-0.180589\pi\)
\(44\) 0.116486 + 0.163174i 0.0175609 + 0.0245994i
\(45\) 4.49217i 0.669653i
\(46\) 2.03139 0.650688i 0.299513 0.0959387i
\(47\) −4.44376 −0.648189 −0.324095 0.946025i \(-0.605060\pi\)
−0.324095 + 0.946025i \(0.605060\pi\)
\(48\) −3.55654 + 10.3550i −0.513342 + 1.49461i
\(49\) 0 0
\(50\) 0.431404 + 1.34681i 0.0610097 + 0.190467i
\(51\) 14.7735i 2.06871i
\(52\) 4.78452 + 6.70215i 0.663493 + 0.929421i
\(53\) 6.14261 0.843753 0.421876 0.906653i \(-0.361372\pi\)
0.421876 + 0.906653i \(0.361372\pi\)
\(54\) 1.76200 + 5.50082i 0.239778 + 0.748567i
\(55\) −0.100243 −0.0135168
\(56\) 0 0
\(57\) 20.4176 2.70437
\(58\) 1.02540 + 3.20120i 0.134641 + 0.420339i
\(59\) −8.52297 −1.10960 −0.554798 0.831985i \(-0.687204\pi\)
−0.554798 + 0.831985i \(0.687204\pi\)
\(60\) −3.18071 4.45553i −0.410627 0.575207i
\(61\) 7.90286i 1.01186i 0.862575 + 0.505929i \(0.168850\pi\)
−0.862575 + 0.505929i \(0.831150\pi\)
\(62\) −2.34795 7.33010i −0.298190 0.930924i
\(63\) 0 0
\(64\) 2.28103 + 7.66791i 0.285129 + 0.958489i
\(65\) −4.11735 −0.510695
\(66\) 0.369542 0.118370i 0.0454875 0.0145704i
\(67\) 0.109800i 0.0134142i 0.999978 + 0.00670710i \(0.00213495\pi\)
−0.999978 + 0.00670710i \(0.997865\pi\)
\(68\) 6.27192 + 8.78570i 0.760582 + 1.06542i
\(69\) 4.12850i 0.497013i
\(70\) 0 0
\(71\) 6.73221i 0.798967i 0.916740 + 0.399483i \(0.130810\pi\)
−0.916740 + 0.399483i \(0.869190\pi\)
\(72\) 10.1850 + 7.59626i 1.20031 + 0.895228i
\(73\) 6.14698i 0.719450i 0.933058 + 0.359725i \(0.117129\pi\)
−0.933058 + 0.359725i \(0.882871\pi\)
\(74\) −0.448022 1.39869i −0.0520815 0.162594i
\(75\) 2.73718 0.316063
\(76\) 12.1422 8.66802i 1.39280 0.994290i
\(77\) 0 0
\(78\) 15.1785 4.86190i 1.71862 0.550502i
\(79\) 4.27445i 0.480914i 0.970660 + 0.240457i \(0.0772972\pi\)
−0.970660 + 0.240457i \(0.922703\pi\)
\(80\) −3.78308 1.29934i −0.422961 0.145271i
\(81\) −2.29692 −0.255213
\(82\) 10.7627 3.44746i 1.18854 0.380708i
\(83\) −6.50159 −0.713642 −0.356821 0.934173i \(-0.616139\pi\)
−0.356821 + 0.934173i \(0.616139\pi\)
\(84\) 0 0
\(85\) −5.39735 −0.585425
\(86\) −9.49200 + 3.04044i −1.02355 + 0.327859i
\(87\) 6.50596 0.697512
\(88\) 0.169511 0.227278i 0.0180700 0.0242279i
\(89\) 3.19179i 0.338329i −0.985588 0.169164i \(-0.945893\pi\)
0.985588 0.169164i \(-0.0541068\pi\)
\(90\) −6.05009 + 1.93794i −0.637735 + 0.204277i
\(91\) 0 0
\(92\) −1.75270 2.45519i −0.182732 0.255971i
\(93\) −14.8973 −1.54478
\(94\) 1.91706 + 5.98489i 0.197729 + 0.617294i
\(95\) 7.45934i 0.765312i
\(96\) 15.4805 + 0.322788i 1.57997 + 0.0329444i
\(97\) 11.0691i 1.12390i 0.827173 + 0.561948i \(0.189948\pi\)
−0.827173 + 0.561948i \(0.810052\pi\)
\(98\) 0 0
\(99\) 0.450309i 0.0452578i
\(100\) 1.62778 1.16204i 0.162778 0.116204i
\(101\) 7.16390i 0.712835i 0.934327 + 0.356418i \(0.116002\pi\)
−0.934327 + 0.356418i \(0.883998\pi\)
\(102\) 19.8971 6.37336i 1.97011 0.631057i
\(103\) −4.88608 −0.481440 −0.240720 0.970595i \(-0.577383\pi\)
−0.240720 + 0.970595i \(0.577383\pi\)
\(104\) 6.96245 9.33516i 0.682724 0.915388i
\(105\) 0 0
\(106\) −2.64995 8.27292i −0.257386 0.803537i
\(107\) 7.56872i 0.731695i 0.930675 + 0.365848i \(0.119221\pi\)
−0.930675 + 0.365848i \(0.880779\pi\)
\(108\) 6.64842 4.74615i 0.639744 0.456699i
\(109\) −18.0532 −1.72919 −0.864593 0.502472i \(-0.832424\pi\)
−0.864593 + 0.502472i \(0.832424\pi\)
\(110\) 0.0432453 + 0.135008i 0.00412328 + 0.0128725i
\(111\) −2.84262 −0.269810
\(112\) 0 0
\(113\) −18.1432 −1.70677 −0.853384 0.521283i \(-0.825453\pi\)
−0.853384 + 0.521283i \(0.825453\pi\)
\(114\) −8.80822 27.4985i −0.824966 2.57547i
\(115\) 1.50830 0.140650
\(116\) 3.86904 2.76202i 0.359232 0.256447i
\(117\) 18.4959i 1.70994i
\(118\) 3.67684 + 11.4788i 0.338481 + 1.05671i
\(119\) 0 0
\(120\) −4.62858 + 6.20593i −0.422529 + 0.566522i
\(121\) 10.9900 0.999086
\(122\) 10.6436 3.40933i 0.963629 0.308666i
\(123\) 21.8735i 1.97227i
\(124\) −8.85932 + 6.32447i −0.795591 + 0.567954i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 4.37573i 0.388283i −0.980974 0.194141i \(-0.937808\pi\)
0.980974 0.194141i \(-0.0621921\pi\)
\(128\) 9.34315 6.38008i 0.825826 0.563925i
\(129\) 19.2911i 1.69848i
\(130\) 1.77624 + 5.54528i 0.155787 + 0.486354i
\(131\) 2.98145 0.260491 0.130245 0.991482i \(-0.458423\pi\)
0.130245 + 0.991482i \(0.458423\pi\)
\(132\) −0.318844 0.446637i −0.0277518 0.0388747i
\(133\) 0 0
\(134\) 0.147879 0.0473681i 0.0127748 0.00409198i
\(135\) 4.08434i 0.351524i
\(136\) 9.12692 12.2373i 0.782627 1.04934i
\(137\) −1.52475 −0.130268 −0.0651342 0.997877i \(-0.520748\pi\)
−0.0651342 + 0.997877i \(0.520748\pi\)
\(138\) −5.56029 + 1.78105i −0.473324 + 0.151613i
\(139\) 7.16082 0.607373 0.303686 0.952772i \(-0.401783\pi\)
0.303686 + 0.952772i \(0.401783\pi\)
\(140\) 0 0
\(141\) 12.1634 1.02434
\(142\) 9.06700 2.90430i 0.760885 0.243724i
\(143\) −0.412736 −0.0345148
\(144\) 5.83687 16.9942i 0.486406 1.41619i
\(145\) 2.37688i 0.197389i
\(146\) 8.27880 2.65183i 0.685158 0.219467i
\(147\) 0 0
\(148\) −1.69048 + 1.20680i −0.138957 + 0.0991983i
\(149\) −21.0473 −1.72426 −0.862129 0.506688i \(-0.830870\pi\)
−0.862129 + 0.506688i \(0.830870\pi\)
\(150\) −1.18083 3.68646i −0.0964145 0.300998i
\(151\) 3.82299i 0.311111i 0.987827 + 0.155555i \(0.0497167\pi\)
−0.987827 + 0.155555i \(0.950283\pi\)
\(152\) −16.9123 12.6137i −1.37177 1.02311i
\(153\) 24.2458i 1.96016i
\(154\) 0 0
\(155\) 5.44258i 0.437158i
\(156\) −13.0961 18.3450i −1.04853 1.46878i
\(157\) 1.28413i 0.102485i 0.998686 + 0.0512423i \(0.0163181\pi\)
−0.998686 + 0.0512423i \(0.983682\pi\)
\(158\) 5.75687 1.84402i 0.457992 0.146702i
\(159\) −16.8135 −1.33339
\(160\) −0.117927 + 5.65562i −0.00932296 + 0.447116i
\(161\) 0 0
\(162\) 0.990900 + 3.09351i 0.0778525 + 0.243049i
\(163\) 8.60108i 0.673689i −0.941560 0.336844i \(-0.890640\pi\)
0.941560 0.336844i \(-0.109360\pi\)
\(164\) −9.28612 13.0080i −0.725124 1.01575i
\(165\) 0.274384 0.0213607
\(166\) 2.80481 + 8.75639i 0.217696 + 0.679627i
\(167\) −8.10448 −0.627144 −0.313572 0.949565i \(-0.601526\pi\)
−0.313572 + 0.949565i \(0.601526\pi\)
\(168\) 0 0
\(169\) −3.95261 −0.304047
\(170\) 2.32844 + 7.26919i 0.178583 + 0.557522i
\(171\) −33.5086 −2.56247
\(172\) 8.18977 + 11.4722i 0.624464 + 0.874750i
\(173\) 8.03376i 0.610795i −0.952225 0.305398i \(-0.901211\pi\)
0.952225 0.305398i \(-0.0987894\pi\)
\(174\) −2.80670 8.76228i −0.212775 0.664267i
\(175\) 0 0
\(176\) −0.379228 0.130250i −0.0285854 0.00981797i
\(177\) 23.3289 1.75351
\(178\) −4.29872 + 1.37695i −0.322203 + 0.103207i
\(179\) 8.84857i 0.661373i 0.943741 + 0.330687i \(0.107280\pi\)
−0.943741 + 0.330687i \(0.892720\pi\)
\(180\) 5.22007 + 7.31227i 0.389081 + 0.545024i
\(181\) 21.3610i 1.58775i 0.608082 + 0.793874i \(0.291939\pi\)
−0.608082 + 0.793874i \(0.708061\pi\)
\(182\) 0 0
\(183\) 21.6316i 1.59905i
\(184\) −2.55054 + 3.41973i −0.188028 + 0.252106i
\(185\) 1.03852i 0.0763536i
\(186\) 6.42677 + 20.0638i 0.471234 + 1.47115i
\(187\) −0.541047 −0.0395653
\(188\) 7.23347 5.16381i 0.527555 0.376610i
\(189\) 0 0
\(190\) 10.0463 3.21799i 0.728835 0.233457i
\(191\) 25.0235i 1.81063i −0.424736 0.905317i \(-0.639633\pi\)
0.424736 0.905317i \(-0.360367\pi\)
\(192\) −6.24361 20.9885i −0.450594 1.51471i
\(193\) 8.16157 0.587483 0.293741 0.955885i \(-0.405100\pi\)
0.293741 + 0.955885i \(0.405100\pi\)
\(194\) 14.9079 4.77525i 1.07033 0.342843i
\(195\) 11.2700 0.807058
\(196\) 0 0
\(197\) −12.4517 −0.887149 −0.443574 0.896238i \(-0.646290\pi\)
−0.443574 + 0.896238i \(0.646290\pi\)
\(198\) −0.606480 + 0.194265i −0.0431006 + 0.0138058i
\(199\) 23.1734 1.64272 0.821358 0.570413i \(-0.193217\pi\)
0.821358 + 0.570413i \(0.193217\pi\)
\(200\) −2.26727 1.69100i −0.160320 0.119572i
\(201\) 0.300542i 0.0211986i
\(202\) 9.64840 3.09054i 0.678859 0.217449i
\(203\) 0 0
\(204\) −17.1674 24.0481i −1.20196 1.68370i
\(205\) 7.99125 0.558133
\(206\) 2.10787 + 6.58061i 0.146863 + 0.458493i
\(207\) 6.77555i 0.470933i
\(208\) −15.5763 5.34985i −1.08002 0.370946i
\(209\) 0.747747i 0.0517228i
\(210\) 0 0
\(211\) 10.9759i 0.755613i −0.925885 0.377807i \(-0.876678\pi\)
0.925885 0.377807i \(-0.123322\pi\)
\(212\) −9.99883 + 7.13794i −0.686722 + 0.490236i
\(213\) 18.4273i 1.26262i
\(214\) 10.1936 3.26518i 0.696820 0.223203i
\(215\) −7.04778 −0.480654
\(216\) −9.26031 6.90663i −0.630084 0.469936i
\(217\) 0 0
\(218\) 7.78824 + 24.3142i 0.527486 + 1.64677i
\(219\) 16.8254i 1.13696i
\(220\) 0.163174 0.116486i 0.0110012 0.00785350i
\(221\) −22.2228 −1.49487
\(222\) 1.22632 + 3.82846i 0.0823051 + 0.256950i
\(223\) 14.9798 1.00312 0.501559 0.865123i \(-0.332760\pi\)
0.501559 + 0.865123i \(0.332760\pi\)
\(224\) 0 0
\(225\) −4.49217 −0.299478
\(226\) 7.82704 + 24.4354i 0.520647 + 1.62542i
\(227\) 1.50742 0.100051 0.0500254 0.998748i \(-0.484070\pi\)
0.0500254 + 0.998748i \(0.484070\pi\)
\(228\) −33.2353 + 23.7260i −2.20106 + 1.57129i
\(229\) 8.52548i 0.563380i 0.959505 + 0.281690i \(0.0908949\pi\)
−0.959505 + 0.281690i \(0.909105\pi\)
\(230\) −0.650688 2.03139i −0.0429051 0.133946i
\(231\) 0 0
\(232\) −5.38904 4.01931i −0.353808 0.263881i
\(233\) −21.2233 −1.39039 −0.695193 0.718823i \(-0.744681\pi\)
−0.695193 + 0.718823i \(0.744681\pi\)
\(234\) −24.9104 + 7.97919i −1.62844 + 0.521616i
\(235\) 4.44376i 0.289879i
\(236\) 13.8735 9.90400i 0.903090 0.644696i
\(237\) 11.7000i 0.759994i
\(238\) 0 0
\(239\) 10.1532i 0.656754i 0.944547 + 0.328377i \(0.106502\pi\)
−0.944547 + 0.328377i \(0.893498\pi\)
\(240\) 10.3550 + 3.55654i 0.668412 + 0.229574i
\(241\) 19.0508i 1.22717i −0.789629 0.613584i \(-0.789727\pi\)
0.789629 0.613584i \(-0.210273\pi\)
\(242\) −4.74111 14.8013i −0.304770 0.951467i
\(243\) 18.5401 1.18935
\(244\) −9.18342 12.8641i −0.587908 0.823542i
\(245\) 0 0
\(246\) −29.4594 + 9.43632i −1.87826 + 0.601638i
\(247\) 30.7127i 1.95420i
\(248\) 12.3398 + 9.20340i 0.783578 + 0.584417i
\(249\) 17.7960 1.12778
\(250\) 1.34681 0.431404i 0.0851796 0.0272844i
\(251\) −9.46184 −0.597226 −0.298613 0.954374i \(-0.596524\pi\)
−0.298613 + 0.954374i \(0.596524\pi\)
\(252\) 0 0
\(253\) 0.151197 0.00950567
\(254\) −5.89326 + 1.88771i −0.369776 + 0.118445i
\(255\) 14.7735 0.925155
\(256\) −12.6234 9.83104i −0.788964 0.614440i
\(257\) 2.74541i 0.171254i 0.996327 + 0.0856270i \(0.0272893\pi\)
−0.996327 + 0.0856270i \(0.972711\pi\)
\(258\) 25.9813 8.32224i 1.61753 0.518120i
\(259\) 0 0
\(260\) 6.70215 4.78452i 0.415650 0.296723i
\(261\) −10.6774 −0.660912
\(262\) −1.28621 4.01544i −0.0794624 0.248075i
\(263\) 25.6767i 1.58330i 0.610978 + 0.791648i \(0.290777\pi\)
−0.610978 + 0.791648i \(0.709223\pi\)
\(264\) −0.463983 + 0.622102i −0.0285562 + 0.0382877i
\(265\) 6.14261i 0.377338i
\(266\) 0 0
\(267\) 8.73650i 0.534665i
\(268\) −0.127592 0.178730i −0.00779389 0.0109177i
\(269\) 8.19999i 0.499962i −0.968251 0.249981i \(-0.919576\pi\)
0.968251 0.249981i \(-0.0804244\pi\)
\(270\) 5.50082 1.76200i 0.334769 0.107232i
\(271\) −6.40727 −0.389214 −0.194607 0.980881i \(-0.562343\pi\)
−0.194607 + 0.980881i \(0.562343\pi\)
\(272\) −20.4186 7.01301i −1.23806 0.425226i
\(273\) 0 0
\(274\) 0.657785 + 2.05355i 0.0397382 + 0.124059i
\(275\) 0.100243i 0.00604489i
\(276\) 4.79747 + 6.72029i 0.288774 + 0.404514i
\(277\) 15.9691 0.959492 0.479746 0.877407i \(-0.340729\pi\)
0.479746 + 0.877407i \(0.340729\pi\)
\(278\) −3.08921 9.64424i −0.185278 0.578423i
\(279\) 24.4490 1.46372
\(280\) 0 0
\(281\) −9.68409 −0.577704 −0.288852 0.957374i \(-0.593274\pi\)
−0.288852 + 0.957374i \(0.593274\pi\)
\(282\) −5.24733 16.3817i −0.312474 0.975518i
\(283\) −26.1267 −1.55307 −0.776535 0.630074i \(-0.783025\pi\)
−0.776535 + 0.630074i \(0.783025\pi\)
\(284\) −7.82308 10.9586i −0.464214 0.650271i
\(285\) 20.4176i 1.20943i
\(286\) 0.178056 + 0.555877i 0.0105287 + 0.0328697i
\(287\) 0 0
\(288\) −25.4060 0.529749i −1.49706 0.0312158i
\(289\) −12.1314 −0.713611
\(290\) 3.20120 1.02540i 0.187981 0.0602134i
\(291\) 30.2981i 1.77611i
\(292\) −7.14302 10.0059i −0.418013 0.585553i
\(293\) 16.2389i 0.948684i −0.880341 0.474342i \(-0.842686\pi\)
0.880341 0.474342i \(-0.157314\pi\)
\(294\) 0 0
\(295\) 8.52297i 0.496226i
\(296\) 2.35461 + 1.75614i 0.136859 + 0.102074i
\(297\) 0.409427i 0.0237574i
\(298\) 9.07987 + 28.3466i 0.525983 + 1.64207i
\(299\) 6.21022 0.359146
\(300\) −4.45553 + 3.18071i −0.257240 + 0.183638i
\(301\) 0 0
\(302\) 5.14883 1.64925i 0.296282 0.0949039i
\(303\) 19.6089i 1.12650i
\(304\) −9.69223 + 28.2193i −0.555888 + 1.61849i
\(305\) 7.90286 0.452517
\(306\) −32.6544 + 10.4597i −1.86673 + 0.597944i
\(307\) −23.5437 −1.34371 −0.671854 0.740684i \(-0.734502\pi\)
−0.671854 + 0.740684i \(0.734502\pi\)
\(308\) 0 0
\(309\) 13.3741 0.760825
\(310\) −7.33010 + 2.34795i −0.416322 + 0.133355i
\(311\) 5.39546 0.305949 0.152974 0.988230i \(-0.451115\pi\)
0.152974 + 0.988230i \(0.451115\pi\)
\(312\) −19.0575 + 25.5520i −1.07892 + 1.44660i
\(313\) 32.5614i 1.84048i 0.391355 + 0.920240i \(0.372007\pi\)
−0.391355 + 0.920240i \(0.627993\pi\)
\(314\) 1.72948 0.553979i 0.0975999 0.0312628i
\(315\) 0 0
\(316\) −4.96707 6.95787i −0.279420 0.391411i
\(317\) 13.7117 0.770128 0.385064 0.922890i \(-0.374179\pi\)
0.385064 + 0.922890i \(0.374179\pi\)
\(318\) 7.25339 + 22.6445i 0.406750 + 1.26984i
\(319\) 0.238266i 0.0133403i
\(320\) 7.66791 2.28103i 0.428649 0.127514i
\(321\) 20.7170i 1.15631i
\(322\) 0 0
\(323\) 40.2606i 2.24016i
\(324\) 3.73888 2.66910i 0.207716 0.148284i
\(325\) 4.11735i 0.228390i
\(326\) −11.5840 + 3.71054i −0.641578 + 0.205508i
\(327\) 49.4150 2.73266
\(328\) −13.5132 + 18.1183i −0.746142 + 1.00042i
\(329\) 0 0
\(330\) −0.118370 0.369542i −0.00651607 0.0203426i
\(331\) 5.68684i 0.312577i −0.987711 0.156289i \(-0.950047\pi\)
0.987711 0.156289i \(-0.0499530\pi\)
\(332\) 10.5832 7.55508i 0.580826 0.414639i
\(333\) 4.66521 0.255652
\(334\) 3.49631 + 10.9152i 0.191309 + 0.597252i
\(335\) 0.109800 0.00599901
\(336\) 0 0
\(337\) −14.7219 −0.801955 −0.400978 0.916088i \(-0.631330\pi\)
−0.400978 + 0.916088i \(0.631330\pi\)
\(338\) 1.70517 + 5.32341i 0.0927492 + 0.289555i
\(339\) 49.6612 2.69723
\(340\) 8.78570 6.27192i 0.476472 0.340142i
\(341\) 0.545581i 0.0295449i
\(342\) 14.4557 + 45.1296i 0.781677 + 2.44033i
\(343\) 0 0
\(344\) 11.9178 15.9792i 0.642564 0.861542i
\(345\) −4.12850 −0.222271
\(346\) −10.8199 + 3.46580i −0.581683 + 0.186322i
\(347\) 15.4691i 0.830424i −0.909725 0.415212i \(-0.863707\pi\)
0.909725 0.415212i \(-0.136293\pi\)
\(348\) −10.5903 + 7.56016i −0.567699 + 0.405267i
\(349\) 11.5290i 0.617132i 0.951203 + 0.308566i \(0.0998491\pi\)
−0.951203 + 0.308566i \(0.900151\pi\)
\(350\) 0 0
\(351\) 16.8167i 0.897608i
\(352\) −0.0118214 + 0.566937i −0.000630082 + 0.0302179i
\(353\) 20.4362i 1.08771i −0.839179 0.543855i \(-0.816964\pi\)
0.839179 0.543855i \(-0.183036\pi\)
\(354\) −10.0642 31.4196i −0.534906 1.66993i
\(355\) 6.73221 0.357309
\(356\) 3.70897 + 5.19553i 0.196575 + 0.275362i
\(357\) 0 0
\(358\) 11.9173 3.81731i 0.629850 0.201751i
\(359\) 21.2189i 1.11989i 0.828529 + 0.559946i \(0.189178\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(360\) 7.59626 10.1850i 0.400358 0.536795i
\(361\) 36.6417 1.92851
\(362\) 28.7691 9.21521i 1.51207 0.484341i
\(363\) −30.0815 −1.57887
\(364\) 0 0
\(365\) 6.14698 0.321748
\(366\) −29.1336 + 9.33195i −1.52284 + 0.487789i
\(367\) −7.65147 −0.399404 −0.199702 0.979857i \(-0.563997\pi\)
−0.199702 + 0.979857i \(0.563997\pi\)
\(368\) 5.70603 + 1.95980i 0.297447 + 0.102162i
\(369\) 35.8980i 1.86878i
\(370\) −1.39869 + 0.448022i −0.0727143 + 0.0232916i
\(371\) 0 0
\(372\) 24.2496 17.3112i 1.25728 0.897546i
\(373\) 25.6343 1.32729 0.663647 0.748046i \(-0.269008\pi\)
0.663647 + 0.748046i \(0.269008\pi\)
\(374\) 0.233410 + 0.728686i 0.0120693 + 0.0376795i
\(375\) 2.73718i 0.141348i
\(376\) −10.0752 7.51440i −0.519589 0.387526i
\(377\) 9.78647i 0.504029i
\(378\) 0 0
\(379\) 29.1039i 1.49497i −0.664279 0.747485i \(-0.731261\pi\)
0.664279 0.747485i \(-0.268739\pi\)
\(380\) −8.66802 12.1422i −0.444660 0.622880i
\(381\) 11.9772i 0.613609i
\(382\) −33.7018 + 10.7952i −1.72433 + 0.552332i
\(383\) −8.64322 −0.441648 −0.220824 0.975314i \(-0.570875\pi\)
−0.220824 + 0.975314i \(0.570875\pi\)
\(384\) −25.5739 + 17.4635i −1.30506 + 0.891178i
\(385\) 0 0
\(386\) −3.52093 10.9921i −0.179211 0.559481i
\(387\) 31.6598i 1.60936i
\(388\) −12.8627 18.0180i −0.653004 0.914728i
\(389\) −14.1769 −0.718799 −0.359399 0.933184i \(-0.617018\pi\)
−0.359399 + 0.933184i \(0.617018\pi\)
\(390\) −4.86190 15.1785i −0.246192 0.768591i
\(391\) 8.14084 0.411700
\(392\) 0 0
\(393\) −8.16078 −0.411657
\(394\) 5.37173 + 16.7701i 0.270624 + 0.844864i
\(395\) 4.27445 0.215071
\(396\) 0.523276 + 0.733005i 0.0262956 + 0.0368349i
\(397\) 0.175006i 0.00878329i 0.999990 + 0.00439164i \(0.00139791\pi\)
−0.999990 + 0.00439164i \(0.998602\pi\)
\(398\) −9.99708 31.2101i −0.501108 1.56442i
\(399\) 0 0
\(400\) −1.29934 + 3.78308i −0.0649671 + 0.189154i
\(401\) 24.0570 1.20135 0.600674 0.799494i \(-0.294899\pi\)
0.600674 + 0.799494i \(0.294899\pi\)
\(402\) −0.404773 + 0.129655i −0.0201882 + 0.00646662i
\(403\) 22.4090i 1.11627i
\(404\) −8.32472 11.6613i −0.414170 0.580170i
\(405\) 2.29692i 0.114135i
\(406\) 0 0
\(407\) 0.104105i 0.00516027i
\(408\) −24.9821 + 33.4956i −1.23680 + 1.65828i
\(409\) 11.9364i 0.590215i 0.955464 + 0.295108i \(0.0953555\pi\)
−0.955464 + 0.295108i \(0.904644\pi\)
\(410\) −3.44746 10.7627i −0.170258 0.531531i
\(411\) 4.17353 0.205865
\(412\) 7.95347 5.67780i 0.391839 0.279725i
\(413\) 0 0
\(414\) 9.12536 2.92300i 0.448487 0.143658i
\(415\) 6.50159i 0.319150i
\(416\) −0.485548 + 23.2862i −0.0238060 + 1.14170i
\(417\) −19.6005 −0.959839
\(418\) 1.00707 0.322581i 0.0492575 0.0157780i
\(419\) 30.1003 1.47050 0.735249 0.677798i \(-0.237065\pi\)
0.735249 + 0.677798i \(0.237065\pi\)
\(420\) 0 0
\(421\) 6.78256 0.330562 0.165281 0.986247i \(-0.447147\pi\)
0.165281 + 0.986247i \(0.447147\pi\)
\(422\) −14.7824 + 4.73505i −0.719598 + 0.230499i
\(423\) −19.9621 −0.970592
\(424\) 13.9270 + 10.3872i 0.676353 + 0.504445i
\(425\) 5.39735i 0.261810i
\(426\) −24.8180 + 7.94961i −1.20244 + 0.385160i
\(427\) 0 0
\(428\) −8.79513 12.3202i −0.425128 0.595520i
\(429\) 1.12974 0.0545441
\(430\) 3.04044 + 9.49200i 0.146623 + 0.457745i
\(431\) 15.9360i 0.767612i −0.923414 0.383806i \(-0.874613\pi\)
0.923414 0.383806i \(-0.125387\pi\)
\(432\) −5.30696 + 15.4514i −0.255331 + 0.743406i
\(433\) 15.1291i 0.727057i 0.931583 + 0.363529i \(0.118428\pi\)
−0.931583 + 0.363529i \(0.881572\pi\)
\(434\) 0 0
\(435\) 6.50596i 0.311937i
\(436\) 29.3867 20.9785i 1.40737 1.00469i
\(437\) 11.2509i 0.538205i
\(438\) −22.6606 + 7.25855i −1.08276 + 0.346827i
\(439\) 4.36674 0.208413 0.104207 0.994556i \(-0.466770\pi\)
0.104207 + 0.994556i \(0.466770\pi\)
\(440\) −0.227278 0.169511i −0.0108351 0.00808113i
\(441\) 0 0
\(442\) 9.58701 + 29.9298i 0.456007 + 1.42362i
\(443\) 14.0982i 0.669825i −0.942249 0.334913i \(-0.891293\pi\)
0.942249 0.334913i \(-0.108707\pi\)
\(444\) 4.62717 3.30323i 0.219596 0.156764i
\(445\) −3.19179 −0.151305
\(446\) −6.46233 20.1748i −0.306000 0.955307i
\(447\) 57.6102 2.72487
\(448\) 0 0
\(449\) 17.0120 0.802848 0.401424 0.915892i \(-0.368515\pi\)
0.401424 + 0.915892i \(0.368515\pi\)
\(450\) 1.93794 + 6.05009i 0.0913554 + 0.285204i
\(451\) 0.801068 0.0377208
\(452\) 29.5331 21.0830i 1.38912 0.991663i
\(453\) 10.4642i 0.491652i
\(454\) −0.650306 2.03020i −0.0305204 0.0952820i
\(455\) 0 0
\(456\) 46.2922 + 34.5261i 2.16783 + 1.61683i
\(457\) 11.6647 0.545651 0.272825 0.962064i \(-0.412042\pi\)
0.272825 + 0.962064i \(0.412042\pi\)
\(458\) 11.4822 3.67793i 0.536527 0.171858i
\(459\) 22.0446i 1.02895i
\(460\) −2.45519 + 1.75270i −0.114474 + 0.0817202i
\(461\) 26.4488i 1.23184i −0.787808 0.615921i \(-0.788784\pi\)
0.787808 0.615921i \(-0.211216\pi\)
\(462\) 0 0
\(463\) 3.13685i 0.145782i −0.997340 0.0728909i \(-0.976778\pi\)
0.997340 0.0728909i \(-0.0232225\pi\)
\(464\) −3.08838 + 8.99194i −0.143375 + 0.417440i
\(465\) 14.8973i 0.690847i
\(466\) 9.15583 + 28.5837i 0.424136 + 1.32412i
\(467\) 8.14113 0.376727 0.188363 0.982099i \(-0.439682\pi\)
0.188363 + 0.982099i \(0.439682\pi\)
\(468\) 21.4929 + 30.1072i 0.993508 + 1.39171i
\(469\) 0 0
\(470\) 5.98489 1.91706i 0.276062 0.0884272i
\(471\) 3.51490i 0.161958i
\(472\) −19.3239 14.4123i −0.889454 0.663382i
\(473\) −0.706491 −0.0324845
\(474\) −15.7576 + 5.04741i −0.723770 + 0.231835i
\(475\) 7.45934 0.342258
\(476\) 0 0
\(477\) 27.5937 1.26343
\(478\) 13.6744 4.38012i 0.625451 0.200342i
\(479\) −24.7807 −1.13226 −0.566131 0.824316i \(-0.691560\pi\)
−0.566131 + 0.824316i \(0.691560\pi\)
\(480\) 0.322788 15.4805i 0.0147332 0.706584i
\(481\) 4.27596i 0.194967i
\(482\) −25.6577 + 8.21858i −1.16868 + 0.374346i
\(483\) 0 0
\(484\) −17.8892 + 12.7707i −0.813147 + 0.580487i
\(485\) 11.0691 0.502621
\(486\) −7.99828 24.9700i −0.362809 1.13266i
\(487\) 12.6945i 0.575244i −0.957744 0.287622i \(-0.907135\pi\)
0.957744 0.287622i \(-0.0928646\pi\)
\(488\) −13.3637 + 17.9179i −0.604948 + 0.811107i
\(489\) 23.5427i 1.06464i
\(490\) 0 0
\(491\) 9.51192i 0.429267i −0.976695 0.214633i \(-0.931144\pi\)
0.976695 0.214633i \(-0.0688557\pi\)
\(492\) 25.4178 + 35.6053i 1.14592 + 1.60521i
\(493\) 12.8289i 0.577783i
\(494\) 41.3641 13.2496i 1.86106 0.596128i
\(495\) −0.450309 −0.0202399
\(496\) 7.07177 20.5897i 0.317532 0.924506i
\(497\) 0 0
\(498\) −7.67728 23.9678i −0.344027 1.07402i
\(499\) 8.49279i 0.380189i −0.981766 0.190095i \(-0.939121\pi\)
0.981766 0.190095i \(-0.0608795\pi\)
\(500\) −1.16204 1.62778i −0.0519679 0.0727966i
\(501\) 22.1834 0.991083
\(502\) 4.08188 + 12.7433i 0.182183 + 0.568760i
\(503\) −10.4796 −0.467261 −0.233630 0.972325i \(-0.575061\pi\)
−0.233630 + 0.972325i \(0.575061\pi\)
\(504\) 0 0
\(505\) 7.16390 0.318790
\(506\) −0.0652270 0.203633i −0.00289969 0.00905260i
\(507\) 10.8190 0.480490
\(508\) 5.08475 + 7.12272i 0.225599 + 0.316020i
\(509\) 22.8034i 1.01074i −0.862902 0.505371i \(-0.831356\pi\)
0.862902 0.505371i \(-0.168644\pi\)
\(510\) −6.37336 19.8971i −0.282217 0.881059i
\(511\) 0 0
\(512\) −7.79472 + 21.2425i −0.344481 + 0.938793i
\(513\) 30.4665 1.34513
\(514\) 3.69754 1.18438i 0.163091 0.0522408i
\(515\) 4.88608i 0.215306i
\(516\) −22.4169 31.4016i −0.986849 1.38238i
\(517\) 0.445456i 0.0195912i
\(518\) 0 0
\(519\) 21.9899i 0.965248i
\(520\) −9.33516 6.96245i −0.409374 0.305324i
\(521\) 9.09960i 0.398661i 0.979932 + 0.199330i \(0.0638767\pi\)
−0.979932 + 0.199330i \(0.936123\pi\)
\(522\) 4.60626 + 14.3803i 0.201610 + 0.629411i
\(523\) −4.76095 −0.208182 −0.104091 0.994568i \(-0.533193\pi\)
−0.104091 + 0.994568i \(0.533193\pi\)
\(524\) −4.85315 + 3.46456i −0.212011 + 0.151350i
\(525\) 0 0
\(526\) 34.5816 11.0771i 1.50783 0.482982i
\(527\) 29.3755i 1.27962i
\(528\) 1.03802 + 0.356518i 0.0451739 + 0.0155155i
\(529\) 20.7250 0.901088
\(530\) −8.27292 + 2.64995i −0.359353 + 0.115106i
\(531\) −38.2866 −1.66150
\(532\) 0 0
\(533\) 32.9028 1.42518
\(534\) 11.7664 3.76896i 0.509181 0.163099i
\(535\) 7.56872 0.327224
\(536\) −0.185672 + 0.248946i −0.00801980 + 0.0107528i
\(537\) 24.2202i 1.04518i
\(538\) −11.0438 + 3.53751i −0.476133 + 0.152513i
\(539\) 0 0
\(540\) −4.74615 6.64842i −0.204242 0.286102i
\(541\) −22.4624 −0.965734 −0.482867 0.875694i \(-0.660405\pi\)
−0.482867 + 0.875694i \(0.660405\pi\)
\(542\) 2.76412 + 8.62936i 0.118729 + 0.370663i
\(543\) 58.4689i 2.50914i
\(544\) −0.636494 + 30.5254i −0.0272895 + 1.30877i
\(545\) 18.0532i 0.773316i
\(546\) 0 0
\(547\) 24.4644i 1.04602i 0.852326 + 0.523012i \(0.175192\pi\)
−0.852326 + 0.523012i \(0.824808\pi\)
\(548\) 2.48196 1.77182i 0.106024 0.0756884i
\(549\) 35.5010i 1.51515i
\(550\) 0.135008 0.0432453i 0.00575677 0.00184399i
\(551\) 17.7300 0.755322
\(552\) 6.98130 9.36043i 0.297144 0.398406i
\(553\) 0 0
\(554\) −6.88915 21.5073i −0.292692 0.913759i
\(555\) 2.84262i 0.120663i
\(556\) −11.6562 + 8.32113i −0.494335 + 0.352895i
\(557\) −8.43255 −0.357299 −0.178649 0.983913i \(-0.557173\pi\)
−0.178649 + 0.983913i \(0.557173\pi\)
\(558\) −10.5474 32.9281i −0.446507 1.39396i
\(559\) −29.0182 −1.22734
\(560\) 0 0
\(561\) 1.48095 0.0625255
\(562\) 4.17775 + 13.0426i 0.176228 + 0.550169i
\(563\) −27.1665 −1.14493 −0.572467 0.819928i \(-0.694013\pi\)
−0.572467 + 0.819928i \(0.694013\pi\)
\(564\) −19.7993 + 14.1343i −0.833702 + 0.595161i
\(565\) 18.1432i 0.763289i
\(566\) 11.2712 + 35.1876i 0.473762 + 1.47905i
\(567\) 0 0
\(568\) −11.3842 + 15.2638i −0.477669 + 0.640453i
\(569\) 14.2329 0.596672 0.298336 0.954461i \(-0.403568\pi\)
0.298336 + 0.954461i \(0.403568\pi\)
\(570\) −27.4985 + 8.80822i −1.15179 + 0.368936i
\(571\) 16.8436i 0.704884i 0.935834 + 0.352442i \(0.114649\pi\)
−0.935834 + 0.352442i \(0.885351\pi\)
\(572\) 0.671845 0.479615i 0.0280912 0.0200537i
\(573\) 68.4938i 2.86137i
\(574\) 0 0
\(575\) 1.50830i 0.0629006i
\(576\) 10.2468 + 34.4456i 0.426950 + 1.43523i
\(577\) 2.15337i 0.0896459i −0.998995 0.0448230i \(-0.985728\pi\)
0.998995 0.0448230i \(-0.0142724\pi\)
\(578\) 5.23353 + 16.3386i 0.217686 + 0.679598i
\(579\) −22.3397 −0.928407
\(580\) −2.76202 3.86904i −0.114687 0.160653i
\(581\) 0 0
\(582\) −40.8057 + 13.0707i −1.69145 + 0.541799i
\(583\) 0.615755i 0.0255020i
\(584\) −10.3945 + 13.9369i −0.430129 + 0.576712i
\(585\) −18.4959 −0.764710
\(586\) −21.8706 + 7.00551i −0.903467 + 0.289395i
\(587\) −11.3061 −0.466652 −0.233326 0.972399i \(-0.574961\pi\)
−0.233326 + 0.972399i \(0.574961\pi\)
\(588\) 0 0
\(589\) −40.5980 −1.67281
\(590\) 11.4788 3.67684i 0.472575 0.151373i
\(591\) 34.0827 1.40197
\(592\) 1.34939 3.92881i 0.0554598 0.161473i
\(593\) 17.0399i 0.699744i 0.936798 + 0.349872i \(0.113775\pi\)
−0.936798 + 0.349872i \(0.886225\pi\)
\(594\) 0.551420 0.176629i 0.0226250 0.00724716i
\(595\) 0 0
\(596\) 34.2603 24.4577i 1.40336 1.00183i
\(597\) −63.4297 −2.59601
\(598\) −2.67911 8.36397i −0.109557 0.342028i
\(599\) 3.92441i 0.160347i −0.996781 0.0801736i \(-0.974453\pi\)
0.996781 0.0801736i \(-0.0255475\pi\)
\(600\) 6.20593 + 4.62858i 0.253356 + 0.188961i
\(601\) 8.98026i 0.366312i 0.983084 + 0.183156i \(0.0586314\pi\)
−0.983084 + 0.183156i \(0.941369\pi\)
\(602\) 0 0
\(603\) 0.493240i 0.0200863i
\(604\) −4.44245 6.22299i −0.180761 0.253210i
\(605\) 10.9900i 0.446805i
\(606\) −26.4094 + 8.45937i −1.07281 + 0.343638i
\(607\) −37.5791 −1.52529 −0.762644 0.646819i \(-0.776099\pi\)
−0.762644 + 0.646819i \(0.776099\pi\)
\(608\) 42.1872 + 0.879659i 1.71092 + 0.0356749i
\(609\) 0 0
\(610\) −3.40933 10.6436i −0.138040 0.430948i
\(611\) 18.2965i 0.740199i
\(612\) 28.1745 + 39.4669i 1.13889 + 1.59535i
\(613\) −46.2598 −1.86841 −0.934207 0.356731i \(-0.883891\pi\)
−0.934207 + 0.356731i \(0.883891\pi\)
\(614\) 10.1568 + 31.7088i 0.409896 + 1.27966i
\(615\) −21.8735 −0.882025
\(616\) 0 0
\(617\) −42.8844 −1.72646 −0.863231 0.504809i \(-0.831563\pi\)
−0.863231 + 0.504809i \(0.831563\pi\)
\(618\) −5.76964 18.0123i −0.232089 0.724562i
\(619\) 29.5006 1.18573 0.592865 0.805302i \(-0.297997\pi\)
0.592865 + 0.805302i \(0.297997\pi\)
\(620\) 6.32447 + 8.85932i 0.253997 + 0.355799i
\(621\) 6.16042i 0.247209i
\(622\) −2.32762 7.26665i −0.0933293 0.291366i
\(623\) 0 0
\(624\) 42.6352 + 14.6435i 1.70677 + 0.586210i
\(625\) 1.00000 0.0400000
\(626\) 43.8540 14.0471i 1.75276 0.561436i
\(627\) 2.04672i 0.0817381i
\(628\) −1.49221 2.09028i −0.0595455 0.0834113i
\(629\) 5.60526i 0.223496i
\(630\) 0 0
\(631\) 20.5872i 0.819563i −0.912184 0.409781i \(-0.865605\pi\)
0.912184 0.409781i \(-0.134395\pi\)
\(632\) −7.22810 + 9.69134i −0.287518 + 0.385501i
\(633\) 30.0431i 1.19411i
\(634\) −5.91530 18.4671i −0.234927 0.733422i
\(635\) −4.37573 −0.173645
\(636\) 27.3686 19.5378i 1.08524 0.774726i
\(637\) 0 0
\(638\) 0.320899 0.102789i 0.0127045 0.00406945i
\(639\) 30.2422i 1.19636i
\(640\) −6.38008 9.34315i −0.252195 0.369321i
\(641\) −36.8526 −1.45559 −0.727795 0.685794i \(-0.759455\pi\)
−0.727795 + 0.685794i \(0.759455\pi\)
\(642\) −27.9018 + 8.93738i −1.10119 + 0.352730i
\(643\) −48.4719 −1.91154 −0.955772 0.294108i \(-0.904977\pi\)
−0.955772 + 0.294108i \(0.904977\pi\)
\(644\) 0 0
\(645\) 19.2911 0.759585
\(646\) 54.2233 17.3686i 2.13339 0.683359i
\(647\) −39.1866 −1.54058 −0.770292 0.637692i \(-0.779889\pi\)
−0.770292 + 0.637692i \(0.779889\pi\)
\(648\) −5.20774 3.88409i −0.204579 0.152581i
\(649\) 0.854369i 0.0335369i
\(650\) 5.54528 1.77624i 0.217504 0.0696700i
\(651\) 0 0
\(652\) 9.99477 + 14.0007i 0.391425 + 0.548309i
\(653\) 6.88323 0.269362 0.134681 0.990889i \(-0.456999\pi\)
0.134681 + 0.990889i \(0.456999\pi\)
\(654\) −21.3178 66.5525i −0.833593 2.60241i
\(655\) 2.98145i 0.116495i
\(656\) 30.2315 + 10.3834i 1.18034 + 0.405402i
\(657\) 27.6133i 1.07730i
\(658\) 0 0
\(659\) 40.9792i 1.59632i 0.602444 + 0.798161i \(0.294194\pi\)
−0.602444 + 0.798161i \(0.705806\pi\)
\(660\) −0.446637 + 0.318844i −0.0173853 + 0.0124110i
\(661\) 12.0892i 0.470216i −0.971969 0.235108i \(-0.924456\pi\)
0.971969 0.235108i \(-0.0755443\pi\)
\(662\) −7.65908 + 2.45333i −0.297679 + 0.0953512i
\(663\) 60.8279 2.36236
\(664\) −14.7409 10.9942i −0.572056 0.426657i
\(665\) 0 0
\(666\) −2.01259 6.28314i −0.0779863 0.243467i
\(667\) 3.58506i 0.138814i
\(668\) 13.1923 9.41770i 0.510426 0.364382i
\(669\) −41.0023 −1.58524
\(670\) −0.0473681 0.147879i −0.00182999 0.00571308i
\(671\) 0.792208 0.0305828
\(672\) 0 0
\(673\) 29.0006 1.11789 0.558945 0.829205i \(-0.311206\pi\)
0.558945 + 0.829205i \(0.311206\pi\)
\(674\) 6.35111 + 19.8276i 0.244635 + 0.763732i
\(675\) 4.08434 0.157206
\(676\) 6.43399 4.59308i 0.247461 0.176657i
\(677\) 48.3082i 1.85663i 0.371791 + 0.928317i \(0.378744\pi\)
−0.371791 + 0.928317i \(0.621256\pi\)
\(678\) −21.4240 66.8841i −0.822786 2.56867i
\(679\) 0 0
\(680\) −12.2373 9.12692i −0.469277 0.350001i
\(681\) −4.12607 −0.158112
\(682\) −0.734792 + 0.235366i −0.0281367 + 0.00901262i
\(683\) 13.2246i 0.506026i −0.967463 0.253013i \(-0.918579\pi\)
0.967463 0.253013i \(-0.0814215\pi\)
\(684\) 54.5447 38.9382i 2.08557 1.48884i
\(685\) 1.52475i 0.0582578i
\(686\) 0 0
\(687\) 23.3358i 0.890317i
\(688\) −26.6623 9.15748i −1.01649 0.349125i
\(689\) 25.2913i 0.963522i
\(690\) 1.78105 + 5.56029i 0.0678035 + 0.211677i
\(691\) 39.8895 1.51747 0.758733 0.651401i \(-0.225819\pi\)
0.758733 + 0.651401i \(0.225819\pi\)
\(692\) 9.33552 + 13.0772i 0.354883 + 0.497121i
\(693\) 0 0
\(694\) −20.8339 + 6.67342i −0.790843 + 0.253320i
\(695\) 7.16082i 0.271625i
\(696\) 14.7508 + 11.0016i 0.559127 + 0.417014i
\(697\) 43.1316 1.63372
\(698\) 15.5273 4.97365i 0.587718 0.188255i
\(699\) 58.0921 2.19725
\(700\) 0 0
\(701\) −5.82647 −0.220063 −0.110031 0.993928i \(-0.535095\pi\)
−0.110031 + 0.993928i \(0.535095\pi\)
\(702\) 22.6488 7.25479i 0.854825 0.273814i
\(703\) −7.74668 −0.292171
\(704\) 0.768655 0.228658i 0.0289698 0.00861787i
\(705\) 12.1634i 0.458100i
\(706\) −27.5237 + 8.81627i −1.03587 + 0.331805i
\(707\) 0 0
\(708\) −37.9744 + 27.1091i −1.42716 + 1.01882i
\(709\) −16.5923 −0.623137 −0.311569 0.950224i \(-0.600854\pi\)
−0.311569 + 0.950224i \(0.600854\pi\)
\(710\) −2.90430 9.06700i −0.108997 0.340278i
\(711\) 19.2016i 0.720115i
\(712\) 5.39731 7.23664i 0.202273 0.271205i
\(713\) 8.20905i 0.307431i
\(714\) 0 0
\(715\) 0.412736i 0.0154355i
\(716\) −10.2824 14.4035i −0.384270 0.538285i
\(717\) 27.7911i 1.03788i
\(718\) 28.5778 9.15394i 1.06652 0.341622i
\(719\) −3.39845 −0.126741 −0.0633704 0.997990i \(-0.520185\pi\)
−0.0633704 + 0.997990i \(0.520185\pi\)
\(720\) −16.9942 5.83687i −0.633338 0.217527i
\(721\) 0 0
\(722\) −15.8074 49.3493i −0.588290 1.83659i
\(723\) 52.1455i 1.93931i
\(724\) −24.8222 34.7710i −0.922511 1.29225i
\(725\) 2.37688 0.0882752
\(726\) 12.9773 + 40.5140i 0.481632 + 1.50362i
\(727\) −14.3045 −0.530526 −0.265263 0.964176i \(-0.585459\pi\)
−0.265263 + 0.964176i \(0.585459\pi\)
\(728\) 0 0
\(729\) −43.8569 −1.62433
\(730\) −2.65183 8.27880i −0.0981487 0.306412i
\(731\) −38.0393 −1.40694
\(732\) 25.1367 + 35.2115i 0.929079 + 1.30145i
\(733\) 49.4913i 1.82800i −0.405711 0.914001i \(-0.632976\pi\)
0.405711 0.914001i \(-0.367024\pi\)
\(734\) 3.30088 + 10.3051i 0.121838 + 0.380367i
\(735\) 0 0
\(736\) 0.177870 8.53039i 0.00655637 0.314434i
\(737\) 0.0110067 0.000405437
\(738\) 48.3478 15.4866i 1.77971 0.570068i
\(739\) 26.8103i 0.986234i 0.869963 + 0.493117i \(0.164143\pi\)
−0.869963 + 0.493117i \(0.835857\pi\)
\(740\) 1.20680 + 1.69048i 0.0443628 + 0.0621435i
\(741\) 84.0664i 3.08826i
\(742\) 0 0
\(743\) 22.2896i 0.817727i −0.912596 0.408863i \(-0.865925\pi\)
0.912596 0.408863i \(-0.134075\pi\)
\(744\) −33.7763 25.1914i −1.23830 0.923561i
\(745\) 21.0473i 0.771112i
\(746\) −11.0587 34.5245i −0.404890 1.26403i
\(747\) −29.2062 −1.06860
\(748\) 0.880706 0.628717i 0.0322018 0.0229882i
\(749\) 0 0
\(750\) −3.68646 + 1.18083i −0.134610 + 0.0431179i
\(751\) 12.8665i 0.469505i −0.972055 0.234752i \(-0.924572\pi\)
0.972055 0.234752i \(-0.0754279\pi\)
\(752\) −5.77397 + 16.8111i −0.210555 + 0.613038i
\(753\) 25.8988 0.943804
\(754\) 13.1805 4.22192i 0.480005 0.153753i
\(755\) 3.82299 0.139133
\(756\) 0 0
\(757\) −3.66830 −0.133327 −0.0666633 0.997776i \(-0.521235\pi\)
−0.0666633 + 0.997776i \(0.521235\pi\)
\(758\) −39.1974 + 12.5556i −1.42371 + 0.456039i
\(759\) −0.413854 −0.0150219
\(760\) −12.6137 + 16.9123i −0.457549 + 0.613475i
\(761\) 2.95761i 0.107213i −0.998562 0.0536066i \(-0.982928\pi\)
0.998562 0.0536066i \(-0.0170717\pi\)
\(762\) 16.1309 5.16700i 0.584362 0.187181i
\(763\) 0 0
\(764\) 29.0782 + 40.7327i 1.05201 + 1.47366i
\(765\) −24.2458 −0.876609
\(766\) 3.72872 + 11.6408i 0.134724 + 0.420598i
\(767\) 35.0921i 1.26710i
\(768\) 34.5526 + 26.9093i 1.24681 + 0.971007i
\(769\) 32.6324i 1.17676i −0.808586 0.588378i \(-0.799767\pi\)
0.808586 0.588378i \(-0.200233\pi\)
\(770\) 0 0
\(771\) 7.51469i 0.270635i
\(772\) −13.2852 + 9.48404i −0.478147 + 0.341338i
\(773\) 5.49687i 0.197709i 0.995102 + 0.0988544i \(0.0315178\pi\)
−0.995102 + 0.0988544i \(0.968482\pi\)
\(774\) −42.6397 + 13.6582i −1.53265 + 0.490933i
\(775\) −5.44258 −0.195503
\(776\) −18.7178 + 25.0966i −0.671931 + 0.900916i
\(777\) 0 0
\(778\) 6.11598 + 19.0936i 0.219269 + 0.684538i
\(779\) 59.6094i 2.13573i
\(780\) −18.3450 + 13.0961i −0.656857 + 0.468915i
\(781\) 0.674858 0.0241483
\(782\) −3.51199 10.9641i −0.125589