Properties

Label 980.2.g.a.391.12
Level $980$
Weight $2$
Character 980.391
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(391,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.391");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 391.12
Character \(\chi\) \(=\) 980.391
Dual form 980.2.g.a.391.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.976830 + 1.02265i) q^{2} +1.11294 q^{3} +(-0.0916073 - 1.99790i) q^{4} +1.00000i q^{5} +(-1.08715 + 1.13814i) q^{6} +(2.13263 + 1.85793i) q^{8} -1.76137 q^{9} +O(q^{10})\) \(q+(-0.976830 + 1.02265i) q^{2} +1.11294 q^{3} +(-0.0916073 - 1.99790i) q^{4} +1.00000i q^{5} +(-1.08715 + 1.13814i) q^{6} +(2.13263 + 1.85793i) q^{8} -1.76137 q^{9} +(-1.02265 - 0.976830i) q^{10} +1.71377i q^{11} +(-0.101953 - 2.22354i) q^{12} -2.45950i q^{13} +1.11294i q^{15} +(-3.98322 + 0.366045i) q^{16} +6.21892i q^{17} +(1.72056 - 1.80126i) q^{18} -0.216513 q^{19} +(1.99790 - 0.0916073i) q^{20} +(-1.75258 - 1.67406i) q^{22} +6.56656i q^{23} +(2.37348 + 2.06776i) q^{24} -1.00000 q^{25} +(2.51519 + 2.40251i) q^{26} -5.29911 q^{27} -2.47123 q^{29} +(-1.13814 - 1.08715i) q^{30} +0.163826 q^{31} +(3.51659 - 4.43098i) q^{32} +1.90732i q^{33} +(-6.35975 - 6.07482i) q^{34} +(0.161354 + 3.51904i) q^{36} +7.69679 q^{37} +(0.211496 - 0.221416i) q^{38} -2.73727i q^{39} +(-1.85793 + 2.13263i) q^{40} +8.34130i q^{41} +1.89449i q^{43} +(3.42394 - 0.156994i) q^{44} -1.76137i q^{45} +(-6.71527 - 6.41442i) q^{46} -11.7045 q^{47} +(-4.43307 + 0.407385i) q^{48} +(0.976830 - 1.02265i) q^{50} +6.92127i q^{51} +(-4.91383 + 0.225308i) q^{52} +13.0276 q^{53} +(5.17633 - 5.41911i) q^{54} -1.71377 q^{55} -0.240965 q^{57} +(2.41397 - 2.52720i) q^{58} -4.28758 q^{59} +(2.22354 - 0.101953i) q^{60} +7.00039i q^{61} +(-0.160030 + 0.167536i) q^{62} +(1.09621 + 7.92454i) q^{64} +2.45950 q^{65} +(-1.95051 - 1.86313i) q^{66} +5.17415i q^{67} +(12.4248 - 0.569698i) q^{68} +7.30818i q^{69} +5.04201i q^{71} +(-3.75635 - 3.27250i) q^{72} -7.61517i q^{73} +(-7.51846 + 7.87109i) q^{74} -1.11294 q^{75} +(0.0198341 + 0.432571i) q^{76} +(2.79925 + 2.67384i) q^{78} +15.9493i q^{79} +(-0.366045 - 3.98322i) q^{80} -0.613471 q^{81} +(-8.53020 - 8.14803i) q^{82} -5.47827 q^{83} -6.21892 q^{85} +(-1.93739 - 1.85060i) q^{86} -2.75033 q^{87} +(-3.18406 + 3.65483i) q^{88} -1.78368i q^{89} +(1.80126 + 1.72056i) q^{90} +(13.1193 - 0.601545i) q^{92} +0.182328 q^{93} +(11.4333 - 11.9696i) q^{94} -0.216513i q^{95} +(3.91375 - 4.93141i) q^{96} -10.5305i q^{97} -3.01858i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{2} + 4 q^{4} - 4 q^{8} + 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 32 q - 4 q^{2} + 4 q^{4} - 4 q^{8} + 32 q^{9} + 28 q^{16} - 8 q^{22} - 32 q^{25} - 40 q^{29} - 4 q^{32} + 60 q^{36} - 16 q^{37} + 36 q^{44} - 4 q^{46} + 4 q^{50} + 16 q^{53} + 48 q^{57} - 4 q^{58} - 28 q^{60} + 4 q^{64} - 8 q^{65} - 8 q^{72} - 76 q^{74} + 120 q^{78} + 72 q^{81} - 56 q^{86} - 8 q^{88} - 4 q^{92} + 16 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.976830 + 1.02265i −0.690723 + 0.723120i
\(3\) 1.11294 0.642555 0.321278 0.946985i \(-0.395888\pi\)
0.321278 + 0.946985i \(0.395888\pi\)
\(4\) −0.0916073 1.99790i −0.0458036 0.998950i
\(5\) 1.00000i 0.447214i
\(6\) −1.08715 + 1.13814i −0.443827 + 0.464644i
\(7\) 0 0
\(8\) 2.13263 + 1.85793i 0.753998 + 0.656876i
\(9\) −1.76137 −0.587123
\(10\) −1.02265 0.976830i −0.323389 0.308901i
\(11\) 1.71377i 0.516721i 0.966049 + 0.258360i \(0.0831822\pi\)
−0.966049 + 0.258360i \(0.916818\pi\)
\(12\) −0.101953 2.22354i −0.0294314 0.641881i
\(13\) 2.45950i 0.682142i −0.940038 0.341071i \(-0.889210\pi\)
0.940038 0.341071i \(-0.110790\pi\)
\(14\) 0 0
\(15\) 1.11294i 0.287359i
\(16\) −3.98322 + 0.366045i −0.995804 + 0.0915112i
\(17\) 6.21892i 1.50831i 0.656697 + 0.754155i \(0.271953\pi\)
−0.656697 + 0.754155i \(0.728047\pi\)
\(18\) 1.72056 1.80126i 0.405539 0.424560i
\(19\) −0.216513 −0.0496714 −0.0248357 0.999692i \(-0.507906\pi\)
−0.0248357 + 0.999692i \(0.507906\pi\)
\(20\) 1.99790 0.0916073i 0.446744 0.0204840i
\(21\) 0 0
\(22\) −1.75258 1.67406i −0.373651 0.356911i
\(23\) 6.56656i 1.36922i 0.728908 + 0.684612i \(0.240028\pi\)
−0.728908 + 0.684612i \(0.759972\pi\)
\(24\) 2.37348 + 2.06776i 0.484485 + 0.422079i
\(25\) −1.00000 −0.200000
\(26\) 2.51519 + 2.40251i 0.493270 + 0.471171i
\(27\) −5.29911 −1.01981
\(28\) 0 0
\(29\) −2.47123 −0.458896 −0.229448 0.973321i \(-0.573692\pi\)
−0.229448 + 0.973321i \(0.573692\pi\)
\(30\) −1.13814 1.08715i −0.207795 0.198486i
\(31\) 0.163826 0.0294241 0.0147120 0.999892i \(-0.495317\pi\)
0.0147120 + 0.999892i \(0.495317\pi\)
\(32\) 3.51659 4.43098i 0.621651 0.783294i
\(33\) 1.90732i 0.332022i
\(34\) −6.35975 6.07482i −1.09069 1.04182i
\(35\) 0 0
\(36\) 0.161354 + 3.51904i 0.0268924 + 0.586507i
\(37\) 7.69679 1.26535 0.632673 0.774419i \(-0.281958\pi\)
0.632673 + 0.774419i \(0.281958\pi\)
\(38\) 0.211496 0.221416i 0.0343092 0.0359184i
\(39\) 2.73727i 0.438313i
\(40\) −1.85793 + 2.13263i −0.293764 + 0.337198i
\(41\) 8.34130i 1.30269i 0.758781 + 0.651346i \(0.225795\pi\)
−0.758781 + 0.651346i \(0.774205\pi\)
\(42\) 0 0
\(43\) 1.89449i 0.288907i 0.989512 + 0.144454i \(0.0461425\pi\)
−0.989512 + 0.144454i \(0.953858\pi\)
\(44\) 3.42394 0.156994i 0.516179 0.0236677i
\(45\) 1.76137i 0.262569i
\(46\) −6.71527 6.41442i −0.990112 0.945754i
\(47\) −11.7045 −1.70728 −0.853639 0.520865i \(-0.825609\pi\)
−0.853639 + 0.520865i \(0.825609\pi\)
\(48\) −4.43307 + 0.407385i −0.639859 + 0.0588010i
\(49\) 0 0
\(50\) 0.976830 1.02265i 0.138145 0.144624i
\(51\) 6.92127i 0.969172i
\(52\) −4.91383 + 0.225308i −0.681426 + 0.0312446i
\(53\) 13.0276 1.78949 0.894743 0.446582i \(-0.147359\pi\)
0.894743 + 0.446582i \(0.147359\pi\)
\(54\) 5.17633 5.41911i 0.704409 0.737447i
\(55\) −1.71377 −0.231085
\(56\) 0 0
\(57\) −0.240965 −0.0319166
\(58\) 2.41397 2.52720i 0.316970 0.331837i
\(59\) −4.28758 −0.558195 −0.279098 0.960263i \(-0.590035\pi\)
−0.279098 + 0.960263i \(0.590035\pi\)
\(60\) 2.22354 0.101953i 0.287058 0.0131621i
\(61\) 7.00039i 0.896308i 0.893956 + 0.448154i \(0.147918\pi\)
−0.893956 + 0.448154i \(0.852082\pi\)
\(62\) −0.160030 + 0.167536i −0.0203239 + 0.0212771i
\(63\) 0 0
\(64\) 1.09621 + 7.92454i 0.137027 + 0.990567i
\(65\) 2.45950 0.305063
\(66\) −1.95051 1.86313i −0.240091 0.229335i
\(67\) 5.17415i 0.632124i 0.948739 + 0.316062i \(0.102361\pi\)
−0.948739 + 0.316062i \(0.897639\pi\)
\(68\) 12.4248 0.569698i 1.50673 0.0690861i
\(69\) 7.30818i 0.879801i
\(70\) 0 0
\(71\) 5.04201i 0.598376i 0.954194 + 0.299188i \(0.0967158\pi\)
−0.954194 + 0.299188i \(0.903284\pi\)
\(72\) −3.75635 3.27250i −0.442690 0.385667i
\(73\) 7.61517i 0.891288i −0.895210 0.445644i \(-0.852975\pi\)
0.895210 0.445644i \(-0.147025\pi\)
\(74\) −7.51846 + 7.87109i −0.874003 + 0.914996i
\(75\) −1.11294 −0.128511
\(76\) 0.0198341 + 0.432571i 0.00227513 + 0.0496193i
\(77\) 0 0
\(78\) 2.79925 + 2.67384i 0.316953 + 0.302753i
\(79\) 15.9493i 1.79443i 0.441592 + 0.897216i \(0.354414\pi\)
−0.441592 + 0.897216i \(0.645586\pi\)
\(80\) −0.366045 3.98322i −0.0409250 0.445337i
\(81\) −0.613471 −0.0681635
\(82\) −8.53020 8.14803i −0.942002 0.899800i
\(83\) −5.47827 −0.601318 −0.300659 0.953732i \(-0.597207\pi\)
−0.300659 + 0.953732i \(0.597207\pi\)
\(84\) 0 0
\(85\) −6.21892 −0.674536
\(86\) −1.93739 1.85060i −0.208915 0.199555i
\(87\) −2.75033 −0.294866
\(88\) −3.18406 + 3.65483i −0.339422 + 0.389607i
\(89\) 1.78368i 0.189069i −0.995522 0.0945347i \(-0.969864\pi\)
0.995522 0.0945347i \(-0.0301363\pi\)
\(90\) 1.80126 + 1.72056i 0.189869 + 0.181363i
\(91\) 0 0
\(92\) 13.1193 0.601545i 1.36779 0.0627154i
\(93\) 0.182328 0.0189066
\(94\) 11.4333 11.9696i 1.17926 1.23457i
\(95\) 0.216513i 0.0222137i
\(96\) 3.91375 4.93141i 0.399445 0.503310i
\(97\) 10.5305i 1.06921i −0.845101 0.534606i \(-0.820460\pi\)
0.845101 0.534606i \(-0.179540\pi\)
\(98\) 0 0
\(99\) 3.01858i 0.303379i
\(100\) 0.0916073 + 1.99790i 0.00916073 + 0.199790i
\(101\) 0.449771i 0.0447539i 0.999750 + 0.0223769i \(0.00712339\pi\)
−0.999750 + 0.0223769i \(0.992877\pi\)
\(102\) −7.07800 6.76090i −0.700827 0.669429i
\(103\) −9.28196 −0.914579 −0.457289 0.889318i \(-0.651180\pi\)
−0.457289 + 0.889318i \(0.651180\pi\)
\(104\) 4.56957 5.24519i 0.448083 0.514334i
\(105\) 0 0
\(106\) −12.7258 + 13.3227i −1.23604 + 1.29401i
\(107\) 18.5240i 1.79078i −0.445278 0.895392i \(-0.646895\pi\)
0.445278 0.895392i \(-0.353105\pi\)
\(108\) 0.485437 + 10.5871i 0.0467112 + 1.01874i
\(109\) −6.97114 −0.667714 −0.333857 0.942624i \(-0.608350\pi\)
−0.333857 + 0.942624i \(0.608350\pi\)
\(110\) 1.67406 1.75258i 0.159615 0.167102i
\(111\) 8.56605 0.813054
\(112\) 0 0
\(113\) 0.333646 0.0313868 0.0156934 0.999877i \(-0.495004\pi\)
0.0156934 + 0.999877i \(0.495004\pi\)
\(114\) 0.235382 0.246422i 0.0220455 0.0230795i
\(115\) −6.56656 −0.612335
\(116\) 0.226383 + 4.93728i 0.0210191 + 0.458415i
\(117\) 4.33208i 0.400501i
\(118\) 4.18824 4.38467i 0.385558 0.403642i
\(119\) 0 0
\(120\) −2.06776 + 2.37348i −0.188760 + 0.216668i
\(121\) 8.06299 0.732999
\(122\) −7.15891 6.83819i −0.648138 0.619100i
\(123\) 9.28335i 0.837052i
\(124\) −0.0150077 0.327309i −0.00134773 0.0293932i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 15.8806i 1.40918i −0.709616 0.704589i \(-0.751131\pi\)
0.709616 0.704589i \(-0.248869\pi\)
\(128\) −9.17481 6.61989i −0.810946 0.585121i
\(129\) 2.10845i 0.185639i
\(130\) −2.40251 + 2.51519i −0.210714 + 0.220597i
\(131\) 3.20657 0.280159 0.140080 0.990140i \(-0.455264\pi\)
0.140080 + 0.990140i \(0.455264\pi\)
\(132\) 3.81063 0.174724i 0.331673 0.0152078i
\(133\) 0 0
\(134\) −5.29133 5.05427i −0.457101 0.436622i
\(135\) 5.29911i 0.456075i
\(136\) −11.5543 + 13.2626i −0.990773 + 1.13726i
\(137\) 1.30357 0.111372 0.0556859 0.998448i \(-0.482265\pi\)
0.0556859 + 0.998448i \(0.482265\pi\)
\(138\) −7.47368 7.13885i −0.636201 0.607699i
\(139\) −20.8813 −1.77113 −0.885563 0.464519i \(-0.846227\pi\)
−0.885563 + 0.464519i \(0.846227\pi\)
\(140\) 0 0
\(141\) −13.0264 −1.09702
\(142\) −5.15619 4.92518i −0.432697 0.413312i
\(143\) 4.21501 0.352477
\(144\) 7.01591 0.644740i 0.584660 0.0537283i
\(145\) 2.47123i 0.205225i
\(146\) 7.78762 + 7.43873i 0.644508 + 0.615633i
\(147\) 0 0
\(148\) −0.705083 15.3774i −0.0579574 1.26402i
\(149\) 9.73494 0.797517 0.398759 0.917056i \(-0.369441\pi\)
0.398759 + 0.917056i \(0.369441\pi\)
\(150\) 1.08715 1.13814i 0.0887655 0.0929288i
\(151\) 14.9372i 1.21557i 0.794102 + 0.607784i \(0.207941\pi\)
−0.794102 + 0.607784i \(0.792059\pi\)
\(152\) −0.461741 0.402265i −0.0374521 0.0326280i
\(153\) 10.9538i 0.885563i
\(154\) 0 0
\(155\) 0.163826i 0.0131588i
\(156\) −5.46879 + 0.250754i −0.437853 + 0.0200764i
\(157\) 8.22463i 0.656397i −0.944609 0.328198i \(-0.893559\pi\)
0.944609 0.328198i \(-0.106441\pi\)
\(158\) −16.3104 15.5797i −1.29759 1.23946i
\(159\) 14.4990 1.14984
\(160\) 4.43098 + 3.51659i 0.350300 + 0.278011i
\(161\) 0 0
\(162\) 0.599257 0.627364i 0.0470821 0.0492903i
\(163\) 11.9866i 0.938863i 0.882969 + 0.469431i \(0.155541\pi\)
−0.882969 + 0.469431i \(0.844459\pi\)
\(164\) 16.6651 0.764124i 1.30133 0.0596681i
\(165\) −1.90732 −0.148485
\(166\) 5.35133 5.60232i 0.415344 0.434825i
\(167\) 14.8103 1.14606 0.573029 0.819535i \(-0.305768\pi\)
0.573029 + 0.819535i \(0.305768\pi\)
\(168\) 0 0
\(169\) 6.95088 0.534683
\(170\) 6.07482 6.35975i 0.465918 0.487770i
\(171\) 0.381359 0.0291632
\(172\) 3.78501 0.173549i 0.288604 0.0132330i
\(173\) 15.6209i 1.18763i 0.804600 + 0.593817i \(0.202380\pi\)
−0.804600 + 0.593817i \(0.797620\pi\)
\(174\) 2.68660 2.81261i 0.203671 0.213224i
\(175\) 0 0
\(176\) −0.627316 6.82631i −0.0472857 0.514553i
\(177\) −4.77181 −0.358671
\(178\) 1.82407 + 1.74235i 0.136720 + 0.130595i
\(179\) 6.38903i 0.477538i −0.971076 0.238769i \(-0.923256\pi\)
0.971076 0.238769i \(-0.0767439\pi\)
\(180\) −3.51904 + 0.161354i −0.262294 + 0.0120266i
\(181\) 1.18770i 0.0882808i 0.999025 + 0.0441404i \(0.0140549\pi\)
−0.999025 + 0.0441404i \(0.985945\pi\)
\(182\) 0 0
\(183\) 7.79100i 0.575927i
\(184\) −12.2002 + 14.0040i −0.899411 + 1.03239i
\(185\) 7.69679i 0.565880i
\(186\) −0.178104 + 0.186457i −0.0130592 + 0.0136717i
\(187\) −10.6578 −0.779375
\(188\) 1.07222 + 23.3844i 0.0781996 + 1.70549i
\(189\) 0 0
\(190\) 0.221416 + 0.211496i 0.0160632 + 0.0153435i
\(191\) 10.5610i 0.764166i −0.924128 0.382083i \(-0.875207\pi\)
0.924128 0.382083i \(-0.124793\pi\)
\(192\) 1.22002 + 8.81952i 0.0880471 + 0.636494i
\(193\) 5.40807 0.389281 0.194641 0.980875i \(-0.437646\pi\)
0.194641 + 0.980875i \(0.437646\pi\)
\(194\) 10.7690 + 10.2865i 0.773168 + 0.738529i
\(195\) 2.73727 0.196020
\(196\) 0 0
\(197\) 17.9504 1.27892 0.639458 0.768826i \(-0.279159\pi\)
0.639458 + 0.768826i \(0.279159\pi\)
\(198\) 3.08694 + 2.94864i 0.219379 + 0.209551i
\(199\) 7.65076 0.542348 0.271174 0.962530i \(-0.412588\pi\)
0.271174 + 0.962530i \(0.412588\pi\)
\(200\) −2.13263 1.85793i −0.150800 0.131375i
\(201\) 5.75851i 0.406174i
\(202\) −0.459956 0.439349i −0.0323624 0.0309125i
\(203\) 0 0
\(204\) 13.8280 0.634039i 0.968154 0.0443916i
\(205\) −8.34130 −0.582582
\(206\) 9.06689 9.49215i 0.631720 0.661350i
\(207\) 11.5661i 0.803903i
\(208\) 0.900285 + 9.79671i 0.0624236 + 0.679279i
\(209\) 0.371053i 0.0256662i
\(210\) 0 0
\(211\) 15.5710i 1.07195i −0.844234 0.535975i \(-0.819944\pi\)
0.844234 0.535975i \(-0.180056\pi\)
\(212\) −1.19343 26.0279i −0.0819649 1.78761i
\(213\) 5.61144i 0.384490i
\(214\) 18.9435 + 18.0948i 1.29495 + 1.23694i
\(215\) −1.89449 −0.129203
\(216\) −11.3010 9.84536i −0.768938 0.669892i
\(217\) 0 0
\(218\) 6.80962 7.12900i 0.461205 0.482837i
\(219\) 8.47521i 0.572702i
\(220\) 0.156994 + 3.42394i 0.0105845 + 0.230842i
\(221\) 15.2954 1.02888
\(222\) −8.36758 + 8.76004i −0.561595 + 0.587935i
\(223\) 11.4678 0.767938 0.383969 0.923346i \(-0.374557\pi\)
0.383969 + 0.923346i \(0.374557\pi\)
\(224\) 0 0
\(225\) 1.76137 0.117425
\(226\) −0.325915 + 0.341202i −0.0216796 + 0.0226964i
\(227\) −8.95435 −0.594321 −0.297161 0.954828i \(-0.596040\pi\)
−0.297161 + 0.954828i \(0.596040\pi\)
\(228\) 0.0220742 + 0.481424i 0.00146190 + 0.0318831i
\(229\) 2.40675i 0.159042i −0.996833 0.0795212i \(-0.974661\pi\)
0.996833 0.0795212i \(-0.0253391\pi\)
\(230\) 6.41442 6.71527i 0.422954 0.442792i
\(231\) 0 0
\(232\) −5.27022 4.59137i −0.346007 0.301438i
\(233\) −2.56075 −0.167761 −0.0838803 0.996476i \(-0.526731\pi\)
−0.0838803 + 0.996476i \(0.526731\pi\)
\(234\) −4.43018 4.23171i −0.289610 0.276635i
\(235\) 11.7045i 0.763518i
\(236\) 0.392774 + 8.56616i 0.0255674 + 0.557610i
\(237\) 17.7505i 1.15302i
\(238\) 0 0
\(239\) 6.31200i 0.408289i −0.978941 0.204145i \(-0.934559\pi\)
0.978941 0.204145i \(-0.0654413\pi\)
\(240\) −0.407385 4.43307i −0.0262966 0.286154i
\(241\) 9.62616i 0.620076i −0.950724 0.310038i \(-0.899658\pi\)
0.950724 0.310038i \(-0.100342\pi\)
\(242\) −7.87617 + 8.24558i −0.506300 + 0.530046i
\(243\) 15.2146 0.976015
\(244\) 13.9861 0.641286i 0.895367 0.0410542i
\(245\) 0 0
\(246\) −9.49358 9.06825i −0.605288 0.578171i
\(247\) 0.532512i 0.0338829i
\(248\) 0.349380 + 0.304377i 0.0221857 + 0.0193280i
\(249\) −6.09697 −0.386380
\(250\) 1.02265 + 0.976830i 0.0646778 + 0.0617801i
\(251\) 24.9508 1.57488 0.787440 0.616391i \(-0.211406\pi\)
0.787440 + 0.616391i \(0.211406\pi\)
\(252\) 0 0
\(253\) −11.2536 −0.707506
\(254\) 16.2402 + 15.5127i 1.01900 + 0.973351i
\(255\) −6.92127 −0.433427
\(256\) 15.7320 2.91607i 0.983251 0.182254i
\(257\) 16.9763i 1.05895i −0.848325 0.529475i \(-0.822389\pi\)
0.848325 0.529475i \(-0.177611\pi\)
\(258\) −2.15620 2.05960i −0.134239 0.128225i
\(259\) 0 0
\(260\) −0.225308 4.91383i −0.0139730 0.304743i
\(261\) 4.35275 0.269429
\(262\) −3.13227 + 3.27918i −0.193512 + 0.202589i
\(263\) 15.0335i 0.927005i 0.886096 + 0.463503i \(0.153408\pi\)
−0.886096 + 0.463503i \(0.846592\pi\)
\(264\) −3.54366 + 4.06760i −0.218097 + 0.250344i
\(265\) 13.0276i 0.800282i
\(266\) 0 0
\(267\) 1.98512i 0.121487i
\(268\) 10.3374 0.473990i 0.631460 0.0289536i
\(269\) 31.4313i 1.91640i 0.286097 + 0.958201i \(0.407642\pi\)
−0.286097 + 0.958201i \(0.592358\pi\)
\(270\) 5.41911 + 5.17633i 0.329796 + 0.315021i
\(271\) −3.31771 −0.201536 −0.100768 0.994910i \(-0.532130\pi\)
−0.100768 + 0.994910i \(0.532130\pi\)
\(272\) −2.27640 24.7713i −0.138027 1.50198i
\(273\) 0 0
\(274\) −1.27337 + 1.33309i −0.0769270 + 0.0805351i
\(275\) 1.71377i 0.103344i
\(276\) 14.6010 0.669483i 0.878878 0.0402981i
\(277\) 14.7459 0.885994 0.442997 0.896523i \(-0.353915\pi\)
0.442997 + 0.896523i \(0.353915\pi\)
\(278\) 20.3974 21.3541i 1.22336 1.28074i
\(279\) −0.288558 −0.0172755
\(280\) 0 0
\(281\) 20.5438 1.22554 0.612769 0.790262i \(-0.290056\pi\)
0.612769 + 0.790262i \(0.290056\pi\)
\(282\) 12.7246 13.3214i 0.757737 0.793277i
\(283\) 27.8362 1.65469 0.827346 0.561692i \(-0.189849\pi\)
0.827346 + 0.561692i \(0.189849\pi\)
\(284\) 10.0734 0.461885i 0.597748 0.0274078i
\(285\) 0.240965i 0.0142735i
\(286\) −4.11735 + 4.31046i −0.243464 + 0.254883i
\(287\) 0 0
\(288\) −6.19401 + 7.80459i −0.364986 + 0.459890i
\(289\) −21.6749 −1.27500
\(290\) 2.52720 + 2.41397i 0.148402 + 0.141753i
\(291\) 11.7198i 0.687027i
\(292\) −15.2144 + 0.697605i −0.890353 + 0.0408243i
\(293\) 4.28428i 0.250290i −0.992138 0.125145i \(-0.960060\pi\)
0.992138 0.125145i \(-0.0399396\pi\)
\(294\) 0 0
\(295\) 4.28758i 0.249633i
\(296\) 16.4144 + 14.3001i 0.954068 + 0.831176i
\(297\) 9.08145i 0.526959i
\(298\) −9.50938 + 9.95539i −0.550864 + 0.576700i
\(299\) 16.1504 0.934004
\(300\) 0.101953 + 2.22354i 0.00588627 + 0.128376i
\(301\) 0 0
\(302\) −15.2754 14.5911i −0.879001 0.839621i
\(303\) 0.500567i 0.0287568i
\(304\) 0.862416 0.0792533i 0.0494630 0.00454549i
\(305\) −7.00039 −0.400841
\(306\) 11.2019 + 10.7000i 0.640368 + 0.611679i
\(307\) 14.3171 0.817117 0.408559 0.912732i \(-0.366032\pi\)
0.408559 + 0.912732i \(0.366032\pi\)
\(308\) 0 0
\(309\) −10.3302 −0.587667
\(310\) −0.167536 0.160030i −0.00951541 0.00908911i
\(311\) 25.6631 1.45522 0.727609 0.685992i \(-0.240631\pi\)
0.727609 + 0.685992i \(0.240631\pi\)
\(312\) 5.08564 5.83757i 0.287918 0.330488i
\(313\) 32.5054i 1.83731i −0.395059 0.918656i \(-0.629276\pi\)
0.395059 0.918656i \(-0.370724\pi\)
\(314\) 8.41088 + 8.03406i 0.474653 + 0.453388i
\(315\) 0 0
\(316\) 31.8650 1.46107i 1.79255 0.0821915i
\(317\) 2.92067 0.164041 0.0820205 0.996631i \(-0.473863\pi\)
0.0820205 + 0.996631i \(0.473863\pi\)
\(318\) −14.1630 + 14.8273i −0.794223 + 0.831474i
\(319\) 4.23512i 0.237121i
\(320\) −7.92454 + 1.09621i −0.442995 + 0.0612801i
\(321\) 20.6161i 1.15068i
\(322\) 0 0
\(323\) 1.34647i 0.0749198i
\(324\) 0.0561984 + 1.22565i 0.00312214 + 0.0680919i
\(325\) 2.45950i 0.136428i
\(326\) −12.2580 11.7089i −0.678910 0.648494i
\(327\) −7.75845 −0.429043
\(328\) −15.4975 + 17.7889i −0.855708 + 0.982228i
\(329\) 0 0
\(330\) 1.86313 1.95051i 0.102562 0.107372i
\(331\) 3.94866i 0.217038i 0.994094 + 0.108519i \(0.0346108\pi\)
−0.994094 + 0.108519i \(0.965389\pi\)
\(332\) 0.501849 + 10.9450i 0.0275425 + 0.600687i
\(333\) −13.5569 −0.742913
\(334\) −14.4672 + 15.1457i −0.791609 + 0.828737i
\(335\) −5.17415 −0.282694
\(336\) 0 0
\(337\) −10.0467 −0.547280 −0.273640 0.961832i \(-0.588228\pi\)
−0.273640 + 0.961832i \(0.588228\pi\)
\(338\) −6.78982 + 7.10828i −0.369318 + 0.386640i
\(339\) 0.371327 0.0201677
\(340\) 0.569698 + 12.4248i 0.0308962 + 0.673828i
\(341\) 0.280760i 0.0152040i
\(342\) −0.372522 + 0.389995i −0.0201437 + 0.0210885i
\(343\) 0 0
\(344\) −3.51983 + 4.04025i −0.189776 + 0.217836i
\(345\) −7.30818 −0.393459
\(346\) −15.9746 15.2589i −0.858801 0.820326i
\(347\) 0.0201100i 0.00107956i 1.00000 0.000539780i \(0.000171817\pi\)
−1.00000 0.000539780i \(0.999828\pi\)
\(348\) 0.251950 + 5.49489i 0.0135060 + 0.294557i
\(349\) 5.60366i 0.299957i 0.988689 + 0.149978i \(0.0479204\pi\)
−0.988689 + 0.149978i \(0.952080\pi\)
\(350\) 0 0
\(351\) 13.0331i 0.695657i
\(352\) 7.59368 + 6.02662i 0.404744 + 0.321220i
\(353\) 25.4844i 1.35640i −0.734880 0.678198i \(-0.762761\pi\)
0.734880 0.678198i \(-0.237239\pi\)
\(354\) 4.66125 4.87987i 0.247742 0.259362i
\(355\) −5.04201 −0.267602
\(356\) −3.56361 + 0.163398i −0.188871 + 0.00866007i
\(357\) 0 0
\(358\) 6.53371 + 6.24099i 0.345317 + 0.329847i
\(359\) 19.3484i 1.02117i −0.859827 0.510586i \(-0.829428\pi\)
0.859827 0.510586i \(-0.170572\pi\)
\(360\) 3.27250 3.75635i 0.172476 0.197977i
\(361\) −18.9531 −0.997533
\(362\) −1.21459 1.16018i −0.0638375 0.0609776i
\(363\) 8.97361 0.470993
\(364\) 0 0
\(365\) 7.61517 0.398596
\(366\) −7.96743 7.61048i −0.416464 0.397806i
\(367\) −17.2951 −0.902799 −0.451399 0.892322i \(-0.649075\pi\)
−0.451399 + 0.892322i \(0.649075\pi\)
\(368\) −2.40366 26.1560i −0.125299 1.36348i
\(369\) 14.6921i 0.764841i
\(370\) −7.87109 7.51846i −0.409199 0.390866i
\(371\) 0 0
\(372\) −0.0167026 0.364274i −0.000865990 0.0188867i
\(373\) 11.1097 0.575237 0.287618 0.957745i \(-0.407137\pi\)
0.287618 + 0.957745i \(0.407137\pi\)
\(374\) 10.4108 10.8991i 0.538332 0.563581i
\(375\) 1.11294i 0.0574719i
\(376\) −24.9614 21.7461i −1.28728 1.12147i
\(377\) 6.07799i 0.313032i
\(378\) 0 0
\(379\) 14.3198i 0.735558i 0.929913 + 0.367779i \(0.119882\pi\)
−0.929913 + 0.367779i \(0.880118\pi\)
\(380\) −0.432571 + 0.0198341i −0.0221904 + 0.00101747i
\(381\) 17.6741i 0.905474i
\(382\) 10.8001 + 10.3163i 0.552583 + 0.527827i
\(383\) 10.4539 0.534167 0.267084 0.963673i \(-0.413940\pi\)
0.267084 + 0.963673i \(0.413940\pi\)
\(384\) −10.2110 7.36753i −0.521077 0.375972i
\(385\) 0 0
\(386\) −5.28276 + 5.53054i −0.268886 + 0.281497i
\(387\) 3.33690i 0.169624i
\(388\) −21.0389 + 0.964672i −1.06809 + 0.0489738i
\(389\) −30.1257 −1.52744 −0.763718 0.645550i \(-0.776628\pi\)
−0.763718 + 0.645550i \(0.776628\pi\)
\(390\) −2.67384 + 2.79925i −0.135395 + 0.141746i
\(391\) −40.8369 −2.06521
\(392\) 0 0
\(393\) 3.56871 0.180018
\(394\) −17.5345 + 18.3569i −0.883377 + 0.924809i
\(395\) −15.9493 −0.802494
\(396\) −6.03082 + 0.276524i −0.303060 + 0.0138959i
\(397\) 13.4379i 0.674429i 0.941428 + 0.337215i \(0.109485\pi\)
−0.941428 + 0.337215i \(0.890515\pi\)
\(398\) −7.47349 + 7.82401i −0.374612 + 0.392182i
\(399\) 0 0
\(400\) 3.98322 0.366045i 0.199161 0.0183022i
\(401\) −28.8847 −1.44243 −0.721216 0.692710i \(-0.756416\pi\)
−0.721216 + 0.692710i \(0.756416\pi\)
\(402\) −5.88892 5.62509i −0.293712 0.280554i
\(403\) 0.402930i 0.0200714i
\(404\) 0.898597 0.0412023i 0.0447069 0.00204989i
\(405\) 0.613471i 0.0304836i
\(406\) 0 0
\(407\) 13.1905i 0.653830i
\(408\) −12.8592 + 14.7605i −0.636626 + 0.730754i
\(409\) 25.9031i 1.28083i 0.768030 + 0.640413i \(0.221237\pi\)
−0.768030 + 0.640413i \(0.778763\pi\)
\(410\) 8.14803 8.53020i 0.402403 0.421276i
\(411\) 1.45080 0.0715625
\(412\) 0.850295 + 18.5444i 0.0418910 + 0.913619i
\(413\) 0 0
\(414\) 11.8281 + 11.2982i 0.581318 + 0.555274i
\(415\) 5.47827i 0.268917i
\(416\) −10.8980 8.64904i −0.534318 0.424054i
\(417\) −23.2396 −1.13805
\(418\) 0.379455 + 0.362455i 0.0185598 + 0.0177283i
\(419\) −28.1022 −1.37288 −0.686441 0.727185i \(-0.740828\pi\)
−0.686441 + 0.727185i \(0.740828\pi\)
\(420\) 0 0
\(421\) 15.6269 0.761608 0.380804 0.924656i \(-0.375647\pi\)
0.380804 + 0.924656i \(0.375647\pi\)
\(422\) 15.9236 + 15.2102i 0.775148 + 0.740420i
\(423\) 20.6160 1.00238
\(424\) 27.7831 + 24.2044i 1.34927 + 1.17547i
\(425\) 6.21892i 0.301662i
\(426\) −5.73851 5.48142i −0.278032 0.265576i
\(427\) 0 0
\(428\) −37.0092 + 1.69694i −1.78890 + 0.0820245i
\(429\) 4.69104 0.226486
\(430\) 1.85060 1.93739i 0.0892437 0.0934294i
\(431\) 19.9499i 0.960953i 0.877008 + 0.480477i \(0.159536\pi\)
−0.877008 + 0.480477i \(0.840464\pi\)
\(432\) 21.1075 1.93971i 1.01553 0.0933243i
\(433\) 11.8294i 0.568487i −0.958752 0.284243i \(-0.908258\pi\)
0.958752 0.284243i \(-0.0917424\pi\)
\(434\) 0 0
\(435\) 2.75033i 0.131868i
\(436\) 0.638607 + 13.9276i 0.0305837 + 0.667013i
\(437\) 1.42174i 0.0680112i
\(438\) 8.66714 + 8.27884i 0.414132 + 0.395578i
\(439\) 27.8949 1.33135 0.665675 0.746242i \(-0.268144\pi\)
0.665675 + 0.746242i \(0.268144\pi\)
\(440\) −3.65483 3.18406i −0.174237 0.151794i
\(441\) 0 0
\(442\) −14.9410 + 15.6418i −0.710671 + 0.744003i
\(443\) 19.1991i 0.912177i −0.889934 0.456088i \(-0.849250\pi\)
0.889934 0.456088i \(-0.150750\pi\)
\(444\) −0.784713 17.1141i −0.0372408 0.812201i
\(445\) 1.78368 0.0845544
\(446\) −11.2021 + 11.7275i −0.530433 + 0.555311i
\(447\) 10.8344 0.512449
\(448\) 0 0
\(449\) −4.94035 −0.233150 −0.116575 0.993182i \(-0.537191\pi\)
−0.116575 + 0.993182i \(0.537191\pi\)
\(450\) −1.72056 + 1.80126i −0.0811079 + 0.0849120i
\(451\) −14.2951 −0.673129
\(452\) −0.0305644 0.666592i −0.00143763 0.0313538i
\(453\) 16.6241i 0.781070i
\(454\) 8.74688 9.15713i 0.410511 0.429765i
\(455\) 0 0
\(456\) −0.513889 0.447696i −0.0240651 0.0209653i
\(457\) −26.1243 −1.22204 −0.611022 0.791614i \(-0.709241\pi\)
−0.611022 + 0.791614i \(0.709241\pi\)
\(458\) 2.46125 + 2.35098i 0.115007 + 0.109854i
\(459\) 32.9547i 1.53819i
\(460\) 0.601545 + 13.1193i 0.0280472 + 0.611693i
\(461\) 13.3894i 0.623609i −0.950146 0.311804i \(-0.899067\pi\)
0.950146 0.311804i \(-0.100933\pi\)
\(462\) 0 0
\(463\) 16.4019i 0.762259i 0.924522 + 0.381130i \(0.124465\pi\)
−0.924522 + 0.381130i \(0.875535\pi\)
\(464\) 9.84346 0.904582i 0.456971 0.0419941i
\(465\) 0.182328i 0.00845528i
\(466\) 2.50142 2.61874i 0.115876 0.121311i
\(467\) 11.9333 0.552206 0.276103 0.961128i \(-0.410957\pi\)
0.276103 + 0.961128i \(0.410957\pi\)
\(468\) 8.65507 0.396850i 0.400081 0.0183444i
\(469\) 0 0
\(470\) 11.9696 + 11.4333i 0.552115 + 0.527379i
\(471\) 9.15350i 0.421771i
\(472\) −9.14382 7.96601i −0.420878 0.366665i
\(473\) −3.24672 −0.149285
\(474\) −18.1525 17.3393i −0.833772 0.796418i
\(475\) 0.216513 0.00993428
\(476\) 0 0
\(477\) −22.9465 −1.05065
\(478\) 6.45494 + 6.16575i 0.295242 + 0.282015i
\(479\) −37.1777 −1.69869 −0.849347 0.527834i \(-0.823004\pi\)
−0.849347 + 0.527834i \(0.823004\pi\)
\(480\) 4.93141 + 3.91375i 0.225087 + 0.178637i
\(481\) 18.9302i 0.863145i
\(482\) 9.84415 + 9.40312i 0.448389 + 0.428300i
\(483\) 0 0
\(484\) −0.738629 16.1091i −0.0335741 0.732230i
\(485\) 10.5305 0.478166
\(486\) −14.8620 + 15.5591i −0.674156 + 0.705776i
\(487\) 0.978376i 0.0443344i 0.999754 + 0.0221672i \(0.00705662\pi\)
−0.999754 + 0.0221672i \(0.992943\pi\)
\(488\) −13.0062 + 14.9292i −0.588763 + 0.675814i
\(489\) 13.3403i 0.603271i
\(490\) 0 0
\(491\) 18.4167i 0.831132i 0.909563 + 0.415566i \(0.136417\pi\)
−0.909563 + 0.415566i \(0.863583\pi\)
\(492\) 18.5472 0.850423i 0.836173 0.0383400i
\(493\) 15.3684i 0.692158i
\(494\) −0.544571 0.520174i −0.0245014 0.0234037i
\(495\) 3.01858 0.135675
\(496\) −0.652555 + 0.0599677i −0.0293006 + 0.00269263i
\(497\) 0 0
\(498\) 5.95570 6.23504i 0.266881 0.279399i
\(499\) 19.5338i 0.874451i 0.899352 + 0.437226i \(0.144039\pi\)
−0.899352 + 0.437226i \(0.855961\pi\)
\(500\) −1.99790 + 0.0916073i −0.0893488 + 0.00409680i
\(501\) 16.4830 0.736406
\(502\) −24.3727 + 25.5158i −1.08781 + 1.13883i
\(503\) −11.7007 −0.521707 −0.260853 0.965378i \(-0.584004\pi\)
−0.260853 + 0.965378i \(0.584004\pi\)
\(504\) 0 0
\(505\) −0.449771 −0.0200145
\(506\) 10.9928 11.5084i 0.488691 0.511612i
\(507\) 7.73590 0.343563
\(508\) −31.7279 + 1.45478i −1.40770 + 0.0645455i
\(509\) 2.14293i 0.0949838i −0.998872 0.0474919i \(-0.984877\pi\)
0.998872 0.0474919i \(-0.0151228\pi\)
\(510\) 6.76090 7.07800i 0.299378 0.313419i
\(511\) 0 0
\(512\) −12.3854 + 18.9368i −0.547363 + 0.836896i
\(513\) 1.14732 0.0506556
\(514\) 17.3607 + 16.5829i 0.765748 + 0.731441i
\(515\) 9.28196i 0.409012i
\(516\) 4.21248 0.193150i 0.185444 0.00850294i
\(517\) 20.0588i 0.882186i
\(518\) 0 0
\(519\) 17.3851i 0.763120i
\(520\) 5.24519 + 4.56957i 0.230017 + 0.200389i
\(521\) 13.6715i 0.598960i 0.954103 + 0.299480i \(0.0968131\pi\)
−0.954103 + 0.299480i \(0.903187\pi\)
\(522\) −4.25190 + 4.45132i −0.186101 + 0.194829i
\(523\) −37.5656 −1.64263 −0.821316 0.570474i \(-0.806759\pi\)
−0.821316 + 0.570474i \(0.806759\pi\)
\(524\) −0.293745 6.40640i −0.0128323 0.279865i
\(525\) 0 0
\(526\) −15.3739 14.6852i −0.670336 0.640304i
\(527\) 1.01882i 0.0443806i
\(528\) −0.698164 7.59726i −0.0303837 0.330628i
\(529\) −20.1198 −0.874773
\(530\) −13.3227 12.7258i −0.578700 0.552773i
\(531\) 7.55201 0.327729
\(532\) 0 0
\(533\) 20.5154 0.888621
\(534\) 2.03008 + 1.93913i 0.0878499 + 0.0839142i
\(535\) 18.5240 0.800863
\(536\) −9.61320 + 11.0346i −0.415227 + 0.476620i
\(537\) 7.11059i 0.306845i
\(538\) −32.1431 30.7030i −1.38579 1.32370i
\(539\) 0 0
\(540\) −10.5871 + 0.485437i −0.455596 + 0.0208899i
\(541\) 26.6104 1.14407 0.572034 0.820230i \(-0.306154\pi\)
0.572034 + 0.820230i \(0.306154\pi\)
\(542\) 3.24083 3.39284i 0.139206 0.145735i
\(543\) 1.32183i 0.0567253i
\(544\) 27.5559 + 21.8694i 1.18145 + 0.937642i
\(545\) 6.97114i 0.298611i
\(546\) 0 0
\(547\) 24.0582i 1.02865i 0.857594 + 0.514327i \(0.171958\pi\)
−0.857594 + 0.514327i \(0.828042\pi\)
\(548\) −0.119417 2.60441i −0.00510123 0.111255i
\(549\) 12.3303i 0.526243i
\(550\) 1.75258 + 1.67406i 0.0747302 + 0.0713822i
\(551\) 0.535053 0.0227940
\(552\) −13.5781 + 15.5856i −0.577921 + 0.663369i
\(553\) 0 0
\(554\) −14.4042 + 15.0798i −0.611976 + 0.640679i
\(555\) 8.56605i 0.363609i
\(556\) 1.91288 + 41.7187i 0.0811240 + 1.76927i
\(557\) 26.7419 1.13309 0.566546 0.824030i \(-0.308279\pi\)
0.566546 + 0.824030i \(0.308279\pi\)
\(558\) 0.281872 0.295093i 0.0119326 0.0124923i
\(559\) 4.65950 0.197076
\(560\) 0 0
\(561\) −11.8615 −0.500791
\(562\) −20.0678 + 21.0090i −0.846507 + 0.886210i
\(563\) −17.4713 −0.736329 −0.368165 0.929761i \(-0.620014\pi\)
−0.368165 + 0.929761i \(0.620014\pi\)
\(564\) 1.19331 + 26.0254i 0.0502475 + 1.09587i
\(565\) 0.333646i 0.0140366i
\(566\) −27.1913 + 28.4666i −1.14293 + 1.19654i
\(567\) 0 0
\(568\) −9.36768 + 10.7527i −0.393059 + 0.451175i
\(569\) −20.3584 −0.853468 −0.426734 0.904377i \(-0.640336\pi\)
−0.426734 + 0.904377i \(0.640336\pi\)
\(570\) 0.246422 + 0.235382i 0.0103215 + 0.00985906i
\(571\) 22.2550i 0.931342i −0.884958 0.465671i \(-0.845813\pi\)
0.884958 0.465671i \(-0.154187\pi\)
\(572\) −0.386126 8.42117i −0.0161447 0.352107i
\(573\) 11.7537i 0.491019i
\(574\) 0 0
\(575\) 6.56656i 0.273845i
\(576\) −1.93083 13.9580i −0.0804515 0.581585i
\(577\) 0.971128i 0.0404286i 0.999796 + 0.0202143i \(0.00643485\pi\)
−0.999796 + 0.0202143i \(0.993565\pi\)
\(578\) 21.1727 22.1658i 0.880669 0.921975i
\(579\) 6.01885 0.250135
\(580\) −4.93728 + 0.226383i −0.205009 + 0.00940004i
\(581\) 0 0
\(582\) 11.9852 + 11.4483i 0.496803 + 0.474546i
\(583\) 22.3264i 0.924664i
\(584\) 14.1484 16.2403i 0.585466 0.672030i
\(585\) −4.33208 −0.179110
\(586\) 4.38130 + 4.18501i 0.180990 + 0.172881i
\(587\) −17.6042 −0.726602 −0.363301 0.931672i \(-0.618350\pi\)
−0.363301 + 0.931672i \(0.618350\pi\)
\(588\) 0 0
\(589\) −0.0354704 −0.00146153
\(590\) 4.38467 + 4.18824i 0.180514 + 0.172427i
\(591\) 19.9777 0.821774
\(592\) −30.6580 + 2.81737i −1.26004 + 0.115793i
\(593\) 22.3772i 0.918922i 0.888198 + 0.459461i \(0.151957\pi\)
−0.888198 + 0.459461i \(0.848043\pi\)
\(594\) 9.28710 + 8.87103i 0.381054 + 0.363983i
\(595\) 0 0
\(596\) −0.891792 19.4494i −0.0365292 0.796680i
\(597\) 8.51482 0.348488
\(598\) −15.7762 + 16.5162i −0.645138 + 0.675397i
\(599\) 18.3668i 0.750446i −0.926935 0.375223i \(-0.877566\pi\)
0.926935 0.375223i \(-0.122434\pi\)
\(600\) −2.37348 2.06776i −0.0968971 0.0844159i
\(601\) 11.9668i 0.488136i −0.969758 0.244068i \(-0.921518\pi\)
0.969758 0.244068i \(-0.0784820\pi\)
\(602\) 0 0
\(603\) 9.11360i 0.371134i
\(604\) 29.8430 1.36835i 1.21429 0.0556775i
\(605\) 8.06299i 0.327807i
\(606\) −0.511902 0.488969i −0.0207946 0.0198630i
\(607\) 16.3726 0.664542 0.332271 0.943184i \(-0.392185\pi\)
0.332271 + 0.943184i \(0.392185\pi\)
\(608\) −0.761386 + 0.959363i −0.0308783 + 0.0389073i
\(609\) 0 0
\(610\) 6.83819 7.15891i 0.276870 0.289856i
\(611\) 28.7872i 1.16461i
\(612\) −21.8846 + 1.00345i −0.884634 + 0.0405620i
\(613\) 45.7436 1.84757 0.923783 0.382916i \(-0.125080\pi\)
0.923783 + 0.382916i \(0.125080\pi\)
\(614\) −13.9853 + 14.6413i −0.564402 + 0.590873i
\(615\) −9.28335 −0.374341
\(616\) 0 0
\(617\) 3.88479 0.156396 0.0781979 0.996938i \(-0.475083\pi\)
0.0781979 + 0.996938i \(0.475083\pi\)
\(618\) 10.0909 10.5642i 0.405915 0.424954i
\(619\) −20.4330 −0.821272 −0.410636 0.911799i \(-0.634693\pi\)
−0.410636 + 0.911799i \(0.634693\pi\)
\(620\) 0.327309 0.0150077i 0.0131450 0.000602723i
\(621\) 34.7969i 1.39635i
\(622\) −25.0684 + 26.2442i −1.00515 + 1.05230i
\(623\) 0 0
\(624\) 1.00196 + 10.9031i 0.0401106 + 0.436474i
\(625\) 1.00000 0.0400000
\(626\) 33.2414 + 31.7522i 1.32860 + 1.26907i
\(627\) 0.412959i 0.0164920i
\(628\) −16.4320 + 0.753436i −0.655708 + 0.0300654i
\(629\) 47.8657i 1.90853i
\(630\) 0 0
\(631\) 23.7070i 0.943762i −0.881662 0.471881i \(-0.843575\pi\)
0.881662 0.471881i \(-0.156425\pi\)
\(632\) −29.6326 + 34.0139i −1.17872 + 1.35300i
\(633\) 17.3295i 0.688786i
\(634\) −2.85299 + 2.98681i −0.113307 + 0.118621i
\(635\) 15.8806 0.630203
\(636\) −1.32821 28.9675i −0.0526670 1.14864i
\(637\) 0 0
\(638\) 4.33103 + 4.13700i 0.171467 + 0.163785i
\(639\) 8.88084i 0.351320i
\(640\) 6.61989 9.17481i 0.261674 0.362666i
\(641\) 14.3937 0.568515 0.284258 0.958748i \(-0.408253\pi\)
0.284258 + 0.958748i \(0.408253\pi\)
\(642\) 21.0829 + 20.1384i 0.832077 + 0.794799i
\(643\) 47.6127 1.87766 0.938830 0.344380i \(-0.111911\pi\)
0.938830 + 0.344380i \(0.111911\pi\)
\(644\) 0 0
\(645\) −2.10845 −0.0830202
\(646\) 1.37697 + 1.31528i 0.0541760 + 0.0517488i
\(647\) −0.0108286 −0.000425715 −0.000212858 1.00000i \(-0.500068\pi\)
−0.000212858 1.00000i \(0.500068\pi\)
\(648\) −1.30831 1.13978i −0.0513951 0.0447750i
\(649\) 7.34792i 0.288431i
\(650\) −2.51519 2.40251i −0.0986540 0.0942342i
\(651\) 0 0
\(652\) 23.9480 1.09806i 0.937877 0.0430033i
\(653\) −10.6223 −0.415681 −0.207841 0.978163i \(-0.566644\pi\)
−0.207841 + 0.978163i \(0.566644\pi\)
\(654\) 7.57868 7.93414i 0.296350 0.310249i
\(655\) 3.20657i 0.125291i
\(656\) −3.05329 33.2252i −0.119211 1.29723i
\(657\) 13.4131i 0.523296i
\(658\) 0 0
\(659\) 13.3688i 0.520773i 0.965505 + 0.260386i \(0.0838499\pi\)
−0.965505 + 0.260386i \(0.916150\pi\)
\(660\) 0.174724 + 3.81063i 0.00680114 + 0.148329i
\(661\) 7.50536i 0.291925i 0.989290 + 0.145962i \(0.0466278\pi\)
−0.989290 + 0.145962i \(0.953372\pi\)
\(662\) −4.03808 3.85717i −0.156944 0.149913i
\(663\) 17.0228 0.661112
\(664\) −11.6831 10.1782i −0.453393 0.394992i
\(665\) 0 0
\(666\) 13.2428 13.8639i 0.513147 0.537215i
\(667\) 16.2275i 0.628332i
\(668\) −1.35674 29.5896i −0.0524937 1.14486i
\(669\) 12.7629 0.493443
\(670\) 5.05427 5.29133i 0.195263 0.204422i
\(671\) −11.9970 −0.463141
\(672\) 0 0
\(673\) 19.9107 0.767501 0.383751 0.923437i \(-0.374632\pi\)
0.383751 + 0.923437i \(0.374632\pi\)
\(674\) 9.81395 10.2742i 0.378019 0.395749i
\(675\) 5.29911 0.203963
\(676\) −0.636751 13.8872i −0.0244904 0.534122i
\(677\) 26.0053i 0.999466i 0.866180 + 0.499733i \(0.166569\pi\)
−0.866180 + 0.499733i \(0.833431\pi\)
\(678\) −0.362724 + 0.379736i −0.0139303 + 0.0145837i
\(679\) 0 0
\(680\) −13.2626 11.5543i −0.508599 0.443087i
\(681\) −9.96564 −0.381884
\(682\) −0.287118 0.274255i −0.0109943 0.0105018i
\(683\) 14.8200i 0.567071i 0.958962 + 0.283536i \(0.0915074\pi\)
−0.958962 + 0.283536i \(0.908493\pi\)
\(684\) −0.0349352 0.761917i −0.00133578 0.0291326i
\(685\) 1.30357i 0.0498070i
\(686\) 0 0
\(687\) 2.67856i 0.102194i
\(688\) −0.693469 7.54617i −0.0264383 0.287695i
\(689\) 32.0415i 1.22068i
\(690\) 7.13885 7.47368i 0.271771 0.284518i
\(691\) −26.4910 −1.00776 −0.503882 0.863773i \(-0.668095\pi\)
−0.503882 + 0.863773i \(0.668095\pi\)
\(692\) 31.2090 1.43099i 1.18639 0.0543980i
\(693\) 0 0
\(694\) −0.0205654 0.0196440i −0.000780651 0.000745677i
\(695\) 20.8813i 0.792072i
\(696\) −5.86543 5.10991i −0.222329 0.193691i
\(697\) −51.8739 −1.96486
\(698\) −5.73055 5.47382i −0.216905 0.207187i
\(699\) −2.84996 −0.107795
\(700\) 0 0
\(701\) −0.713553 −0.0269505 −0.0134753 0.999909i \(-0.504289\pi\)
−0.0134753 + 0.999909i \(0.504289\pi\)
\(702\) −13.3283 12.7312i −0.503043 0.480507i
\(703\) −1.66645 −0.0628515
\(704\) −13.5808 + 1.87866i −0.511847 + 0.0708045i
\(705\) 13.0264i 0.490602i
\(706\) 26.0615 + 24.8939i 0.980836 + 0.936893i
\(707\) 0 0
\(708\) 0.437133 + 9.53361i 0.0164285 + 0.358295i
\(709\) −19.1317 −0.718505 −0.359253 0.933240i \(-0.616968\pi\)
−0.359253 + 0.933240i \(0.616968\pi\)
\(710\) 4.92518 5.15619i 0.184839 0.193508i
\(711\) 28.0925i 1.05355i
\(712\) 3.31394 3.80392i 0.124195 0.142558i
\(713\) 1.07578i 0.0402881i
\(714\) 0 0
\(715\) 4.21501i 0.157632i
\(716\) −12.7646 + 0.585282i −0.477037 + 0.0218730i
\(717\) 7.02486i 0.262348i
\(718\) 19.7866 + 18.9001i 0.738429 + 0.705347i
\(719\) −40.0572 −1.49388 −0.746941 0.664890i \(-0.768478\pi\)
−0.746941 + 0.664890i \(0.768478\pi\)
\(720\) 0.644740 + 7.01591i 0.0240280 + 0.261468i
\(721\) 0 0
\(722\) 18.5140 19.3823i 0.689019 0.721335i
\(723\) 10.7133i 0.398433i
\(724\) 2.37290 0.108802i 0.0881881 0.00404358i
\(725\) 2.47123 0.0917793
\(726\) −8.76569 + 9.17682i −0.325325 + 0.340584i
\(727\) −14.4074 −0.534341 −0.267171 0.963649i \(-0.586089\pi\)
−0.267171 + 0.963649i \(0.586089\pi\)
\(728\) 0 0
\(729\) 18.7733 0.695307
\(730\) −7.43873 + 7.78762i −0.275320 + 0.288233i
\(731\) −11.7817 −0.435762
\(732\) 15.5656 0.713712i 0.575322 0.0263796i
\(733\) 0.774526i 0.0286078i 0.999898 + 0.0143039i \(0.00455322\pi\)
−0.999898 + 0.0143039i \(0.995447\pi\)
\(734\) 16.8944 17.6868i 0.623584 0.652831i
\(735\) 0 0
\(736\) 29.0963 + 23.0919i 1.07250 + 0.851179i
\(737\) −8.86731 −0.326631
\(738\) 15.0248 + 14.3517i 0.553071 + 0.528293i
\(739\) 8.19740i 0.301546i −0.988568 0.150773i \(-0.951824\pi\)
0.988568 0.150773i \(-0.0481763\pi\)
\(740\) 15.3774 0.705083i 0.565286 0.0259194i
\(741\) 0.592653i 0.0217716i
\(742\) 0 0
\(743\) 8.66498i 0.317887i −0.987288 0.158944i \(-0.949191\pi\)
0.987288 0.158944i \(-0.0508088\pi\)
\(744\) 0.388839 + 0.338753i 0.0142555 + 0.0124193i
\(745\) 9.73494i 0.356661i
\(746\) −10.8523 + 11.3613i −0.397329 + 0.415965i
\(747\) 9.64925 0.353048
\(748\) 0.976331 + 21.2932i 0.0356982 + 0.778557i
\(749\) 0 0
\(750\) 1.13814 + 1.08715i 0.0415590 + 0.0396971i
\(751\) 7.77354i 0.283661i −0.989891 0.141830i \(-0.954701\pi\)
0.989891 0.141830i \(-0.0452987\pi\)
\(752\) 46.6216 4.28437i 1.70011 0.156235i
\(753\) 27.7687 1.01195
\(754\) −6.21563 5.93716i −0.226360 0.216219i
\(755\) −14.9372 −0.543619
\(756\) 0 0
\(757\) −5.10767 −0.185641 −0.0928206 0.995683i \(-0.529588\pi\)
−0.0928206 + 0.995683i \(0.529588\pi\)
\(758\) −14.6441 13.9880i −0.531896 0.508066i
\(759\) −12.5245 −0.454612
\(760\) 0.402265 0.461741i 0.0145917 0.0167491i
\(761\) 4.80634i 0.174230i −0.996198 0.0871149i \(-0.972235\pi\)
0.996198 0.0871149i \(-0.0277647\pi\)
\(762\) 18.0744 + 17.2646i 0.654766 + 0.625432i
\(763\) 0 0
\(764\) −21.0998 + 0.967463i −0.763364 + 0.0350016i
\(765\) 10.9538 0.396036
\(766\) −10.2116 + 10.6906i −0.368961 + 0.386267i
\(767\) 10.5453i 0.380768i
\(768\) 17.5088 3.24540i 0.631793 0.117108i
\(769\) 24.7841i 0.893738i −0.894600 0.446869i \(-0.852539\pi\)
0.894600 0.446869i \(-0.147461\pi\)
\(770\) 0 0
\(771\) 18.8935i 0.680434i
\(772\) −0.495419 10.8048i −0.0178305 0.388873i
\(773\) 25.3120i 0.910410i 0.890387 + 0.455205i \(0.150434\pi\)
−0.890387 + 0.455205i \(0.849566\pi\)
\(774\) 3.41247 + 3.25958i 0.122659 + 0.117163i
\(775\) −0.163826 −0.00588481
\(776\) 19.5649 22.4577i 0.702340 0.806184i
\(777\) 0 0
\(778\) 29.4277 30.8080i 1.05504 1.10452i
\(779\) 1.80600i 0.0647066i
\(780\) −0.250754 5.46879i −0.00897842 0.195814i
\(781\) −8.64084 −0.309193
\(782\) 39.8907 41.7617i