Properties

Label 980.2.g.a
Level $980$
Weight $2$
Character orbit 980.g
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(391,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.391");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q - 4 q^{2} + 4 q^{4} - 4 q^{8} + 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 32 q - 4 q^{2} + 4 q^{4} - 4 q^{8} + 32 q^{9} + 28 q^{16} - 8 q^{22} - 32 q^{25} - 40 q^{29} - 4 q^{32} + 60 q^{36} - 16 q^{37} + 36 q^{44} - 4 q^{46} + 4 q^{50} + 16 q^{53} + 48 q^{57} - 4 q^{58} - 28 q^{60} + 4 q^{64} - 8 q^{65} - 8 q^{72} - 76 q^{74} + 120 q^{78} + 72 q^{81} - 56 q^{86} - 8 q^{88} - 4 q^{92} + 16 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
391.1 −1.40582 0.153886i −3.02707 1.95264 + 0.432671i 1.00000i 4.25550 + 0.465823i 0 −2.67847 0.908739i 6.16313 −0.153886 + 1.40582i
391.2 −1.40582 0.153886i 3.02707 1.95264 + 0.432671i 1.00000i −4.25550 0.465823i 0 −2.67847 0.908739i 6.16313 0.153886 1.40582i
391.3 −1.40582 + 0.153886i −3.02707 1.95264 0.432671i 1.00000i 4.25550 0.465823i 0 −2.67847 + 0.908739i 6.16313 −0.153886 1.40582i
391.4 −1.40582 + 0.153886i 3.02707 1.95264 0.432671i 1.00000i −4.25550 + 0.465823i 0 −2.67847 + 0.908739i 6.16313 0.153886 + 1.40582i
391.5 −1.34325 0.442358i −0.901278 1.60864 + 1.18839i 1.00000i 1.21064 + 0.398687i 0 −1.63511 2.30790i −2.18770 0.442358 1.34325i
391.6 −1.34325 0.442358i 0.901278 1.60864 + 1.18839i 1.00000i −1.21064 0.398687i 0 −1.63511 2.30790i −2.18770 −0.442358 + 1.34325i
391.7 −1.34325 + 0.442358i −0.901278 1.60864 1.18839i 1.00000i 1.21064 0.398687i 0 −1.63511 + 2.30790i −2.18770 0.442358 + 1.34325i
391.8 −1.34325 + 0.442358i 0.901278 1.60864 1.18839i 1.00000i −1.21064 + 0.398687i 0 −1.63511 + 2.30790i −2.18770 −0.442358 1.34325i
391.9 −0.976830 1.02265i −1.11294 −0.0916073 + 1.99790i 1.00000i 1.08715 + 1.13814i 0 2.13263 1.85793i −1.76137 1.02265 0.976830i
391.10 −0.976830 1.02265i 1.11294 −0.0916073 + 1.99790i 1.00000i −1.08715 1.13814i 0 2.13263 1.85793i −1.76137 −1.02265 + 0.976830i
391.11 −0.976830 + 1.02265i −1.11294 −0.0916073 1.99790i 1.00000i 1.08715 1.13814i 0 2.13263 + 1.85793i −1.76137 1.02265 + 0.976830i
391.12 −0.976830 + 1.02265i 1.11294 −0.0916073 1.99790i 1.00000i −1.08715 + 1.13814i 0 2.13263 + 1.85793i −1.76137 −1.02265 0.976830i
391.13 −0.431404 1.34681i −2.73718 −1.62778 + 1.16204i 1.00000i 1.18083 + 3.68646i 0 2.26727 + 1.69100i 4.49217 −1.34681 + 0.431404i
391.14 −0.431404 1.34681i 2.73718 −1.62778 + 1.16204i 1.00000i −1.18083 3.68646i 0 2.26727 + 1.69100i 4.49217 1.34681 0.431404i
391.15 −0.431404 + 1.34681i −2.73718 −1.62778 1.16204i 1.00000i 1.18083 3.68646i 0 2.26727 1.69100i 4.49217 −1.34681 0.431404i
391.16 −0.431404 + 1.34681i 2.73718 −1.62778 1.16204i 1.00000i −1.18083 + 3.68646i 0 2.26727 1.69100i 4.49217 1.34681 + 0.431404i
391.17 0.0982654 1.41080i −0.662355 −1.98069 0.277265i 1.00000i −0.0650866 + 0.934447i 0 −0.585797 + 2.76710i −2.56129 1.41080 + 0.0982654i
391.18 0.0982654 1.41080i 0.662355 −1.98069 0.277265i 1.00000i 0.0650866 0.934447i 0 −0.585797 + 2.76710i −2.56129 −1.41080 0.0982654i
391.19 0.0982654 + 1.41080i −0.662355 −1.98069 + 0.277265i 1.00000i −0.0650866 0.934447i 0 −0.585797 2.76710i −2.56129 1.41080 0.0982654i
391.20 0.0982654 + 1.41080i 0.662355 −1.98069 + 0.277265i 1.00000i 0.0650866 + 0.934447i 0 −0.585797 2.76710i −2.56129 −1.41080 + 0.0982654i
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 391.32
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.b odd 2 1 inner
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.2.g.a 32
4.b odd 2 1 inner 980.2.g.a 32
7.b odd 2 1 inner 980.2.g.a 32
7.c even 3 1 140.2.o.a 32
7.c even 3 1 980.2.o.f 32
7.d odd 6 1 140.2.o.a 32
7.d odd 6 1 980.2.o.f 32
28.d even 2 1 inner 980.2.g.a 32
28.f even 6 1 140.2.o.a 32
28.f even 6 1 980.2.o.f 32
28.g odd 6 1 140.2.o.a 32
28.g odd 6 1 980.2.o.f 32
35.i odd 6 1 700.2.p.c 32
35.j even 6 1 700.2.p.c 32
35.k even 12 1 700.2.t.c 32
35.k even 12 1 700.2.t.d 32
35.l odd 12 1 700.2.t.c 32
35.l odd 12 1 700.2.t.d 32
140.p odd 6 1 700.2.p.c 32
140.s even 6 1 700.2.p.c 32
140.w even 12 1 700.2.t.c 32
140.w even 12 1 700.2.t.d 32
140.x odd 12 1 700.2.t.c 32
140.x odd 12 1 700.2.t.d 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.o.a 32 7.c even 3 1
140.2.o.a 32 7.d odd 6 1
140.2.o.a 32 28.f even 6 1
140.2.o.a 32 28.g odd 6 1
700.2.p.c 32 35.i odd 6 1
700.2.p.c 32 35.j even 6 1
700.2.p.c 32 140.p odd 6 1
700.2.p.c 32 140.s even 6 1
700.2.t.c 32 35.k even 12 1
700.2.t.c 32 35.l odd 12 1
700.2.t.c 32 140.w even 12 1
700.2.t.c 32 140.x odd 12 1
700.2.t.d 32 35.k even 12 1
700.2.t.d 32 35.l odd 12 1
700.2.t.d 32 140.w even 12 1
700.2.t.d 32 140.x odd 12 1
980.2.g.a 32 1.a even 1 1 trivial
980.2.g.a 32 4.b odd 2 1 inner
980.2.g.a 32 7.b odd 2 1 inner
980.2.g.a 32 28.d even 2 1 inner
980.2.o.f 32 7.c even 3 1
980.2.o.f 32 7.d odd 6 1
980.2.o.f 32 28.f even 6 1
980.2.o.f 32 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{16} - 32T_{3}^{14} + 395T_{3}^{12} - 2368T_{3}^{10} + 7243T_{3}^{8} - 11424T_{3}^{6} + 9345T_{3}^{4} - 3744T_{3}^{2} + 576 \) acting on \(S_{2}^{\mathrm{new}}(980, [\chi])\). Copy content Toggle raw display