Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [980,2,Mod(391,980)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(980, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("980.391");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 980.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.82533939809\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | no (minimal twist has level 140) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
391.1 | −1.40582 | − | 0.153886i | −3.02707 | 1.95264 | + | 0.432671i | − | 1.00000i | 4.25550 | + | 0.465823i | 0 | −2.67847 | − | 0.908739i | 6.16313 | −0.153886 | + | 1.40582i | |||||||
391.2 | −1.40582 | − | 0.153886i | 3.02707 | 1.95264 | + | 0.432671i | 1.00000i | −4.25550 | − | 0.465823i | 0 | −2.67847 | − | 0.908739i | 6.16313 | 0.153886 | − | 1.40582i | ||||||||
391.3 | −1.40582 | + | 0.153886i | −3.02707 | 1.95264 | − | 0.432671i | 1.00000i | 4.25550 | − | 0.465823i | 0 | −2.67847 | + | 0.908739i | 6.16313 | −0.153886 | − | 1.40582i | ||||||||
391.4 | −1.40582 | + | 0.153886i | 3.02707 | 1.95264 | − | 0.432671i | − | 1.00000i | −4.25550 | + | 0.465823i | 0 | −2.67847 | + | 0.908739i | 6.16313 | 0.153886 | + | 1.40582i | |||||||
391.5 | −1.34325 | − | 0.442358i | −0.901278 | 1.60864 | + | 1.18839i | 1.00000i | 1.21064 | + | 0.398687i | 0 | −1.63511 | − | 2.30790i | −2.18770 | 0.442358 | − | 1.34325i | ||||||||
391.6 | −1.34325 | − | 0.442358i | 0.901278 | 1.60864 | + | 1.18839i | − | 1.00000i | −1.21064 | − | 0.398687i | 0 | −1.63511 | − | 2.30790i | −2.18770 | −0.442358 | + | 1.34325i | |||||||
391.7 | −1.34325 | + | 0.442358i | −0.901278 | 1.60864 | − | 1.18839i | − | 1.00000i | 1.21064 | − | 0.398687i | 0 | −1.63511 | + | 2.30790i | −2.18770 | 0.442358 | + | 1.34325i | |||||||
391.8 | −1.34325 | + | 0.442358i | 0.901278 | 1.60864 | − | 1.18839i | 1.00000i | −1.21064 | + | 0.398687i | 0 | −1.63511 | + | 2.30790i | −2.18770 | −0.442358 | − | 1.34325i | ||||||||
391.9 | −0.976830 | − | 1.02265i | −1.11294 | −0.0916073 | + | 1.99790i | 1.00000i | 1.08715 | + | 1.13814i | 0 | 2.13263 | − | 1.85793i | −1.76137 | 1.02265 | − | 0.976830i | ||||||||
391.10 | −0.976830 | − | 1.02265i | 1.11294 | −0.0916073 | + | 1.99790i | − | 1.00000i | −1.08715 | − | 1.13814i | 0 | 2.13263 | − | 1.85793i | −1.76137 | −1.02265 | + | 0.976830i | |||||||
391.11 | −0.976830 | + | 1.02265i | −1.11294 | −0.0916073 | − | 1.99790i | − | 1.00000i | 1.08715 | − | 1.13814i | 0 | 2.13263 | + | 1.85793i | −1.76137 | 1.02265 | + | 0.976830i | |||||||
391.12 | −0.976830 | + | 1.02265i | 1.11294 | −0.0916073 | − | 1.99790i | 1.00000i | −1.08715 | + | 1.13814i | 0 | 2.13263 | + | 1.85793i | −1.76137 | −1.02265 | − | 0.976830i | ||||||||
391.13 | −0.431404 | − | 1.34681i | −2.73718 | −1.62778 | + | 1.16204i | − | 1.00000i | 1.18083 | + | 3.68646i | 0 | 2.26727 | + | 1.69100i | 4.49217 | −1.34681 | + | 0.431404i | |||||||
391.14 | −0.431404 | − | 1.34681i | 2.73718 | −1.62778 | + | 1.16204i | 1.00000i | −1.18083 | − | 3.68646i | 0 | 2.26727 | + | 1.69100i | 4.49217 | 1.34681 | − | 0.431404i | ||||||||
391.15 | −0.431404 | + | 1.34681i | −2.73718 | −1.62778 | − | 1.16204i | 1.00000i | 1.18083 | − | 3.68646i | 0 | 2.26727 | − | 1.69100i | 4.49217 | −1.34681 | − | 0.431404i | ||||||||
391.16 | −0.431404 | + | 1.34681i | 2.73718 | −1.62778 | − | 1.16204i | − | 1.00000i | −1.18083 | + | 3.68646i | 0 | 2.26727 | − | 1.69100i | 4.49217 | 1.34681 | + | 0.431404i | |||||||
391.17 | 0.0982654 | − | 1.41080i | −0.662355 | −1.98069 | − | 0.277265i | 1.00000i | −0.0650866 | + | 0.934447i | 0 | −0.585797 | + | 2.76710i | −2.56129 | 1.41080 | + | 0.0982654i | ||||||||
391.18 | 0.0982654 | − | 1.41080i | 0.662355 | −1.98069 | − | 0.277265i | − | 1.00000i | 0.0650866 | − | 0.934447i | 0 | −0.585797 | + | 2.76710i | −2.56129 | −1.41080 | − | 0.0982654i | |||||||
391.19 | 0.0982654 | + | 1.41080i | −0.662355 | −1.98069 | + | 0.277265i | − | 1.00000i | −0.0650866 | − | 0.934447i | 0 | −0.585797 | − | 2.76710i | −2.56129 | 1.41080 | − | 0.0982654i | |||||||
391.20 | 0.0982654 | + | 1.41080i | 0.662355 | −1.98069 | + | 0.277265i | 1.00000i | 0.0650866 | + | 0.934447i | 0 | −0.585797 | − | 2.76710i | −2.56129 | −1.41080 | + | 0.0982654i | ||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
28.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 980.2.g.a | 32 | |
4.b | odd | 2 | 1 | inner | 980.2.g.a | 32 | |
7.b | odd | 2 | 1 | inner | 980.2.g.a | 32 | |
7.c | even | 3 | 1 | 140.2.o.a | ✓ | 32 | |
7.c | even | 3 | 1 | 980.2.o.f | 32 | ||
7.d | odd | 6 | 1 | 140.2.o.a | ✓ | 32 | |
7.d | odd | 6 | 1 | 980.2.o.f | 32 | ||
28.d | even | 2 | 1 | inner | 980.2.g.a | 32 | |
28.f | even | 6 | 1 | 140.2.o.a | ✓ | 32 | |
28.f | even | 6 | 1 | 980.2.o.f | 32 | ||
28.g | odd | 6 | 1 | 140.2.o.a | ✓ | 32 | |
28.g | odd | 6 | 1 | 980.2.o.f | 32 | ||
35.i | odd | 6 | 1 | 700.2.p.c | 32 | ||
35.j | even | 6 | 1 | 700.2.p.c | 32 | ||
35.k | even | 12 | 1 | 700.2.t.c | 32 | ||
35.k | even | 12 | 1 | 700.2.t.d | 32 | ||
35.l | odd | 12 | 1 | 700.2.t.c | 32 | ||
35.l | odd | 12 | 1 | 700.2.t.d | 32 | ||
140.p | odd | 6 | 1 | 700.2.p.c | 32 | ||
140.s | even | 6 | 1 | 700.2.p.c | 32 | ||
140.w | even | 12 | 1 | 700.2.t.c | 32 | ||
140.w | even | 12 | 1 | 700.2.t.d | 32 | ||
140.x | odd | 12 | 1 | 700.2.t.c | 32 | ||
140.x | odd | 12 | 1 | 700.2.t.d | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
140.2.o.a | ✓ | 32 | 7.c | even | 3 | 1 | |
140.2.o.a | ✓ | 32 | 7.d | odd | 6 | 1 | |
140.2.o.a | ✓ | 32 | 28.f | even | 6 | 1 | |
140.2.o.a | ✓ | 32 | 28.g | odd | 6 | 1 | |
700.2.p.c | 32 | 35.i | odd | 6 | 1 | ||
700.2.p.c | 32 | 35.j | even | 6 | 1 | ||
700.2.p.c | 32 | 140.p | odd | 6 | 1 | ||
700.2.p.c | 32 | 140.s | even | 6 | 1 | ||
700.2.t.c | 32 | 35.k | even | 12 | 1 | ||
700.2.t.c | 32 | 35.l | odd | 12 | 1 | ||
700.2.t.c | 32 | 140.w | even | 12 | 1 | ||
700.2.t.c | 32 | 140.x | odd | 12 | 1 | ||
700.2.t.d | 32 | 35.k | even | 12 | 1 | ||
700.2.t.d | 32 | 35.l | odd | 12 | 1 | ||
700.2.t.d | 32 | 140.w | even | 12 | 1 | ||
700.2.t.d | 32 | 140.x | odd | 12 | 1 | ||
980.2.g.a | 32 | 1.a | even | 1 | 1 | trivial | |
980.2.g.a | 32 | 4.b | odd | 2 | 1 | inner | |
980.2.g.a | 32 | 7.b | odd | 2 | 1 | inner | |
980.2.g.a | 32 | 28.d | even | 2 | 1 | inner | |
980.2.o.f | 32 | 7.c | even | 3 | 1 | ||
980.2.o.f | 32 | 7.d | odd | 6 | 1 | ||
980.2.o.f | 32 | 28.f | even | 6 | 1 | ||
980.2.o.f | 32 | 28.g | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{16} - 32T_{3}^{14} + 395T_{3}^{12} - 2368T_{3}^{10} + 7243T_{3}^{8} - 11424T_{3}^{6} + 9345T_{3}^{4} - 3744T_{3}^{2} + 576 \) acting on \(S_{2}^{\mathrm{new}}(980, [\chi])\).