# Properties

 Label 980.2.e.f.589.3 Level $980$ Weight $2$ Character 980.589 Analytic conductor $7.825$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$980 = 2^{2} \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 980.e (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$7.82533939809$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{-19})$$ Defining polynomial: $$x^{4} - x^{3} - 4x^{2} - 5x + 25$$ x^4 - x^3 - 4*x^2 - 5*x + 25 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 140) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 589.3 Root $$2.13746 + 0.656712i$$ of defining polynomial Character $$\chi$$ $$=$$ 980.589 Dual form 980.2.e.f.589.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+1.73205i q^{3} +(-1.63746 + 1.52274i) q^{5} +O(q^{10})$$ $$q+1.73205i q^{3} +(-1.63746 + 1.52274i) q^{5} -5.27492 q^{11} +2.62685i q^{13} +(-2.63746 - 2.83616i) q^{15} -0.418627i q^{17} -3.27492 q^{19} -7.82300i q^{23} +(0.362541 - 4.98684i) q^{25} +5.19615i q^{27} -4.27492 q^{29} +3.27492 q^{31} -9.13642i q^{33} +9.97368i q^{37} -4.54983 q^{39} -3.72508 q^{41} -2.15068i q^{43} -6.50958i q^{47} +0.725083 q^{51} -5.67232i q^{53} +(8.63746 - 8.03231i) q^{55} -5.67232i q^{57} +3.27492 q^{59} -13.5498 q^{61} +(-4.00000 - 4.30136i) q^{65} -3.52165i q^{67} +13.5498 q^{69} -4.54983 q^{71} +6.50958i q^{73} +(8.63746 + 0.627940i) q^{75} -7.27492 q^{79} -9.00000 q^{81} -7.40437i q^{83} +(0.637459 + 0.685484i) q^{85} -7.40437i q^{87} +7.00000 q^{89} +5.67232i q^{93} +(5.36254 - 4.98684i) q^{95} +6.92820i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + q^{5}+O(q^{10})$$ 4 * q + q^5 $$4 q + q^{5} - 6 q^{11} - 3 q^{15} + 2 q^{19} + 9 q^{25} - 2 q^{29} - 2 q^{31} + 12 q^{39} - 30 q^{41} + 18 q^{51} + 27 q^{55} - 2 q^{59} - 24 q^{61} - 16 q^{65} + 24 q^{69} + 12 q^{71} + 27 q^{75} - 14 q^{79} - 36 q^{81} - 5 q^{85} + 28 q^{89} + 29 q^{95}+O(q^{100})$$ 4 * q + q^5 - 6 * q^11 - 3 * q^15 + 2 * q^19 + 9 * q^25 - 2 * q^29 - 2 * q^31 + 12 * q^39 - 30 * q^41 + 18 * q^51 + 27 * q^55 - 2 * q^59 - 24 * q^61 - 16 * q^65 + 24 * q^69 + 12 * q^71 + 27 * q^75 - 14 * q^79 - 36 * q^81 - 5 * q^85 + 28 * q^89 + 29 * q^95

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/980\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$197$$ $$491$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.73205i 1.00000i 0.866025 + 0.500000i $$0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$4$$ 0 0
$$5$$ −1.63746 + 1.52274i −0.732294 + 0.680989i
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −5.27492 −1.59045 −0.795224 0.606316i $$-0.792647\pi$$
−0.795224 + 0.606316i $$0.792647\pi$$
$$12$$ 0 0
$$13$$ 2.62685i 0.728557i 0.931290 + 0.364278i $$0.118684\pi$$
−0.931290 + 0.364278i $$0.881316\pi$$
$$14$$ 0 0
$$15$$ −2.63746 2.83616i −0.680989 0.732294i
$$16$$ 0 0
$$17$$ 0.418627i 0.101532i −0.998711 0.0507659i $$-0.983834\pi$$
0.998711 0.0507659i $$-0.0161663\pi$$
$$18$$ 0 0
$$19$$ −3.27492 −0.751318 −0.375659 0.926758i $$-0.622584\pi$$
−0.375659 + 0.926758i $$0.622584\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 7.82300i 1.63121i −0.578610 0.815604i $$-0.696405\pi$$
0.578610 0.815604i $$-0.303595\pi$$
$$24$$ 0 0
$$25$$ 0.362541 4.98684i 0.0725083 0.997368i
$$26$$ 0 0
$$27$$ 5.19615i 1.00000i
$$28$$ 0 0
$$29$$ −4.27492 −0.793832 −0.396916 0.917855i $$-0.629920\pi$$
−0.396916 + 0.917855i $$0.629920\pi$$
$$30$$ 0 0
$$31$$ 3.27492 0.588192 0.294096 0.955776i $$-0.404981\pi$$
0.294096 + 0.955776i $$0.404981\pi$$
$$32$$ 0 0
$$33$$ 9.13642i 1.59045i
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 9.97368i 1.63966i 0.572605 + 0.819831i $$0.305933\pi$$
−0.572605 + 0.819831i $$0.694067\pi$$
$$38$$ 0 0
$$39$$ −4.54983 −0.728557
$$40$$ 0 0
$$41$$ −3.72508 −0.581760 −0.290880 0.956760i $$-0.593948\pi$$
−0.290880 + 0.956760i $$0.593948\pi$$
$$42$$ 0 0
$$43$$ 2.15068i 0.327975i −0.986462 0.163988i $$-0.947564\pi$$
0.986462 0.163988i $$-0.0524357\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 6.50958i 0.949519i −0.880115 0.474760i $$-0.842535\pi$$
0.880115 0.474760i $$-0.157465\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ 0.725083 0.101532
$$52$$ 0 0
$$53$$ 5.67232i 0.779153i −0.920994 0.389577i $$-0.872621\pi$$
0.920994 0.389577i $$-0.127379\pi$$
$$54$$ 0 0
$$55$$ 8.63746 8.03231i 1.16467 1.08308i
$$56$$ 0 0
$$57$$ 5.67232i 0.751318i
$$58$$ 0 0
$$59$$ 3.27492 0.426358 0.213179 0.977013i $$-0.431618\pi$$
0.213179 + 0.977013i $$0.431618\pi$$
$$60$$ 0 0
$$61$$ −13.5498 −1.73488 −0.867439 0.497543i $$-0.834236\pi$$
−0.867439 + 0.497543i $$0.834236\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ −4.00000 4.30136i −0.496139 0.533517i
$$66$$ 0 0
$$67$$ 3.52165i 0.430237i −0.976588 0.215119i $$-0.930986\pi$$
0.976588 0.215119i $$-0.0690139\pi$$
$$68$$ 0 0
$$69$$ 13.5498 1.63121
$$70$$ 0 0
$$71$$ −4.54983 −0.539966 −0.269983 0.962865i $$-0.587018\pi$$
−0.269983 + 0.962865i $$0.587018\pi$$
$$72$$ 0 0
$$73$$ 6.50958i 0.761888i 0.924598 + 0.380944i $$0.124401\pi$$
−0.924598 + 0.380944i $$0.875599\pi$$
$$74$$ 0 0
$$75$$ 8.63746 + 0.627940i 0.997368 + 0.0725083i
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −7.27492 −0.818492 −0.409246 0.912424i $$-0.634208\pi$$
−0.409246 + 0.912424i $$0.634208\pi$$
$$80$$ 0 0
$$81$$ −9.00000 −1.00000
$$82$$ 0 0
$$83$$ 7.40437i 0.812736i −0.913710 0.406368i $$-0.866795\pi$$
0.913710 0.406368i $$-0.133205\pi$$
$$84$$ 0 0
$$85$$ 0.637459 + 0.685484i 0.0691421 + 0.0743512i
$$86$$ 0 0
$$87$$ 7.40437i 0.793832i
$$88$$ 0 0
$$89$$ 7.00000 0.741999 0.370999 0.928633i $$-0.379015\pi$$
0.370999 + 0.928633i $$0.379015\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 5.67232i 0.588192i
$$94$$ 0 0
$$95$$ 5.36254 4.98684i 0.550185 0.511639i
$$96$$ 0 0
$$97$$ 6.92820i 0.703452i 0.936103 + 0.351726i $$0.114405\pi$$
−0.936103 + 0.351726i $$0.885595\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −13.5498 −1.34826 −0.674129 0.738613i $$-0.735481\pi$$
−0.674129 + 0.738613i $$0.735481\pi$$
$$102$$ 0 0
$$103$$ 11.2871i 1.11215i 0.831132 + 0.556076i $$0.187694\pi$$
−0.831132 + 0.556076i $$0.812306\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 3.52165i 0.340450i −0.985405 0.170225i $$-0.945550\pi$$
0.985405 0.170225i $$-0.0544495\pi$$
$$108$$ 0 0
$$109$$ 11.5498 1.10627 0.553137 0.833090i $$-0.313431\pi$$
0.553137 + 0.833090i $$0.313431\pi$$
$$110$$ 0 0
$$111$$ −17.2749 −1.63966
$$112$$ 0 0
$$113$$ 4.30136i 0.404637i 0.979320 + 0.202319i $$0.0648477\pi$$
−0.979320 + 0.202319i $$0.935152\pi$$
$$114$$ 0 0
$$115$$ 11.9124 + 12.8098i 1.11083 + 1.19452i
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 16.8248 1.52952
$$122$$ 0 0
$$123$$ 6.45203i 0.581760i
$$124$$ 0 0
$$125$$ 7.00000 + 8.71780i 0.626099 + 0.779744i
$$126$$ 0 0
$$127$$ 15.6460i 1.38836i 0.719802 + 0.694179i $$0.244232\pi$$
−0.719802 + 0.694179i $$0.755768\pi$$
$$128$$ 0 0
$$129$$ 3.72508 0.327975
$$130$$ 0 0
$$131$$ −10.7251 −0.937055 −0.468527 0.883449i $$-0.655215\pi$$
−0.468527 + 0.883449i $$0.655215\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ −7.91238 8.50848i −0.680989 0.732294i
$$136$$ 0 0
$$137$$ 21.3183i 1.82135i 0.413126 + 0.910674i $$0.364437\pi$$
−0.413126 + 0.910674i $$0.635563\pi$$
$$138$$ 0 0
$$139$$ −13.0997 −1.11110 −0.555550 0.831483i $$-0.687492\pi$$
−0.555550 + 0.831483i $$0.687492\pi$$
$$140$$ 0 0
$$141$$ 11.2749 0.949519
$$142$$ 0 0
$$143$$ 13.8564i 1.15873i
$$144$$ 0 0
$$145$$ 7.00000 6.50958i 0.581318 0.540591i
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 7.54983 0.618507 0.309253 0.950980i $$-0.399921\pi$$
0.309253 + 0.950980i $$0.399921\pi$$
$$150$$ 0 0
$$151$$ −12.7251 −1.03555 −0.517776 0.855516i $$-0.673240\pi$$
−0.517776 + 0.855516i $$0.673240\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −5.36254 + 4.98684i −0.430730 + 0.400553i
$$156$$ 0 0
$$157$$ 2.20822i 0.176235i 0.996110 + 0.0881176i $$0.0280851\pi$$
−0.996110 + 0.0881176i $$0.971915\pi$$
$$158$$ 0 0
$$159$$ 9.82475 0.779153
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 5.67232i 0.444291i 0.975014 + 0.222145i $$0.0713059\pi$$
−0.975014 + 0.222145i $$0.928694\pi$$
$$164$$ 0 0
$$165$$ 13.9124 + 14.9605i 1.08308 + 1.16467i
$$166$$ 0 0
$$167$$ 0.476171i 0.0368472i 0.999830 + 0.0184236i $$0.00586474\pi$$
−0.999830 + 0.0184236i $$0.994135\pi$$
$$168$$ 0 0
$$169$$ 6.09967 0.469205
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 20.4811i 1.55715i 0.627553 + 0.778573i $$0.284056\pi$$
−0.627553 + 0.778573i $$0.715944\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 5.67232i 0.426358i
$$178$$ 0 0
$$179$$ 7.27492 0.543753 0.271876 0.962332i $$-0.412356\pi$$
0.271876 + 0.962332i $$0.412356\pi$$
$$180$$ 0 0
$$181$$ −24.2749 −1.80434 −0.902170 0.431380i $$-0.858027\pi$$
−0.902170 + 0.431380i $$0.858027\pi$$
$$182$$ 0 0
$$183$$ 23.4690i 1.73488i
$$184$$ 0 0
$$185$$ −15.1873 16.3315i −1.11659 1.20071i
$$186$$ 0 0
$$187$$ 2.20822i 0.161481i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 0.175248 0.0126805 0.00634026 0.999980i $$-0.497982\pi$$
0.00634026 + 0.999980i $$0.497982\pi$$
$$192$$ 0 0
$$193$$ 21.3183i 1.53453i 0.641332 + 0.767263i $$0.278382\pi$$
−0.641332 + 0.767263i $$0.721618\pi$$
$$194$$ 0 0
$$195$$ 7.45017 6.92820i 0.533517 0.496139i
$$196$$ 0 0
$$197$$ 8.60271i 0.612918i −0.951884 0.306459i $$-0.900856\pi$$
0.951884 0.306459i $$-0.0991442\pi$$
$$198$$ 0 0
$$199$$ −17.2749 −1.22459 −0.612293 0.790631i $$-0.709753\pi$$
−0.612293 + 0.790631i $$0.709753\pi$$
$$200$$ 0 0
$$201$$ 6.09967 0.430237
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 6.09967 5.67232i 0.426019 0.396172i
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 17.2749 1.19493
$$210$$ 0 0
$$211$$ 25.6495 1.76578 0.882892 0.469576i $$-0.155593\pi$$
0.882892 + 0.469576i $$0.155593\pi$$
$$212$$ 0 0
$$213$$ 7.88054i 0.539966i
$$214$$ 0 0
$$215$$ 3.27492 + 3.52165i 0.223348 + 0.240174i
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ −11.2749 −0.761888
$$220$$ 0 0
$$221$$ 1.09967 0.0739717
$$222$$ 0 0
$$223$$ 8.71780i 0.583787i −0.956451 0.291893i $$-0.905715\pi$$
0.956451 0.291893i $$-0.0942853\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 19.5287i 1.29617i 0.761569 + 0.648084i $$0.224429\pi$$
−0.761569 + 0.648084i $$0.775571\pi$$
$$228$$ 0 0
$$229$$ −3.27492 −0.216413 −0.108206 0.994128i $$-0.534511\pi$$
−0.108206 + 0.994128i $$0.534511\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 14.2750i 0.935189i 0.883943 + 0.467594i $$0.154879\pi$$
−0.883943 + 0.467594i $$0.845121\pi$$
$$234$$ 0 0
$$235$$ 9.91238 + 10.6592i 0.646612 + 0.695327i
$$236$$ 0 0
$$237$$ 12.6005i 0.818492i
$$238$$ 0 0
$$239$$ −0.549834 −0.0355658 −0.0177829 0.999842i $$-0.505661\pi$$
−0.0177829 + 0.999842i $$0.505661\pi$$
$$240$$ 0 0
$$241$$ 9.82475 0.632868 0.316434 0.948615i $$-0.397514\pi$$
0.316434 + 0.948615i $$0.397514\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 8.60271i 0.547377i
$$248$$ 0 0
$$249$$ 12.8248 0.812736
$$250$$ 0 0
$$251$$ −20.5498 −1.29709 −0.648547 0.761175i $$-0.724623\pi$$
−0.648547 + 0.761175i $$0.724623\pi$$
$$252$$ 0 0
$$253$$ 41.2657i 2.59435i
$$254$$ 0 0
$$255$$ −1.18729 + 1.10411i −0.0743512 + 0.0691421i
$$256$$ 0 0
$$257$$ 11.6482i 0.726594i 0.931673 + 0.363297i $$0.118349\pi$$
−0.931673 + 0.363297i $$0.881651\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 0.779710i 0.0480790i 0.999711 + 0.0240395i $$0.00765274\pi$$
−0.999711 + 0.0240395i $$0.992347\pi$$
$$264$$ 0 0
$$265$$ 8.63746 + 9.28819i 0.530595 + 0.570569i
$$266$$ 0 0
$$267$$ 12.1244i 0.741999i
$$268$$ 0 0
$$269$$ 14.4502 0.881042 0.440521 0.897742i $$-0.354794\pi$$
0.440521 + 0.897742i $$0.354794\pi$$
$$270$$ 0 0
$$271$$ 9.82475 0.596811 0.298406 0.954439i $$-0.403545\pi$$
0.298406 + 0.954439i $$0.403545\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −1.91238 + 26.3052i −0.115321 + 1.58626i
$$276$$ 0 0
$$277$$ 14.2750i 0.857704i −0.903375 0.428852i $$-0.858918\pi$$
0.903375 0.428852i $$-0.141082\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 6.00000 0.357930 0.178965 0.983855i $$-0.442725\pi$$
0.178965 + 0.983855i $$0.442725\pi$$
$$282$$ 0 0
$$283$$ 10.9260i 0.649484i 0.945803 + 0.324742i $$0.105278\pi$$
−0.945803 + 0.324742i $$0.894722\pi$$
$$284$$ 0 0
$$285$$ 8.63746 + 9.28819i 0.511639 + 0.550185i
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 16.8248 0.989691
$$290$$ 0 0
$$291$$ −12.0000 −0.703452
$$292$$ 0 0
$$293$$ 6.92820i 0.404750i 0.979308 + 0.202375i $$0.0648660\pi$$
−0.979308 + 0.202375i $$0.935134\pi$$
$$294$$ 0 0
$$295$$ −5.36254 + 4.98684i −0.312219 + 0.290345i
$$296$$ 0 0
$$297$$ 27.4093i 1.59045i
$$298$$ 0 0
$$299$$ 20.5498 1.18843
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 23.4690i 1.34826i
$$304$$ 0 0
$$305$$ 22.1873 20.6328i 1.27044 1.18143i
$$306$$ 0 0
$$307$$ 26.5145i 1.51326i −0.653843 0.756631i $$-0.726844\pi$$
0.653843 0.756631i $$-0.273156\pi$$
$$308$$ 0 0
$$309$$ −19.5498 −1.11215
$$310$$ 0 0
$$311$$ −9.82475 −0.557111 −0.278555 0.960420i $$-0.589856\pi$$
−0.278555 + 0.960420i $$0.589856\pi$$
$$312$$ 0 0
$$313$$ 33.5002i 1.89354i −0.321904 0.946772i $$-0.604323\pi$$
0.321904 0.946772i $$-0.395677\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 25.6197i 1.43894i −0.694521 0.719472i $$-0.744384\pi$$
0.694521 0.719472i $$-0.255616\pi$$
$$318$$ 0 0
$$319$$ 22.5498 1.26255
$$320$$ 0 0
$$321$$ 6.09967 0.340450
$$322$$ 0 0
$$323$$ 1.37097i 0.0762827i
$$324$$ 0 0
$$325$$ 13.0997 + 0.952341i 0.726639 + 0.0528264i
$$326$$ 0 0
$$327$$ 20.0049i 1.10627i
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 17.8248 0.979737 0.489868 0.871796i $$-0.337045\pi$$
0.489868 + 0.871796i $$0.337045\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 5.36254 + 5.76655i 0.292987 + 0.315060i
$$336$$ 0 0
$$337$$ 4.30136i 0.234310i 0.993114 + 0.117155i $$0.0373774\pi$$
−0.993114 + 0.117155i $$0.962623\pi$$
$$338$$ 0 0
$$339$$ −7.45017 −0.404637
$$340$$ 0 0
$$341$$ −17.2749 −0.935489
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ −22.1873 + 20.6328i −1.19452 + 1.11083i
$$346$$ 0 0
$$347$$ 12.1244i 0.650870i −0.945564 0.325435i $$-0.894489\pi$$
0.945564 0.325435i $$-0.105511\pi$$
$$348$$ 0 0
$$349$$ 3.72508 0.199399 0.0996996 0.995018i $$-0.468212\pi$$
0.0996996 + 0.995018i $$0.468212\pi$$
$$350$$ 0 0
$$351$$ −13.6495 −0.728557
$$352$$ 0 0
$$353$$ 8.18408i 0.435595i 0.975994 + 0.217797i $$0.0698872\pi$$
−0.975994 + 0.217797i $$0.930113\pi$$
$$354$$ 0 0
$$355$$ 7.45017 6.92820i 0.395414 0.367711i
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −36.3746 −1.91978 −0.959889 0.280382i $$-0.909539\pi$$
−0.959889 + 0.280382i $$0.909539\pi$$
$$360$$ 0 0
$$361$$ −8.27492 −0.435522
$$362$$ 0 0
$$363$$ 29.1413i 1.52952i
$$364$$ 0 0
$$365$$ −9.91238 10.6592i −0.518837 0.557926i
$$366$$ 0 0
$$367$$ 6.03341i 0.314941i 0.987524 + 0.157471i $$0.0503340\pi$$
−0.987524 + 0.157471i $$0.949666\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 9.97368i 0.516417i 0.966089 + 0.258209i $$0.0831322\pi$$
−0.966089 + 0.258209i $$0.916868\pi$$
$$374$$ 0 0
$$375$$ −15.0997 + 12.1244i −0.779744 + 0.626099i
$$376$$ 0 0
$$377$$ 11.2296i 0.578352i
$$378$$ 0 0
$$379$$ 21.6495 1.11206 0.556030 0.831162i $$-0.312324\pi$$
0.556030 + 0.831162i $$0.312324\pi$$
$$380$$ 0 0
$$381$$ −27.0997 −1.38836
$$382$$ 0 0
$$383$$ 6.14849i 0.314173i −0.987585 0.157087i $$-0.949790\pi$$
0.987585 0.157087i $$-0.0502102\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ −32.3746 −1.64146 −0.820728 0.571319i $$-0.806432\pi$$
−0.820728 + 0.571319i $$0.806432\pi$$
$$390$$ 0 0
$$391$$ −3.27492 −0.165620
$$392$$ 0 0
$$393$$ 18.5764i 0.937055i
$$394$$ 0 0
$$395$$ 11.9124 11.0778i 0.599377 0.557384i
$$396$$ 0 0
$$397$$ 10.8109i 0.542585i −0.962497 0.271293i $$-0.912549\pi$$
0.962497 0.271293i $$-0.0874511\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 3.00000 0.149813 0.0749064 0.997191i $$-0.476134\pi$$
0.0749064 + 0.997191i $$0.476134\pi$$
$$402$$ 0 0
$$403$$ 8.60271i 0.428532i
$$404$$ 0 0
$$405$$ 14.7371 13.7046i 0.732294 0.680989i
$$406$$ 0 0
$$407$$ 52.6103i 2.60780i
$$408$$ 0 0
$$409$$ 20.0997 0.993865 0.496932 0.867789i $$-0.334460\pi$$
0.496932 + 0.867789i $$0.334460\pi$$
$$410$$ 0 0
$$411$$ −36.9244 −1.82135
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 11.2749 + 12.1244i 0.553464 + 0.595161i
$$416$$ 0 0
$$417$$ 22.6893i 1.11110i
$$418$$ 0 0
$$419$$ 13.0997 0.639961 0.319980 0.947424i $$-0.396324\pi$$
0.319980 + 0.947424i $$0.396324\pi$$
$$420$$ 0 0
$$421$$ −4.27492 −0.208347 −0.104173 0.994559i $$-0.533220\pi$$
−0.104173 + 0.994559i $$0.533220\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −2.08762 0.151770i −0.101265 0.00736190i
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 24.0000 1.15873
$$430$$ 0 0
$$431$$ −18.3746 −0.885073 −0.442536 0.896751i $$-0.645921\pi$$
−0.442536 + 0.896751i $$0.645921\pi$$
$$432$$ 0 0
$$433$$ 18.1578i 0.872606i −0.899800 0.436303i $$-0.856288\pi$$
0.899800 0.436303i $$-0.143712\pi$$
$$434$$ 0 0
$$435$$ 11.2749 + 12.1244i 0.540591 + 0.581318i
$$436$$ 0 0
$$437$$ 25.6197i 1.22556i
$$438$$ 0 0
$$439$$ −23.8248 −1.13709 −0.568547 0.822651i $$-0.692494\pi$$
−0.568547 + 0.822651i $$0.692494\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 12.1244i 0.576046i −0.957624 0.288023i $$-0.907002\pi$$
0.957624 0.288023i $$-0.0929979\pi$$
$$444$$ 0 0
$$445$$ −11.4622 + 10.6592i −0.543361 + 0.505293i
$$446$$ 0 0
$$447$$ 13.0767i 0.618507i
$$448$$ 0 0
$$449$$ 3.17525 0.149849 0.0749246 0.997189i $$-0.476128\pi$$
0.0749246 + 0.997189i $$0.476128\pi$$
$$450$$ 0 0
$$451$$ 19.6495 0.925259
$$452$$ 0 0
$$453$$ 22.0405i 1.03555i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 1.37097i 0.0641312i 0.999486 + 0.0320656i $$0.0102085\pi$$
−0.999486 + 0.0320656i $$0.989791\pi$$
$$458$$ 0 0
$$459$$ 2.17525 0.101532
$$460$$ 0 0
$$461$$ −14.0000 −0.652045 −0.326023 0.945362i $$-0.605709\pi$$
−0.326023 + 0.945362i $$0.605709\pi$$
$$462$$ 0 0
$$463$$ 2.15068i 0.0999505i 0.998750 + 0.0499752i $$0.0159142\pi$$
−0.998750 + 0.0499752i $$0.984086\pi$$
$$464$$ 0 0
$$465$$ −8.63746 9.28819i −0.400553 0.430730i
$$466$$ 0 0
$$467$$ 15.7035i 0.726673i −0.931658 0.363337i $$-0.881637\pi$$
0.931658 0.363337i $$-0.118363\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ −3.82475 −0.176235
$$472$$ 0 0
$$473$$ 11.3446i 0.521627i
$$474$$ 0 0
$$475$$ −1.18729 + 16.3315i −0.0544767 + 0.749340i
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −9.82475 −0.448904 −0.224452 0.974485i $$-0.572059\pi$$
−0.224452 + 0.974485i $$0.572059\pi$$
$$480$$ 0 0
$$481$$ −26.1993 −1.19459
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −10.5498 11.3446i −0.479043 0.515134i
$$486$$ 0 0
$$487$$ 2.93039i 0.132789i −0.997793 0.0663943i $$-0.978850\pi$$
0.997793 0.0663943i $$-0.0211495\pi$$
$$488$$ 0 0
$$489$$ −9.82475 −0.444291
$$490$$ 0 0
$$491$$ −28.5498 −1.28844 −0.644218 0.764842i $$-0.722817\pi$$
−0.644218 + 0.764842i $$0.722817\pi$$
$$492$$ 0 0
$$493$$ 1.78959i 0.0805993i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −1.62541 −0.0727635 −0.0363818 0.999338i $$-0.511583\pi$$
−0.0363818 + 0.999338i $$0.511583\pi$$
$$500$$ 0 0
$$501$$ −0.824752 −0.0368472
$$502$$ 0 0
$$503$$ 31.7682i 1.41647i 0.705975 + 0.708236i $$0.250509\pi$$
−0.705975 + 0.708236i $$0.749491\pi$$
$$504$$ 0 0
$$505$$ 22.1873 20.6328i 0.987322 0.918149i
$$506$$ 0 0
$$507$$ 10.5649i 0.469205i
$$508$$ 0 0
$$509$$ 14.4502 0.640492 0.320246 0.947334i $$-0.396234\pi$$
0.320246 + 0.947334i $$0.396234\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 17.0170i 0.751318i
$$514$$ 0 0
$$515$$ −17.1873 18.4822i −0.757363 0.814421i
$$516$$ 0 0
$$517$$ 34.3375i 1.51016i
$$518$$ 0 0
$$519$$ −35.4743 −1.55715
$$520$$ 0 0
$$521$$ 9.82475 0.430430 0.215215 0.976567i $$-0.430955\pi$$
0.215215 + 0.976567i $$0.430955\pi$$
$$522$$ 0 0
$$523$$ 7.34683i 0.321254i 0.987015 + 0.160627i $$0.0513517\pi$$
−0.987015 + 0.160627i $$0.948648\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 1.37097i 0.0597203i
$$528$$ 0 0
$$529$$ −38.1993 −1.66084
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 9.78523i 0.423845i
$$534$$ 0 0
$$535$$ 5.36254 + 5.76655i 0.231843 + 0.249310i
$$536$$ 0 0
$$537$$ 12.6005i 0.543753i
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −17.5498 −0.754526 −0.377263 0.926106i $$-0.623135\pi$$
−0.377263 + 0.926106i $$0.623135\pi$$
$$542$$ 0 0
$$543$$ 42.0454i 1.80434i
$$544$$ 0 0
$$545$$ −18.9124 + 17.5874i −0.810117 + 0.753360i
$$546$$ 0 0
$$547$$ 20.5386i 0.878168i 0.898446 + 0.439084i $$0.144697\pi$$
−0.898446 + 0.439084i $$0.855303\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 14.0000 0.596420
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 28.2870 26.3052i 1.20071 1.11659i
$$556$$ 0 0
$$557$$ 9.97368i 0.422598i −0.977421 0.211299i $$-0.932231\pi$$
0.977421 0.211299i $$-0.0677694\pi$$
$$558$$ 0 0
$$559$$ 5.64950 0.238949
$$560$$ 0 0
$$561$$ −3.82475 −0.161481
$$562$$ 0 0
$$563$$ 22.6317i 0.953814i −0.878954 0.476907i $$-0.841758\pi$$
0.878954 0.476907i $$-0.158242\pi$$
$$564$$ 0 0
$$565$$ −6.54983 7.04329i −0.275554 0.296313i
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −8.37459 −0.351081 −0.175540 0.984472i $$-0.556167\pi$$
−0.175540 + 0.984472i $$0.556167\pi$$
$$570$$ 0 0
$$571$$ 7.27492 0.304446 0.152223 0.988346i $$-0.451357\pi$$
0.152223 + 0.988346i $$0.451357\pi$$
$$572$$ 0 0
$$573$$ 0.303539i 0.0126805i
$$574$$ 0 0
$$575$$ −39.0120 2.83616i −1.62691 0.118276i
$$576$$ 0 0
$$577$$ 3.88273i 0.161640i 0.996729 + 0.0808200i $$0.0257539\pi$$
−0.996729 + 0.0808200i $$0.974246\pi$$
$$578$$ 0 0
$$579$$ −36.9244 −1.53453
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 29.9210i 1.23920i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 20.8997i 0.862623i −0.902203 0.431311i $$-0.858051\pi$$
0.902203 0.431311i $$-0.141949\pi$$
$$588$$ 0 0
$$589$$ −10.7251 −0.441919
$$590$$ 0 0
$$591$$ 14.9003 0.612918
$$592$$ 0 0
$$593$$ 33.3851i 1.37096i 0.728090 + 0.685482i $$0.240408\pi$$
−0.728090 + 0.685482i $$0.759592\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 29.9210i 1.22459i
$$598$$ 0 0
$$599$$ −5.27492 −0.215527 −0.107764 0.994177i $$-0.534369\pi$$
−0.107764 + 0.994177i $$0.534369\pi$$
$$600$$ 0 0
$$601$$ 14.0000 0.571072 0.285536 0.958368i $$-0.407828\pi$$
0.285536 + 0.958368i $$0.407828\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ −27.5498 + 25.6197i −1.12006 + 1.04159i
$$606$$ 0 0
$$607$$ 11.4022i 0.462801i −0.972859 0.231400i $$-0.925669\pi$$
0.972859 0.231400i $$-0.0743307\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 17.0997 0.691779
$$612$$ 0 0
$$613$$ 28.3616i 1.14551i −0.819725 0.572757i $$-0.805874\pi$$
0.819725 0.572757i $$-0.194126\pi$$
$$614$$ 0 0
$$615$$ 9.82475 + 10.5649i 0.396172 + 0.426019i
$$616$$ 0 0
$$617$$ 31.2920i 1.25977i 0.776689 + 0.629884i $$0.216898\pi$$
−0.776689 + 0.629884i $$0.783102\pi$$
$$618$$ 0 0
$$619$$ 8.92442 0.358703 0.179351 0.983785i $$-0.442600\pi$$
0.179351 + 0.983785i $$0.442600\pi$$
$$620$$ 0 0
$$621$$ 40.6495 1.63121
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −24.7371 3.61587i −0.989485 0.144635i
$$626$$ 0 0
$$627$$ 29.9210i 1.19493i
$$628$$ 0 0
$$629$$ 4.17525 0.166478
$$630$$ 0 0
$$631$$ 33.0997 1.31768 0.658839 0.752284i $$-0.271048\pi$$
0.658839 + 0.752284i $$0.271048\pi$$
$$632$$ 0 0
$$633$$ 44.4262i 1.76578i
$$634$$ 0 0
$$635$$ −23.8248 25.6197i −0.945456 1.01669i
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −2.09967 −0.0829319 −0.0414660 0.999140i $$-0.513203\pi$$
−0.0414660 + 0.999140i $$0.513203\pi$$
$$642$$ 0 0
$$643$$ 31.4071i 1.23857i −0.785164 0.619287i $$-0.787422\pi$$
0.785164 0.619287i $$-0.212578\pi$$
$$644$$ 0 0
$$645$$ −6.09967 + 5.67232i −0.240174 + 0.223348i
$$646$$ 0 0
$$647$$ 26.9331i 1.05885i −0.848357 0.529425i $$-0.822408\pi$$
0.848357 0.529425i $$-0.177592\pi$$
$$648$$ 0 0
$$649$$ −17.2749 −0.678100
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 28.3616i 1.10988i 0.831892 + 0.554938i $$0.187258\pi$$
−0.831892 + 0.554938i $$0.812742\pi$$
$$654$$ 0 0
$$655$$ 17.5619 16.3315i 0.686199 0.638124i
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 40.5498 1.57960 0.789799 0.613366i $$-0.210185\pi$$
0.789799 + 0.613366i $$0.210185\pi$$
$$660$$ 0 0
$$661$$ −0.450166 −0.0175094 −0.00875471 0.999962i $$-0.502787\pi$$
−0.00875471 + 0.999962i $$0.502787\pi$$
$$662$$ 0 0
$$663$$ 1.90468i 0.0739717i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 33.4427i 1.29491i
$$668$$ 0 0
$$669$$ 15.0997 0.583787
$$670$$ 0 0
$$671$$ 71.4743 2.75923
$$672$$ 0 0
$$673$$ 31.2920i 1.20622i −0.797659 0.603109i $$-0.793928\pi$$
0.797659 0.603109i $$-0.206072\pi$$
$$674$$ 0 0
$$675$$ 25.9124 + 1.88382i 0.997368 + 0.0725083i
$$676$$ 0 0
$$677$$ 46.4043i 1.78346i −0.452566 0.891731i $$-0.649491\pi$$
0.452566 0.891731i $$-0.350509\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ −33.8248 −1.29617
$$682$$ 0 0
$$683$$ 19.1676i 0.733430i 0.930333 + 0.366715i $$0.119518\pi$$
−0.930333 + 0.366715i $$0.880482\pi$$
$$684$$ 0 0
$$685$$ −32.4622 34.9079i −1.24032 1.33376i
$$686$$ 0 0
$$687$$ 5.67232i 0.216413i
$$688$$ 0 0
$$689$$ 14.9003 0.567657
$$690$$ 0 0
$$691$$ 30.3746 1.15550 0.577752 0.816212i $$-0.303930\pi$$
0.577752 + 0.816212i $$0.303930\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 21.4502 19.9474i 0.813651 0.756646i
$$696$$ 0 0
$$697$$ 1.55942i 0.0590672i
$$698$$ 0 0
$$699$$ −24.7251 −0.935189
$$700$$ 0 0
$$701$$ 8.82475 0.333306 0.166653 0.986016i $$-0.446704\pi$$
0.166653 + 0.986016i $$0.446704\pi$$
$$702$$ 0 0
$$703$$ 32.6630i 1.23191i
$$704$$ 0 0
$$705$$ −18.4622 + 17.1687i −0.695327 + 0.646612i
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 10.4502 0.392464 0.196232 0.980557i $$-0.437129\pi$$
0.196232 + 0.980557i $$0.437129\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 25.6197i 0.959465i
$$714$$ 0 0
$$715$$ 21.0997 + 22.6893i 0.789083 + 0.848531i
$$716$$ 0 0
$$717$$ 0.952341i 0.0355658i
$$718$$ 0 0
$$719$$ 30.3746 1.13278 0.566390 0.824137i $$-0.308339\pi$$
0.566390 + 0.824137i $$0.308339\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 17.0170i 0.632868i
$$724$$ 0 0
$$725$$ −1.54983 + 21.3183i −0.0575594 + 0.791743i
$$726$$ 0 0
$$727$$ 3.10302i 0.115085i −0.998343 0.0575423i $$-0.981674\pi$$
0.998343 0.0575423i $$-0.0183264\pi$$
$$728$$ 0 0
$$729$$ −27.0000 −1.00000
$$730$$ 0 0
$$731$$ −0.900331 −0.0332999
$$732$$ 0 0
$$733$$ 37.6865i 1.39198i 0.718050 + 0.695991i $$0.245035\pi$$
−0.718050 + 0.695991i $$0.754965\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 18.5764i 0.684270i
$$738$$ 0 0
$$739$$ 20.9244 0.769717 0.384859 0.922976i $$-0.374250\pi$$
0.384859 + 0.922976i $$0.374250\pi$$
$$740$$ 0 0
$$741$$ 14.9003 0.547377
$$742$$ 0 0
$$743$$ 6.45203i 0.236702i −0.992972 0.118351i $$-0.962239\pi$$
0.992972 0.118351i $$-0.0377608\pi$$
$$744$$ 0 0
$$745$$ −12.3625 + 11.4964i −0.452928 + 0.421196i
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ −14.7251 −0.537326 −0.268663 0.963234i $$-0.586582\pi$$
−0.268663 + 0.963234i $$0.586582\pi$$
$$752$$ 0 0
$$753$$ 35.5934i 1.29709i
$$754$$ 0 0
$$755$$ 20.8368 19.3770i 0.758329 0.705200i
$$756$$ 0 0
$$757$$ 35.5934i 1.29366i −0.762633 0.646831i $$-0.776094\pi$$
0.762633 0.646831i $$-0.223906\pi$$
$$758$$ 0 0
$$759$$ −71.4743 −2.59435
$$760$$ 0 0
$$761$$ 22.9244 0.831010 0.415505 0.909591i $$-0.363605\pi$$
0.415505 + 0.909591i $$0.363605\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 8.60271i 0.310626i
$$768$$ 0 0
$$769$$ 14.0000 0.504853 0.252426 0.967616i $$-0.418771\pi$$
0.252426 + 0.967616i $$0.418771\pi$$
$$770$$ 0 0
$$771$$ −20.1752 −0.726594
$$772$$ 0 0
$$773$$ 40.3133i 1.44997i −0.688765 0.724985i $$-0.741847\pi$$
0.688765 0.724985i $$-0.258153\pi$$
$$774$$ 0 0
$$775$$ 1.18729 16.3315i 0.0426488 0.586644i
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 12.1993 0.437087
$$780$$ 0 0
$$781$$ 24.0000 0.858788
$$782$$ 0 0
$$783$$ 22.2131i 0.793832i
$$784$$ 0 0
$$785$$ −3.36254 3.61587i −0.120014 0.129056i
$$786$$ 0 0
$$787$$ 1.73205i 0.0617409i 0.999523 + 0.0308705i $$0.00982794\pi$$
−0.999523 + 0.0308705i $$0.990172\pi$$
$$788$$ 0 0
$$789$$ −1.35050 −0.0480790
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 35.5934i 1.26396i
$$794$$ 0 0
$$795$$ −16.0876 + 14.9605i −0.570569 + 0.530595i
$$796$$ 0 0
$$797$$ 46.8229i 1.65855i 0.558839 + 0.829276i $$0.311247\pi$$
−0.558839 + 0.829276i $$0.688753\pi$$
$$798$$ 0 0
$$799$$ −2.72508 −0.0964065
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 34.3375i 1.21174i
$$804$$ 0 0