Properties

Label 980.2.e.d.589.2
Level $980$
Weight $2$
Character 980.589
Analytic conductor $7.825$
Analytic rank $0$
Dimension $4$
CM discriminant -35
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(589,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-5}, \sqrt{-21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 13x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 589.2
Root \(-1.17325i\) of defining polynomial
Character \(\chi\) \(=\) 980.589
Dual form 980.2.e.d.589.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.17325i q^{3} -2.23607i q^{5} +1.62348 q^{9} +O(q^{10})\) \(q-1.17325i q^{3} -2.23607i q^{5} +1.62348 q^{9} +6.62348 q^{11} -5.64539i q^{13} -2.62348 q^{15} +7.99190i q^{17} -5.00000 q^{25} -5.42451i q^{27} +0.623475 q^{29} -7.77102i q^{33} -6.62348 q^{39} -3.63020i q^{45} -12.4640i q^{47} +9.37652 q^{51} -14.8105i q^{55} -12.6235 q^{65} -12.0000 q^{71} +13.4164i q^{73} +5.86627i q^{75} -15.8704 q^{79} -1.49390 q^{81} -8.94427i q^{83} +17.8704 q^{85} -0.731495i q^{87} +12.6849i q^{97} +10.7530 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 14 q^{9} + 6 q^{11} + 10 q^{15} - 20 q^{25} - 18 q^{29} - 6 q^{39} + 58 q^{51} - 30 q^{65} - 48 q^{71} - 2 q^{79} + 76 q^{81} + 10 q^{85} + 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.17325i − 0.677378i −0.940898 0.338689i \(-0.890016\pi\)
0.940898 0.338689i \(-0.109984\pi\)
\(4\) 0 0
\(5\) − 2.23607i − 1.00000i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.62348 0.541158
\(10\) 0 0
\(11\) 6.62348 1.99705 0.998526 0.0542666i \(-0.0172821\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 0 0
\(13\) − 5.64539i − 1.56575i −0.622179 0.782875i \(-0.713753\pi\)
0.622179 0.782875i \(-0.286247\pi\)
\(14\) 0 0
\(15\) −2.62348 −0.677378
\(16\) 0 0
\(17\) 7.99190i 1.93832i 0.246433 + 0.969160i \(0.420742\pi\)
−0.246433 + 0.969160i \(0.579258\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) − 5.42451i − 1.04395i
\(28\) 0 0
\(29\) 0.623475 0.115776 0.0578882 0.998323i \(-0.481563\pi\)
0.0578882 + 0.998323i \(0.481563\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) − 7.77102i − 1.35276i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) −6.62348 −1.06060
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) − 3.63020i − 0.541158i
\(46\) 0 0
\(47\) − 12.4640i − 1.81807i −0.416724 0.909033i \(-0.636822\pi\)
0.416724 0.909033i \(-0.363178\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 9.37652 1.31298
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) − 14.8105i − 1.99705i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −12.6235 −1.56575
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 13.4164i 1.57027i 0.619324 + 0.785136i \(0.287407\pi\)
−0.619324 + 0.785136i \(0.712593\pi\)
\(74\) 0 0
\(75\) 5.86627i 0.677378i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −15.8704 −1.78556 −0.892781 0.450490i \(-0.851249\pi\)
−0.892781 + 0.450490i \(0.851249\pi\)
\(80\) 0 0
\(81\) −1.49390 −0.165989
\(82\) 0 0
\(83\) − 8.94427i − 0.981761i −0.871227 0.490881i \(-0.836675\pi\)
0.871227 0.490881i \(-0.163325\pi\)
\(84\) 0 0
\(85\) 17.8704 1.93832
\(86\) 0 0
\(87\) − 0.731495i − 0.0784245i
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.6849i 1.28796i 0.765043 + 0.643979i \(0.222718\pi\)
−0.765043 + 0.643979i \(0.777282\pi\)
\(98\) 0 0
\(99\) 10.7530 1.08072
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 7.77102i 0.765701i 0.923810 + 0.382851i \(0.125058\pi\)
−0.923810 + 0.382851i \(0.874942\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 9.87043 0.945415 0.472708 0.881219i \(-0.343277\pi\)
0.472708 + 0.881219i \(0.343277\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 9.16515i − 0.847319i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 32.8704 2.98822
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803i 1.00000i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −12.1296 −1.04395
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −14.6235 −1.23152
\(142\) 0 0
\(143\) − 37.3921i − 3.12688i
\(144\) 0 0
\(145\) − 1.39413i − 0.115776i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 23.8704 1.94255 0.971274 0.237964i \(-0.0764802\pi\)
0.971274 + 0.237964i \(0.0764802\pi\)
\(152\) 0 0
\(153\) 12.9746i 1.04894i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 13.4164i 1.07075i 0.844616 + 0.535373i \(0.179829\pi\)
−0.844616 + 0.535373i \(0.820171\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) −17.3765 −1.35276
\(166\) 0 0
\(167\) 5.42451i 0.419761i 0.977727 + 0.209881i \(0.0673075\pi\)
−0.977727 + 0.209881i \(0.932692\pi\)
\(168\) 0 0
\(169\) −18.8704 −1.45157
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.0314i 1.14282i 0.820666 + 0.571409i \(0.193603\pi\)
−0.820666 + 0.571409i \(0.806397\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −24.0000 −1.79384 −0.896922 0.442189i \(-0.854202\pi\)
−0.896922 + 0.442189i \(0.854202\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 52.9341i 3.87093i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.6235 1.34755 0.673774 0.738938i \(-0.264672\pi\)
0.673774 + 0.738938i \(0.264672\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 14.8105i 1.06060i
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 3.87043 0.266451 0.133226 0.991086i \(-0.457467\pi\)
0.133226 + 0.991086i \(0.457467\pi\)
\(212\) 0 0
\(213\) 14.0790i 0.964680i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 15.7409 1.06367
\(220\) 0 0
\(221\) 45.1174 3.03492
\(222\) 0 0
\(223\) 21.8501i 1.46319i 0.681740 + 0.731594i \(0.261223\pi\)
−0.681740 + 0.731594i \(0.738777\pi\)
\(224\) 0 0
\(225\) −8.11738 −0.541158
\(226\) 0 0
\(227\) − 21.4083i − 1.42092i −0.703738 0.710460i \(-0.748487\pi\)
0.703738 0.710460i \(-0.251513\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) −27.8704 −1.81807
\(236\) 0 0
\(237\) 18.6200i 1.20950i
\(238\) 0 0
\(239\) 21.1174 1.36597 0.682985 0.730433i \(-0.260682\pi\)
0.682985 + 0.730433i \(0.260682\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) − 14.5208i − 0.931510i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −10.4939 −0.665024
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) − 20.9665i − 1.31298i
\(256\) 0 0
\(257\) − 4.47214i − 0.278964i −0.990225 0.139482i \(-0.955456\pi\)
0.990225 0.139482i \(-0.0445438\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.01220 0.0626534
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −33.1174 −1.99705
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.3765 0.678667 0.339333 0.940666i \(-0.389799\pi\)
0.339333 + 0.940666i \(0.389799\pi\)
\(282\) 0 0
\(283\) 19.0618i 1.13311i 0.824025 + 0.566553i \(0.191723\pi\)
−0.824025 + 0.566553i \(0.808277\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −46.8704 −2.75708
\(290\) 0 0
\(291\) 14.8826 0.872435
\(292\) 0 0
\(293\) 32.9200i 1.92320i 0.274446 + 0.961602i \(0.411505\pi\)
−0.274446 + 0.961602i \(0.588495\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 35.9291i − 2.08482i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 33.1408i − 1.89145i −0.324971 0.945724i \(-0.605355\pi\)
0.324971 0.945724i \(-0.394645\pi\)
\(308\) 0 0
\(309\) 9.11738 0.518669
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 35.2665i 1.99338i 0.0813030 + 0.996689i \(0.474092\pi\)
−0.0813030 + 0.996689i \(0.525908\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 4.12957 0.231212
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 28.2269i 1.56575i
\(326\) 0 0
\(327\) − 11.5805i − 0.640404i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) −30.6235 −1.63456
\(352\) 0 0
\(353\) 6.08715i 0.323986i 0.986792 + 0.161993i \(0.0517922\pi\)
−0.986792 + 0.161993i \(0.948208\pi\)
\(354\) 0 0
\(355\) 26.8328i 1.42414i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 36.0000 1.90001 0.950004 0.312239i \(-0.101079\pi\)
0.950004 + 0.312239i \(0.101079\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) − 38.5654i − 2.02416i
\(364\) 0 0
\(365\) 30.0000 1.57027
\(366\) 0 0
\(367\) 0.731495i 0.0381837i 0.999818 + 0.0190919i \(0.00607750\pi\)
−0.999818 + 0.0190919i \(0.993923\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 13.1174 0.677378
\(376\) 0 0
\(377\) − 3.51976i − 0.181277i
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 35.7771i − 1.82812i −0.405575 0.914062i \(-0.632929\pi\)
0.405575 0.914062i \(-0.367071\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −24.6235 −1.24846 −0.624230 0.781241i \(-0.714587\pi\)
−0.624230 + 0.781241i \(0.714587\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 35.4874i 1.78556i
\(396\) 0 0
\(397\) − 19.7244i − 0.989941i −0.868910 0.494971i \(-0.835179\pi\)
0.868910 0.494971i \(-0.164821\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 39.1174 1.95343 0.976714 0.214544i \(-0.0688266\pi\)
0.976714 + 0.214544i \(0.0688266\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 3.34047i 0.165989i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −20.0000 −0.981761
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −33.8704 −1.65074 −0.825372 0.564590i \(-0.809034\pi\)
−0.825372 + 0.564590i \(0.809034\pi\)
\(422\) 0 0
\(423\) − 20.2351i − 0.983862i
\(424\) 0 0
\(425\) − 39.9595i − 1.93832i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −43.8704 −2.11808
\(430\) 0 0
\(431\) −34.3643 −1.65527 −0.827636 0.561266i \(-0.810315\pi\)
−0.827636 + 0.561266i \(0.810315\pi\)
\(432\) 0 0
\(433\) − 40.2492i − 1.93425i −0.254293 0.967127i \(-0.581843\pi\)
0.254293 0.967127i \(-0.418157\pi\)
\(434\) 0 0
\(435\) −1.63567 −0.0784245
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 7.03952i 0.332958i
\(448\) 0 0
\(449\) −40.3643 −1.90491 −0.952455 0.304679i \(-0.901451\pi\)
−0.952455 + 0.304679i \(0.901451\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 28.0061i − 1.31584i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 43.3521 2.02350
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 14.3688i − 0.664908i −0.943119 0.332454i \(-0.892123\pi\)
0.943119 0.332454i \(-0.107877\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 15.7409 0.725300
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 28.3643 1.28796
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.11738 −0.411461 −0.205731 0.978609i \(-0.565957\pi\)
−0.205731 + 0.978609i \(0.565957\pi\)
\(492\) 0 0
\(493\) 4.98275i 0.224412i
\(494\) 0 0
\(495\) − 24.0445i − 1.08072i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 35.8704 1.60578 0.802890 0.596127i \(-0.203294\pi\)
0.802890 + 0.596127i \(0.203294\pi\)
\(500\) 0 0
\(501\) 6.36433 0.284337
\(502\) 0 0
\(503\) 1.61501i 0.0720099i 0.999352 + 0.0360049i \(0.0114632\pi\)
−0.999352 + 0.0360049i \(0.988537\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 22.1398i 0.983263i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 17.3765 0.765701
\(516\) 0 0
\(517\) − 82.5552i − 3.63077i
\(518\) 0 0
\(519\) 17.6357 0.774120
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 26.8328i 1.17332i 0.809834 + 0.586659i \(0.199557\pi\)
−0.809834 + 0.586659i \(0.800443\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 28.1581i 1.21511i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −6.12957 −0.263531 −0.131765 0.991281i \(-0.542065\pi\)
−0.131765 + 0.991281i \(0.542065\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 22.0709i − 0.945415i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 62.1052 2.62208
\(562\) 0 0
\(563\) 44.7214i 1.88478i 0.334515 + 0.942390i \(0.391427\pi\)
−0.334515 + 0.942390i \(0.608573\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 0 0
\(573\) − 21.8501i − 0.912800i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 46.5573i 1.93820i 0.246661 + 0.969102i \(0.420667\pi\)
−0.246661 + 0.969102i \(0.579333\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −20.4939 −0.847319
\(586\) 0 0
\(587\) − 8.94427i − 0.369170i −0.982817 0.184585i \(-0.940906\pi\)
0.982817 0.184585i \(-0.0590940\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 41.8642i − 1.71916i −0.511003 0.859579i \(-0.670726\pi\)
0.511003 0.859579i \(-0.329274\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −45.1174 −1.84345 −0.921723 0.387849i \(-0.873218\pi\)
−0.921723 + 0.387849i \(0.873218\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 73.5005i − 2.98822i
\(606\) 0 0
\(607\) − 28.8896i − 1.17259i −0.810097 0.586296i \(-0.800586\pi\)
0.810097 0.586296i \(-0.199414\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −70.3643 −2.84664
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 8.12957 0.323633 0.161817 0.986821i \(-0.448265\pi\)
0.161817 + 0.986821i \(0.448265\pi\)
\(632\) 0 0
\(633\) − 4.54099i − 0.180488i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −19.4817 −0.770684
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) 40.1804i 1.58456i 0.610158 + 0.792279i \(0.291106\pi\)
−0.610158 + 0.792279i \(0.708894\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 17.8885i − 0.703271i −0.936137 0.351636i \(-0.885626\pi\)
0.936137 0.351636i \(-0.114374\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 21.7812i 0.849766i
\(658\) 0 0
\(659\) −30.6235 −1.19292 −0.596461 0.802642i \(-0.703427\pi\)
−0.596461 + 0.802642i \(0.703427\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) − 52.9341i − 2.05579i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 25.6357 0.991132
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 27.1226i 1.04395i
\(676\) 0 0
\(677\) 18.8409i 0.724115i 0.932156 + 0.362058i \(0.117926\pi\)
−0.932156 + 0.362058i \(0.882074\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −25.1174 −0.962500
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 52.3643 1.97777 0.988887 0.148671i \(-0.0474996\pi\)
0.988887 + 0.148671i \(0.0474996\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 32.6991i 1.23152i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 45.6113 1.71297 0.856484 0.516174i \(-0.172644\pi\)
0.856484 + 0.516174i \(0.172644\pi\)
\(710\) 0 0
\(711\) −25.7652 −0.966272
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −83.6113 −3.12688
\(716\) 0 0
\(717\) − 24.7760i − 0.925278i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.11738 −0.115776
\(726\) 0 0
\(727\) 53.6656i 1.99035i 0.0981255 + 0.995174i \(0.468715\pi\)
−0.0981255 + 0.995174i \(0.531285\pi\)
\(728\) 0 0
\(729\) −21.5183 −0.796974
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 53.5968i 1.97964i 0.142318 + 0.989821i \(0.454545\pi\)
−0.142318 + 0.989821i \(0.545455\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −51.6113 −1.89855 −0.949276 0.314445i \(-0.898182\pi\)
−0.949276 + 0.314445i \(0.898182\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 13.4164i 0.491539i
\(746\) 0 0
\(747\) − 14.5208i − 0.531288i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −39.6113 −1.44544 −0.722718 0.691143i \(-0.757107\pi\)
−0.722718 + 0.691143i \(0.757107\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 53.3759i − 1.94255i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 29.0122 1.04894
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −5.24695 −0.188964
\(772\) 0 0
\(773\) − 46.9990i − 1.69044i −0.534421 0.845218i \(-0.679470\pi\)
0.534421 0.845218i \(-0.320530\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −79.4817 −2.84408
\(782\) 0 0
\(783\) − 3.38205i − 0.120865i
\(784\) 0 0
\(785\) 30.0000 1.07075
\(786\) 0 0
\(787\) 55.7224i 1.98629i 0.116892 + 0.993145i \(0.462707\pi\)
−0.116892 + 0.993145i \(0.537293\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 34.8247i 1.23355i 0.787138 + 0.616777i \(0.211562\pi\)
−0.787138 + 0.616777i \(0.788438\pi\)
\(798\) 0 0
\(799\) 99.6113 3.52399
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 88.8632i 3.13592i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 16.3643 0.575339 0.287670 0.957730i \(-0.407120\pi\)
0.287670 + 0.957730i \(0.407120\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23.3765 −0.815846 −0.407923 0.913016i \(-0.633747\pi\)
−0.407923 + 0.913016i \(0.633747\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 38.8551i 1.35276i
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 12.1296 0.419761
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −28.6113 −0.986596
\(842\) 0 0
\(843\) − 13.3476i − 0.459714i
\(844\) 0 0
\(845\) 42.1956i 1.45157i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 22.3643 0.767542
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 40.2492i − 1.37811i −0.724710 0.689054i \(-0.758026\pi\)
0.724710 0.689054i \(-0.241974\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 49.1935i − 1.68042i −0.542263 0.840209i \(-0.682432\pi\)
0.542263 0.840209i \(-0.317568\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 33.6113 1.14282
\(866\) 0 0
\(867\) 54.9909i 1.86759i
\(868\) 0 0
\(869\) −105.117 −3.56586
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 20.5936i 0.696989i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 38.6235 1.30274
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 35.7771i − 1.20128i −0.799521 0.600639i \(-0.794913\pi\)
0.799521 0.600639i \(-0.205087\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −9.89482 −0.331489
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 53.6656i 1.79384i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) − 59.2422i − 1.96063i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 31.6113 1.04276 0.521380 0.853325i \(-0.325417\pi\)
0.521380 + 0.853325i \(0.325417\pi\)
\(920\) 0 0
\(921\) −38.8826 −1.28123
\(922\) 0 0
\(923\) 67.7447i 2.22984i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 12.6161i 0.414366i
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 118.364 3.87093
\(936\) 0 0
\(937\) 49.3455i 1.61205i 0.591883 + 0.806024i \(0.298385\pi\)
−0.591883 + 0.806024i \(0.701615\pi\)
\(938\) 0 0
\(939\) 41.3765 1.35027
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 75.7409 2.45865
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) − 41.6434i − 1.34755i
\(956\) 0 0
\(957\) − 4.84504i − 0.156618i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 33.1174 1.06060
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 16.0244 0.511620
\(982\) 0 0
\(983\) 33.5826i 1.07112i 0.844498 + 0.535559i \(0.179899\pi\)
−0.844498 + 0.535559i \(0.820101\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −52.0000 −1.65183 −0.825917 0.563791i \(-0.809342\pi\)
−0.825917 + 0.563791i \(0.809342\pi\)
\(992\) 0 0
\(993\) − 9.38603i − 0.297857i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 14.1479i − 0.448069i −0.974581 0.224034i \(-0.928077\pi\)
0.974581 0.224034i \(-0.0719228\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.e.d.589.2 4
5.2 odd 4 4900.2.a.bj.1.2 4
5.3 odd 4 4900.2.a.bj.1.3 4
5.4 even 2 inner 980.2.e.d.589.3 yes 4
7.2 even 3 980.2.q.i.949.3 8
7.3 odd 6 980.2.q.i.569.3 8
7.4 even 3 980.2.q.i.569.2 8
7.5 odd 6 980.2.q.i.949.2 8
7.6 odd 2 inner 980.2.e.d.589.3 yes 4
35.4 even 6 980.2.q.i.569.3 8
35.9 even 6 980.2.q.i.949.2 8
35.13 even 4 4900.2.a.bj.1.2 4
35.19 odd 6 980.2.q.i.949.3 8
35.24 odd 6 980.2.q.i.569.2 8
35.27 even 4 4900.2.a.bj.1.3 4
35.34 odd 2 CM 980.2.e.d.589.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.e.d.589.2 4 1.1 even 1 trivial
980.2.e.d.589.2 4 35.34 odd 2 CM
980.2.e.d.589.3 yes 4 5.4 even 2 inner
980.2.e.d.589.3 yes 4 7.6 odd 2 inner
980.2.q.i.569.2 8 7.4 even 3
980.2.q.i.569.2 8 35.24 odd 6
980.2.q.i.569.3 8 7.3 odd 6
980.2.q.i.569.3 8 35.4 even 6
980.2.q.i.949.2 8 7.5 odd 6
980.2.q.i.949.2 8 35.9 even 6
980.2.q.i.949.3 8 7.2 even 3
980.2.q.i.949.3 8 35.19 odd 6
4900.2.a.bj.1.2 4 5.2 odd 4
4900.2.a.bj.1.2 4 35.13 even 4
4900.2.a.bj.1.3 4 5.3 odd 4
4900.2.a.bj.1.3 4 35.27 even 4