Properties

Label 980.2.c.e.979.1
Level $980$
Weight $2$
Character 980.979
Analytic conductor $7.825$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(979,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.979");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 979.1
Character \(\chi\) \(=\) 980.979
Dual form 980.2.c.e.979.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38298 - 0.295571i) q^{2} -1.66243i q^{3} +(1.82528 + 0.817539i) q^{4} +(2.22517 - 0.220514i) q^{5} +(-0.491366 + 2.29911i) q^{6} +(-2.28268 - 1.67014i) q^{8} +0.236337 q^{9} +O(q^{10})\) \(q+(-1.38298 - 0.295571i) q^{2} -1.66243i q^{3} +(1.82528 + 0.817539i) q^{4} +(2.22517 - 0.220514i) q^{5} +(-0.491366 + 2.29911i) q^{6} +(-2.28268 - 1.67014i) q^{8} +0.236337 q^{9} +(-3.14254 - 0.352730i) q^{10} +4.81346i q^{11} +(1.35910 - 3.03439i) q^{12} -2.14434 q^{13} +(-0.366588 - 3.69918i) q^{15} +(2.66326 + 2.98447i) q^{16} +5.02311 q^{17} +(-0.326849 - 0.0698544i) q^{18} +1.36274 q^{19} +(4.24182 + 1.41666i) q^{20} +(1.42272 - 6.65692i) q^{22} +5.18403 q^{23} +(-2.77649 + 3.79479i) q^{24} +(4.90275 - 0.981360i) q^{25} +(2.96558 + 0.633805i) q^{26} -5.38017i q^{27} -6.43162 q^{29} +(-0.586387 + 5.22425i) q^{30} +4.62144 q^{31} +(-2.80111 - 4.91465i) q^{32} +8.00202 q^{33} +(-6.94687 - 1.48469i) q^{34} +(0.431380 + 0.193215i) q^{36} +9.82080i q^{37} +(-1.88464 - 0.402786i) q^{38} +3.56481i q^{39} +(-5.44764 - 3.21298i) q^{40} +4.71669i q^{41} +0.141753 q^{43} +(-3.93519 + 8.78588i) q^{44} +(0.525889 - 0.0521155i) q^{45} +(-7.16942 - 1.53225i) q^{46} -2.55954i q^{47} +(4.96146 - 4.42747i) q^{48} +(-7.07047 - 0.0919091i) q^{50} -8.35056i q^{51} +(-3.91401 - 1.75308i) q^{52} -4.84781i q^{53} +(-1.59023 + 7.44068i) q^{54} +(1.06143 + 10.7108i) q^{55} -2.26545i q^{57} +(8.89481 + 1.90100i) q^{58} +14.1495 q^{59} +(2.35510 - 7.05172i) q^{60} +10.1807i q^{61} +(-6.39137 - 1.36597i) q^{62} +(2.42126 + 7.62480i) q^{64} +(-4.77152 + 0.472856i) q^{65} +(-11.0666 - 2.36517i) q^{66} -9.64973 q^{67} +(9.16856 + 4.10659i) q^{68} -8.61807i q^{69} -9.58091i q^{71} +(-0.539481 - 0.394716i) q^{72} -1.67523 q^{73} +(2.90275 - 13.5820i) q^{74} +(-1.63144 - 8.15046i) q^{75} +(2.48737 + 1.11409i) q^{76} +(1.05365 - 4.93006i) q^{78} -11.8764i q^{79} +(6.58431 + 6.05366i) q^{80} -8.23513 q^{81} +(1.39412 - 6.52310i) q^{82} -0.811086i q^{83} +(11.1773 - 1.10766i) q^{85} +(-0.196041 - 0.0418981i) q^{86} +10.6921i q^{87} +(8.03915 - 10.9876i) q^{88} -16.0555i q^{89} +(-0.742699 - 0.0833630i) q^{90} +(9.46228 + 4.23815i) q^{92} -7.68281i q^{93} +(-0.756526 + 3.53979i) q^{94} +(3.03232 - 0.300502i) q^{95} +(-8.17024 + 4.65665i) q^{96} +1.76194 q^{97} +1.13760i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 16 q^{4} - 64 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 48 q + 16 q^{4} - 64 q^{9} + 16 q^{16} - 16 q^{25} - 48 q^{29} - 8 q^{30} + 176 q^{36} - 48 q^{44} - 32 q^{46} + 32 q^{50} + 24 q^{60} - 80 q^{64} - 16 q^{65} - 112 q^{74} - 48 q^{81} - 64 q^{85} - 112 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38298 0.295571i −0.977916 0.209001i
\(3\) 1.66243i 0.959803i −0.877322 0.479901i \(-0.840672\pi\)
0.877322 0.479901i \(-0.159328\pi\)
\(4\) 1.82528 + 0.817539i 0.912638 + 0.408770i
\(5\) 2.22517 0.220514i 0.995125 0.0986167i
\(6\) −0.491366 + 2.29911i −0.200599 + 0.938606i
\(7\) 0 0
\(8\) −2.28268 1.67014i −0.807049 0.590484i
\(9\) 0.236337 0.0787789
\(10\) −3.14254 0.352730i −0.993760 0.111543i
\(11\) 4.81346i 1.45131i 0.688058 + 0.725656i \(0.258464\pi\)
−0.688058 + 0.725656i \(0.741536\pi\)
\(12\) 1.35910 3.03439i 0.392338 0.875952i
\(13\) −2.14434 −0.594733 −0.297366 0.954763i \(-0.596108\pi\)
−0.297366 + 0.954763i \(0.596108\pi\)
\(14\) 0 0
\(15\) −0.366588 3.69918i −0.0946526 0.955124i
\(16\) 2.66326 + 2.98447i 0.665815 + 0.746117i
\(17\) 5.02311 1.21828 0.609142 0.793061i \(-0.291514\pi\)
0.609142 + 0.793061i \(0.291514\pi\)
\(18\) −0.326849 0.0698544i −0.0770391 0.0164648i
\(19\) 1.36274 0.312633 0.156317 0.987707i \(-0.450038\pi\)
0.156317 + 0.987707i \(0.450038\pi\)
\(20\) 4.24182 + 1.41666i 0.948500 + 0.316776i
\(21\) 0 0
\(22\) 1.42272 6.65692i 0.303325 1.41926i
\(23\) 5.18403 1.08094 0.540472 0.841362i \(-0.318246\pi\)
0.540472 + 0.841362i \(0.318246\pi\)
\(24\) −2.77649 + 3.79479i −0.566748 + 0.774608i
\(25\) 4.90275 0.981360i 0.980549 0.196272i
\(26\) 2.96558 + 0.633805i 0.581598 + 0.124299i
\(27\) 5.38017i 1.03541i
\(28\) 0 0
\(29\) −6.43162 −1.19432 −0.597161 0.802121i \(-0.703705\pi\)
−0.597161 + 0.802121i \(0.703705\pi\)
\(30\) −0.586387 + 5.22425i −0.107059 + 0.953813i
\(31\) 4.62144 0.830035 0.415018 0.909813i \(-0.363775\pi\)
0.415018 + 0.909813i \(0.363775\pi\)
\(32\) −2.80111 4.91465i −0.495172 0.868795i
\(33\) 8.00202 1.39297
\(34\) −6.94687 1.48469i −1.19138 0.254622i
\(35\) 0 0
\(36\) 0.431380 + 0.193215i 0.0718966 + 0.0322024i
\(37\) 9.82080i 1.61453i 0.590189 + 0.807265i \(0.299053\pi\)
−0.590189 + 0.807265i \(0.700947\pi\)
\(38\) −1.88464 0.402786i −0.305729 0.0653405i
\(39\) 3.56481i 0.570826i
\(40\) −5.44764 3.21298i −0.861347 0.508017i
\(41\) 4.71669i 0.736624i 0.929702 + 0.368312i \(0.120064\pi\)
−0.929702 + 0.368312i \(0.879936\pi\)
\(42\) 0 0
\(43\) 0.141753 0.0216171 0.0108085 0.999942i \(-0.496559\pi\)
0.0108085 + 0.999942i \(0.496559\pi\)
\(44\) −3.93519 + 8.78588i −0.593252 + 1.32452i
\(45\) 0.525889 0.0521155i 0.0783949 0.00776892i
\(46\) −7.16942 1.53225i −1.05707 0.225918i
\(47\) 2.55954i 0.373347i −0.982422 0.186673i \(-0.940229\pi\)
0.982422 0.186673i \(-0.0597706\pi\)
\(48\) 4.96146 4.42747i 0.716125 0.639051i
\(49\) 0 0
\(50\) −7.07047 0.0919091i −0.999916 0.0129979i
\(51\) 8.35056i 1.16931i
\(52\) −3.91401 1.75308i −0.542775 0.243109i
\(53\) 4.84781i 0.665898i −0.942945 0.332949i \(-0.891956\pi\)
0.942945 0.332949i \(-0.108044\pi\)
\(54\) −1.59023 + 7.44068i −0.216402 + 1.01255i
\(55\) 1.06143 + 10.7108i 0.143124 + 1.44424i
\(56\) 0 0
\(57\) 2.26545i 0.300066i
\(58\) 8.89481 + 1.90100i 1.16795 + 0.249614i
\(59\) 14.1495 1.84211 0.921054 0.389434i \(-0.127329\pi\)
0.921054 + 0.389434i \(0.127329\pi\)
\(60\) 2.35510 7.05172i 0.304042 0.910373i
\(61\) 10.1807i 1.30351i 0.758431 + 0.651753i \(0.225966\pi\)
−0.758431 + 0.651753i \(0.774034\pi\)
\(62\) −6.39137 1.36597i −0.811705 0.173478i
\(63\) 0 0
\(64\) 2.42126 + 7.62480i 0.302657 + 0.953099i
\(65\) −4.77152 + 0.472856i −0.591834 + 0.0586506i
\(66\) −11.0666 2.36517i −1.36221 0.291132i
\(67\) −9.64973 −1.17890 −0.589451 0.807804i \(-0.700656\pi\)
−0.589451 + 0.807804i \(0.700656\pi\)
\(68\) 9.16856 + 4.10659i 1.11185 + 0.497997i
\(69\) 8.61807i 1.03749i
\(70\) 0 0
\(71\) 9.58091i 1.13705i −0.822668 0.568523i \(-0.807515\pi\)
0.822668 0.568523i \(-0.192485\pi\)
\(72\) −0.539481 0.394716i −0.0635785 0.0465177i
\(73\) −1.67523 −0.196071 −0.0980354 0.995183i \(-0.531256\pi\)
−0.0980354 + 0.995183i \(0.531256\pi\)
\(74\) 2.90275 13.5820i 0.337438 1.57887i
\(75\) −1.63144 8.15046i −0.188382 0.941134i
\(76\) 2.48737 + 1.11409i 0.285321 + 0.127795i
\(77\) 0 0
\(78\) 1.05365 4.93006i 0.119303 0.558220i
\(79\) 11.8764i 1.33620i −0.744074 0.668098i \(-0.767109\pi\)
0.744074 0.668098i \(-0.232891\pi\)
\(80\) 6.58431 + 6.05366i 0.736149 + 0.676820i
\(81\) −8.23513 −0.915015
\(82\) 1.39412 6.52310i 0.153955 0.720356i
\(83\) 0.811086i 0.0890282i −0.999009 0.0445141i \(-0.985826\pi\)
0.999009 0.0445141i \(-0.0141740\pi\)
\(84\) 0 0
\(85\) 11.1773 1.10766i 1.21234 0.120143i
\(86\) −0.196041 0.0418981i −0.0211397 0.00451798i
\(87\) 10.6921i 1.14631i
\(88\) 8.03915 10.9876i 0.856976 1.17128i
\(89\) 16.0555i 1.70188i −0.525261 0.850941i \(-0.676032\pi\)
0.525261 0.850941i \(-0.323968\pi\)
\(90\) −0.742699 0.0833630i −0.0782873 0.00878723i
\(91\) 0 0
\(92\) 9.46228 + 4.23815i 0.986511 + 0.441857i
\(93\) 7.68281i 0.796670i
\(94\) −0.756526 + 3.53979i −0.0780297 + 0.365102i
\(95\) 3.03232 0.300502i 0.311109 0.0308308i
\(96\) −8.17024 + 4.65665i −0.833872 + 0.475267i
\(97\) 1.76194 0.178898 0.0894489 0.995991i \(-0.471489\pi\)
0.0894489 + 0.995991i \(0.471489\pi\)
\(98\) 0 0
\(99\) 1.13760i 0.114333i
\(100\) 9.75116 + 2.21694i 0.975116 + 0.221694i
\(101\) 12.6185i 1.25559i −0.778381 0.627793i \(-0.783959\pi\)
0.778381 0.627793i \(-0.216041\pi\)
\(102\) −2.46818 + 11.5487i −0.244387 + 1.14349i
\(103\) 5.73364i 0.564952i 0.959274 + 0.282476i \(0.0911558\pi\)
−0.959274 + 0.282476i \(0.908844\pi\)
\(104\) 4.89484 + 3.58135i 0.479979 + 0.351180i
\(105\) 0 0
\(106\) −1.43287 + 6.70443i −0.139173 + 0.651192i
\(107\) −13.2043 −1.27651 −0.638255 0.769825i \(-0.720343\pi\)
−0.638255 + 0.769825i \(0.720343\pi\)
\(108\) 4.39850 9.82030i 0.423246 0.944958i
\(109\) −0.461643 −0.0442174 −0.0221087 0.999756i \(-0.507038\pi\)
−0.0221087 + 0.999756i \(0.507038\pi\)
\(110\) 1.69785 15.1265i 0.161884 1.44226i
\(111\) 16.3264 1.54963
\(112\) 0 0
\(113\) 8.95823i 0.842720i −0.906894 0.421360i \(-0.861553\pi\)
0.906894 0.421360i \(-0.138447\pi\)
\(114\) −0.669602 + 3.13307i −0.0627139 + 0.293439i
\(115\) 11.5353 1.14315i 1.07568 0.106599i
\(116\) −11.7395 5.25810i −1.08998 0.488203i
\(117\) −0.506786 −0.0468524
\(118\) −19.5685 4.18219i −1.80143 0.385002i
\(119\) 0 0
\(120\) −5.34135 + 9.05630i −0.487596 + 0.826723i
\(121\) −12.1694 −1.10631
\(122\) 3.00913 14.0797i 0.272434 1.27472i
\(123\) 7.84116 0.707014
\(124\) 8.43540 + 3.77821i 0.757522 + 0.339293i
\(125\) 10.6930 3.26481i 0.956414 0.292014i
\(126\) 0 0
\(127\) −14.5152 −1.28802 −0.644009 0.765018i \(-0.722730\pi\)
−0.644009 + 0.765018i \(0.722730\pi\)
\(128\) −1.09489 11.2606i −0.0967751 0.995306i
\(129\) 0.235654i 0.0207481i
\(130\) 6.73868 + 0.756372i 0.591021 + 0.0663382i
\(131\) 16.3717 1.43040 0.715202 0.698918i \(-0.246335\pi\)
0.715202 + 0.698918i \(0.246335\pi\)
\(132\) 14.6059 + 6.54197i 1.27128 + 0.569405i
\(133\) 0 0
\(134\) 13.3454 + 2.85218i 1.15287 + 0.246391i
\(135\) −1.18640 11.9718i −0.102109 1.03037i
\(136\) −11.4662 8.38930i −0.983215 0.719377i
\(137\) 8.23570i 0.703623i 0.936071 + 0.351812i \(0.114434\pi\)
−0.936071 + 0.351812i \(0.885566\pi\)
\(138\) −2.54725 + 11.9186i −0.216837 + 1.01458i
\(139\) −0.476554 −0.0404207 −0.0202104 0.999796i \(-0.506434\pi\)
−0.0202104 + 0.999796i \(0.506434\pi\)
\(140\) 0 0
\(141\) −4.25504 −0.358339
\(142\) −2.83184 + 13.2502i −0.237643 + 1.11193i
\(143\) 10.3217i 0.863143i
\(144\) 0.629426 + 0.705340i 0.0524522 + 0.0587783i
\(145\) −14.3114 + 1.41826i −1.18850 + 0.117780i
\(146\) 2.31681 + 0.495150i 0.191741 + 0.0409789i
\(147\) 0 0
\(148\) −8.02889 + 17.9257i −0.659971 + 1.47348i
\(149\) 14.4630 1.18486 0.592430 0.805622i \(-0.298169\pi\)
0.592430 + 0.805622i \(0.298169\pi\)
\(150\) −0.152792 + 11.7541i −0.0124754 + 0.959722i
\(151\) 10.9317i 0.889605i 0.895629 + 0.444803i \(0.146726\pi\)
−0.895629 + 0.444803i \(0.853274\pi\)
\(152\) −3.11069 2.27596i −0.252310 0.184605i
\(153\) 1.18715 0.0959750
\(154\) 0 0
\(155\) 10.2835 1.01909i 0.825989 0.0818554i
\(156\) −2.91437 + 6.50675i −0.233336 + 0.520957i
\(157\) −13.4455 −1.07307 −0.536533 0.843879i \(-0.680266\pi\)
−0.536533 + 0.843879i \(0.680266\pi\)
\(158\) −3.51031 + 16.4248i −0.279265 + 1.30669i
\(159\) −8.05913 −0.639130
\(160\) −7.31670 10.3182i −0.578436 0.815728i
\(161\) 0 0
\(162\) 11.3890 + 2.43407i 0.894807 + 0.191239i
\(163\) 16.4270 1.28666 0.643332 0.765588i \(-0.277552\pi\)
0.643332 + 0.765588i \(0.277552\pi\)
\(164\) −3.85608 + 8.60926i −0.301110 + 0.672271i
\(165\) 17.8058 1.76455i 1.38618 0.137370i
\(166\) −0.239734 + 1.12172i −0.0186069 + 0.0870621i
\(167\) 14.2832i 1.10527i −0.833424 0.552635i \(-0.813623\pi\)
0.833424 0.552635i \(-0.186377\pi\)
\(168\) 0 0
\(169\) −8.40181 −0.646293
\(170\) −15.7853 1.77180i −1.21068 0.135891i
\(171\) 0.322065 0.0246289
\(172\) 0.258738 + 0.115888i 0.0197286 + 0.00883641i
\(173\) −17.2249 −1.30959 −0.654793 0.755808i \(-0.727244\pi\)
−0.654793 + 0.755808i \(0.727244\pi\)
\(174\) 3.16028 14.7870i 0.239580 1.12100i
\(175\) 0 0
\(176\) −14.3656 + 12.8195i −1.08285 + 0.966305i
\(177\) 23.5225i 1.76806i
\(178\) −4.74555 + 22.2045i −0.355694 + 1.66430i
\(179\) 10.7298i 0.801983i 0.916082 + 0.400991i \(0.131334\pi\)
−0.916082 + 0.400991i \(0.868666\pi\)
\(180\) 1.00250 + 0.334810i 0.0747218 + 0.0249553i
\(181\) 4.52237i 0.336145i 0.985775 + 0.168072i \(0.0537542\pi\)
−0.985775 + 0.168072i \(0.946246\pi\)
\(182\) 0 0
\(183\) 16.9247 1.25111
\(184\) −11.8335 8.65806i −0.872376 0.638280i
\(185\) 2.16562 + 21.8529i 0.159220 + 1.60666i
\(186\) −2.27082 + 10.6252i −0.166504 + 0.779076i
\(187\) 24.1785i 1.76811i
\(188\) 2.09252 4.67186i 0.152613 0.340730i
\(189\) 0 0
\(190\) −4.28246 0.480677i −0.310682 0.0348720i
\(191\) 11.4909i 0.831454i 0.909490 + 0.415727i \(0.136473\pi\)
−0.909490 + 0.415727i \(0.863527\pi\)
\(192\) 12.6757 4.02517i 0.914787 0.290491i
\(193\) 7.07187i 0.509044i 0.967067 + 0.254522i \(0.0819182\pi\)
−0.967067 + 0.254522i \(0.918082\pi\)
\(194\) −2.43673 0.520779i −0.174947 0.0373897i
\(195\) 0.786089 + 7.93230i 0.0562930 + 0.568044i
\(196\) 0 0
\(197\) 9.66482i 0.688590i 0.938862 + 0.344295i \(0.111882\pi\)
−0.938862 + 0.344295i \(0.888118\pi\)
\(198\) 0.336241 1.57328i 0.0238956 0.111808i
\(199\) −9.41065 −0.667104 −0.333552 0.942732i \(-0.608247\pi\)
−0.333552 + 0.942732i \(0.608247\pi\)
\(200\) −12.8304 5.94815i −0.907247 0.420598i
\(201\) 16.0420i 1.13151i
\(202\) −3.72966 + 17.4511i −0.262418 + 1.22786i
\(203\) 0 0
\(204\) 6.82691 15.2421i 0.477979 1.06716i
\(205\) 1.04010 + 10.4954i 0.0726434 + 0.733033i
\(206\) 1.69470 7.92951i 0.118075 0.552475i
\(207\) 1.22518 0.0851556
\(208\) −5.71093 6.39971i −0.395982 0.443740i
\(209\) 6.55947i 0.453728i
\(210\) 0 0
\(211\) 16.3292i 1.12415i 0.827087 + 0.562075i \(0.189997\pi\)
−0.827087 + 0.562075i \(0.810003\pi\)
\(212\) 3.96327 8.84858i 0.272199 0.607723i
\(213\) −15.9276 −1.09134
\(214\) 18.2613 + 3.90282i 1.24832 + 0.266791i
\(215\) 0.315424 0.0312584i 0.0215117 0.00213181i
\(216\) −8.98565 + 12.2812i −0.611396 + 0.835631i
\(217\) 0 0
\(218\) 0.638444 + 0.136449i 0.0432409 + 0.00924146i
\(219\) 2.78495i 0.188189i
\(220\) −6.81905 + 20.4178i −0.459741 + 1.37657i
\(221\) −10.7713 −0.724553
\(222\) −22.5791 4.82561i −1.51541 0.323873i
\(223\) 2.93610i 0.196616i −0.995156 0.0983079i \(-0.968657\pi\)
0.995156 0.0983079i \(-0.0313430\pi\)
\(224\) 0 0
\(225\) 1.15870 0.231931i 0.0772466 0.0154621i
\(226\) −2.64780 + 12.3891i −0.176129 + 0.824109i
\(227\) 25.1040i 1.66621i 0.553116 + 0.833104i \(0.313439\pi\)
−0.553116 + 0.833104i \(0.686561\pi\)
\(228\) 1.85209 4.13507i 0.122658 0.273852i
\(229\) 16.7335i 1.10578i −0.833255 0.552889i \(-0.813525\pi\)
0.833255 0.552889i \(-0.186475\pi\)
\(230\) −16.2910 1.82856i −1.07420 0.120572i
\(231\) 0 0
\(232\) 14.6813 + 10.7417i 0.963877 + 0.705228i
\(233\) 8.79554i 0.576215i −0.957598 0.288107i \(-0.906974\pi\)
0.957598 0.288107i \(-0.0930260\pi\)
\(234\) 0.700876 + 0.149791i 0.0458177 + 0.00979217i
\(235\) −0.564413 5.69540i −0.0368183 0.371527i
\(236\) 25.8267 + 11.5678i 1.68118 + 0.752998i
\(237\) −19.7436 −1.28248
\(238\) 0 0
\(239\) 20.9440i 1.35476i −0.735635 0.677378i \(-0.763116\pi\)
0.735635 0.677378i \(-0.236884\pi\)
\(240\) 10.0638 10.9459i 0.649613 0.706558i
\(241\) 15.1886i 0.978383i −0.872176 0.489191i \(-0.837292\pi\)
0.872176 0.489191i \(-0.162708\pi\)
\(242\) 16.8300 + 3.59692i 1.08187 + 0.231219i
\(243\) 2.45021i 0.157181i
\(244\) −8.32313 + 18.5826i −0.532834 + 1.18963i
\(245\) 0 0
\(246\) −10.8442 2.31762i −0.691399 0.147766i
\(247\) −2.92217 −0.185933
\(248\) −10.5493 7.71846i −0.669880 0.490123i
\(249\) −1.34837 −0.0854495
\(250\) −15.7533 + 1.35462i −0.996323 + 0.0856738i
\(251\) −27.8949 −1.76071 −0.880354 0.474317i \(-0.842695\pi\)
−0.880354 + 0.474317i \(0.842695\pi\)
\(252\) 0 0
\(253\) 24.9531i 1.56879i
\(254\) 20.0743 + 4.29028i 1.25957 + 0.269196i
\(255\) −1.84141 18.5814i −0.115314 1.16361i
\(256\) −1.81411 + 15.8968i −0.113382 + 0.993552i
\(257\) 1.96995 0.122882 0.0614411 0.998111i \(-0.480430\pi\)
0.0614411 + 0.998111i \(0.480430\pi\)
\(258\) −0.0696525 + 0.325905i −0.00433637 + 0.0202899i
\(259\) 0 0
\(260\) −9.09591 3.03781i −0.564104 0.188397i
\(261\) −1.52003 −0.0940874
\(262\) −22.6418 4.83901i −1.39881 0.298955i
\(263\) −2.71666 −0.167517 −0.0837583 0.996486i \(-0.526692\pi\)
−0.0837583 + 0.996486i \(0.526692\pi\)
\(264\) −18.2661 13.3645i −1.12420 0.822528i
\(265\) −1.06901 10.7872i −0.0656686 0.662652i
\(266\) 0 0
\(267\) −26.6911 −1.63347
\(268\) −17.6134 7.88904i −1.07591 0.481900i
\(269\) 6.94779i 0.423614i −0.977312 0.211807i \(-0.932065\pi\)
0.977312 0.211807i \(-0.0679348\pi\)
\(270\) −1.89775 + 16.9074i −0.115493 + 1.02895i
\(271\) −13.0306 −0.791551 −0.395776 0.918347i \(-0.629524\pi\)
−0.395776 + 0.918347i \(0.629524\pi\)
\(272\) 13.3778 + 14.9913i 0.811151 + 0.908982i
\(273\) 0 0
\(274\) 2.43424 11.3898i 0.147058 0.688084i
\(275\) 4.72373 + 23.5992i 0.284852 + 1.42308i
\(276\) 7.04561 15.7303i 0.424096 0.946856i
\(277\) 12.1148i 0.727906i −0.931417 0.363953i \(-0.881427\pi\)
0.931417 0.363953i \(-0.118573\pi\)
\(278\) 0.659065 + 0.140856i 0.0395281 + 0.00844796i
\(279\) 1.09222 0.0653893
\(280\) 0 0
\(281\) −3.90181 −0.232762 −0.116381 0.993205i \(-0.537129\pi\)
−0.116381 + 0.993205i \(0.537129\pi\)
\(282\) 5.88465 + 1.25767i 0.350426 + 0.0748931i
\(283\) 5.66953i 0.337019i −0.985700 0.168509i \(-0.946105\pi\)
0.985700 0.168509i \(-0.0538953\pi\)
\(284\) 7.83277 17.4878i 0.464790 1.03771i
\(285\) −0.499562 5.04100i −0.0295915 0.298603i
\(286\) −3.05079 + 14.2747i −0.180397 + 0.844081i
\(287\) 0 0
\(288\) −0.662006 1.16151i −0.0390091 0.0684427i
\(289\) 8.23165 0.484214
\(290\) 20.2117 + 2.26862i 1.18687 + 0.133218i
\(291\) 2.92909i 0.171707i
\(292\) −3.05776 1.36957i −0.178942 0.0801478i
\(293\) −4.21052 −0.245981 −0.122991 0.992408i \(-0.539249\pi\)
−0.122991 + 0.992408i \(0.539249\pi\)
\(294\) 0 0
\(295\) 31.4850 3.12016i 1.83313 0.181663i
\(296\) 16.4021 22.4177i 0.953354 1.30301i
\(297\) 25.8972 1.50271
\(298\) −20.0021 4.27486i −1.15869 0.247636i
\(299\) −11.1163 −0.642873
\(300\) 3.68550 16.2106i 0.212782 0.935919i
\(301\) 0 0
\(302\) 3.23108 15.1183i 0.185928 0.869959i
\(303\) −20.9773 −1.20511
\(304\) 3.62932 + 4.06704i 0.208156 + 0.233261i
\(305\) 2.24499 + 22.6538i 0.128548 + 1.29715i
\(306\) −1.64180 0.350886i −0.0938555 0.0200588i
\(307\) 0.464592i 0.0265157i 0.999912 + 0.0132578i \(0.00422022\pi\)
−0.999912 + 0.0132578i \(0.995780\pi\)
\(308\) 0 0
\(309\) 9.53175 0.542243
\(310\) −14.5231 1.63012i −0.824856 0.0925846i
\(311\) −23.0040 −1.30444 −0.652218 0.758032i \(-0.726161\pi\)
−0.652218 + 0.758032i \(0.726161\pi\)
\(312\) 5.95373 8.13732i 0.337064 0.460685i
\(313\) 4.64868 0.262759 0.131380 0.991332i \(-0.458059\pi\)
0.131380 + 0.991332i \(0.458059\pi\)
\(314\) 18.5949 + 3.97410i 1.04937 + 0.224271i
\(315\) 0 0
\(316\) 9.70939 21.6776i 0.546196 1.21946i
\(317\) 13.6516i 0.766750i 0.923593 + 0.383375i \(0.125238\pi\)
−0.923593 + 0.383375i \(0.874762\pi\)
\(318\) 11.1456 + 2.38205i 0.625015 + 0.133579i
\(319\) 30.9583i 1.73333i
\(320\) 7.06908 + 16.4325i 0.395174 + 0.918606i
\(321\) 21.9512i 1.22520i
\(322\) 0 0
\(323\) 6.84517 0.380876
\(324\) −15.0314 6.73255i −0.835077 0.374030i
\(325\) −10.5132 + 2.10437i −0.583165 + 0.116729i
\(326\) −22.7183 4.85535i −1.25825 0.268913i
\(327\) 0.767448i 0.0424400i
\(328\) 7.87754 10.7667i 0.434965 0.594492i
\(329\) 0 0
\(330\) −25.1467 2.82255i −1.38428 0.155376i
\(331\) 0.0738957i 0.00406167i 0.999998 + 0.00203084i \(0.000646436\pi\)
−0.999998 + 0.00203084i \(0.999354\pi\)
\(332\) 0.663095 1.48045i 0.0363920 0.0812505i
\(333\) 2.32102i 0.127191i
\(334\) −4.22171 + 19.7534i −0.231002 + 1.08086i
\(335\) −21.4723 + 2.12790i −1.17316 + 0.116259i
\(336\) 0 0
\(337\) 20.7475i 1.13019i 0.825026 + 0.565095i \(0.191160\pi\)
−0.825026 + 0.565095i \(0.808840\pi\)
\(338\) 11.6195 + 2.48333i 0.632020 + 0.135076i
\(339\) −14.8924 −0.808845
\(340\) 21.3071 + 7.11606i 1.15554 + 0.385923i
\(341\) 22.2451i 1.20464i
\(342\) −0.445409 0.0951930i −0.0240850 0.00514745i
\(343\) 0 0
\(344\) −0.323576 0.236747i −0.0174461 0.0127645i
\(345\) −1.90040 19.1767i −0.102314 1.03244i
\(346\) 23.8217 + 5.09119i 1.28067 + 0.273704i
\(347\) 22.3252 1.19848 0.599241 0.800569i \(-0.295469\pi\)
0.599241 + 0.800569i \(0.295469\pi\)
\(348\) −8.74121 + 19.5160i −0.468578 + 1.04617i
\(349\) 0.353911i 0.0189444i 0.999955 + 0.00947221i \(0.00301514\pi\)
−0.999955 + 0.00947221i \(0.996985\pi\)
\(350\) 0 0
\(351\) 11.5369i 0.615795i
\(352\) 23.6564 13.4830i 1.26089 0.718648i
\(353\) 34.0609 1.81288 0.906440 0.422334i \(-0.138789\pi\)
0.906440 + 0.422334i \(0.138789\pi\)
\(354\) −6.95258 + 32.5312i −0.369526 + 1.72901i
\(355\) −2.11272 21.3191i −0.112132 1.13150i
\(356\) 13.1260 29.3057i 0.695678 1.55320i
\(357\) 0 0
\(358\) 3.17142 14.8391i 0.167615 0.784272i
\(359\) 15.0557i 0.794611i 0.917686 + 0.397305i \(0.130055\pi\)
−0.917686 + 0.397305i \(0.869945\pi\)
\(360\) −1.28748 0.759346i −0.0678560 0.0400210i
\(361\) −17.1430 −0.902261
\(362\) 1.33668 6.25435i 0.0702544 0.328721i
\(363\) 20.2307i 1.06184i
\(364\) 0 0
\(365\) −3.72767 + 0.369411i −0.195115 + 0.0193359i
\(366\) −23.4065 5.00245i −1.22348 0.261482i
\(367\) 16.4024i 0.856201i 0.903731 + 0.428100i \(0.140817\pi\)
−0.903731 + 0.428100i \(0.859183\pi\)
\(368\) 13.8064 + 15.4716i 0.719709 + 0.806511i
\(369\) 1.11473i 0.0580304i
\(370\) 3.46409 30.8623i 0.180089 1.60445i
\(371\) 0 0
\(372\) 6.28100 14.0232i 0.325655 0.727071i
\(373\) 31.1287i 1.61178i 0.592063 + 0.805892i \(0.298314\pi\)
−0.592063 + 0.805892i \(0.701686\pi\)
\(374\) 7.14648 33.4385i 0.369536 1.72906i
\(375\) −5.42751 17.7764i −0.280276 0.917969i
\(376\) −4.27479 + 5.84261i −0.220455 + 0.301309i
\(377\) 13.7916 0.710302
\(378\) 0 0
\(379\) 30.8008i 1.58213i 0.611731 + 0.791066i \(0.290474\pi\)
−0.611731 + 0.791066i \(0.709526\pi\)
\(380\) 5.78048 + 1.93054i 0.296533 + 0.0990346i
\(381\) 24.1305i 1.23624i
\(382\) 3.39639 15.8917i 0.173774 0.813091i
\(383\) 21.7981i 1.11383i −0.830570 0.556915i \(-0.811985\pi\)
0.830570 0.556915i \(-0.188015\pi\)
\(384\) −18.7199 + 1.82017i −0.955298 + 0.0928850i
\(385\) 0 0
\(386\) 2.09024 9.78026i 0.106391 0.497802i
\(387\) 0.0335014 0.00170297
\(388\) 3.21602 + 1.44045i 0.163269 + 0.0731280i
\(389\) 12.0065 0.608754 0.304377 0.952552i \(-0.401552\pi\)
0.304377 + 0.952552i \(0.401552\pi\)
\(390\) 1.25741 11.2026i 0.0636716 0.567264i
\(391\) 26.0400 1.31690
\(392\) 0 0
\(393\) 27.2168i 1.37290i
\(394\) 2.85664 13.3663i 0.143916 0.673383i
\(395\) −2.61890 26.4269i −0.131771 1.32968i
\(396\) −0.930030 + 2.07643i −0.0467358 + 0.104344i
\(397\) 3.78275 0.189851 0.0949253 0.995484i \(-0.469739\pi\)
0.0949253 + 0.995484i \(0.469739\pi\)
\(398\) 13.0148 + 2.78152i 0.652371 + 0.139425i
\(399\) 0 0
\(400\) 15.9861 + 12.0185i 0.799306 + 0.600924i
\(401\) 17.8618 0.891974 0.445987 0.895039i \(-0.352853\pi\)
0.445987 + 0.895039i \(0.352853\pi\)
\(402\) 4.74155 22.1858i 0.236487 1.10652i
\(403\) −9.90994 −0.493649
\(404\) 10.3161 23.0322i 0.513245 1.14589i
\(405\) −18.3246 + 1.81596i −0.910555 + 0.0902358i
\(406\) 0 0
\(407\) −47.2720 −2.34319
\(408\) −13.9466 + 19.0616i −0.690460 + 0.943692i
\(409\) 20.2778i 1.00267i 0.865252 + 0.501337i \(0.167158\pi\)
−0.865252 + 0.501337i \(0.832842\pi\)
\(410\) 1.66372 14.8224i 0.0821652 0.732027i
\(411\) 13.6912 0.675339
\(412\) −4.68747 + 10.4655i −0.230935 + 0.515597i
\(413\) 0 0
\(414\) −1.69440 0.362127i −0.0832750 0.0177976i
\(415\) −0.178855 1.80480i −0.00877967 0.0885943i
\(416\) 6.00654 + 10.5387i 0.294495 + 0.516701i
\(417\) 0.792235i 0.0387959i
\(418\) 1.93879 9.07162i 0.0948294 0.443708i
\(419\) −5.58588 −0.272888 −0.136444 0.990648i \(-0.543567\pi\)
−0.136444 + 0.990648i \(0.543567\pi\)
\(420\) 0 0
\(421\) −9.19587 −0.448179 −0.224090 0.974569i \(-0.571941\pi\)
−0.224090 + 0.974569i \(0.571941\pi\)
\(422\) 4.82645 22.5830i 0.234948 1.09932i
\(423\) 0.604913i 0.0294119i
\(424\) −8.09652 + 11.0660i −0.393202 + 0.537412i
\(425\) 24.6270 4.92948i 1.19459 0.239115i
\(426\) 22.0275 + 4.70773i 1.06724 + 0.228090i
\(427\) 0 0
\(428\) −24.1015 10.7951i −1.16499 0.521799i
\(429\) −17.1590 −0.828447
\(430\) −0.445464 0.0500004i −0.0214822 0.00241123i
\(431\) 2.74398i 0.132173i −0.997814 0.0660865i \(-0.978949\pi\)
0.997814 0.0660865i \(-0.0210513\pi\)
\(432\) 16.0570 14.3288i 0.772541 0.689394i
\(433\) 5.66919 0.272444 0.136222 0.990678i \(-0.456504\pi\)
0.136222 + 0.990678i \(0.456504\pi\)
\(434\) 0 0
\(435\) 2.35775 + 23.7917i 0.113046 + 1.14073i
\(436\) −0.842626 0.377412i −0.0403545 0.0180747i
\(437\) 7.06446 0.337939
\(438\) 0.823151 3.85153i 0.0393317 0.184033i
\(439\) 10.9237 0.521360 0.260680 0.965425i \(-0.416053\pi\)
0.260680 + 0.965425i \(0.416053\pi\)
\(440\) 15.4656 26.2220i 0.737291 1.25008i
\(441\) 0 0
\(442\) 14.8964 + 3.18367i 0.708552 + 0.151432i
\(443\) −16.6088 −0.789106 −0.394553 0.918873i \(-0.629100\pi\)
−0.394553 + 0.918873i \(0.629100\pi\)
\(444\) 29.8001 + 13.3474i 1.41425 + 0.633442i
\(445\) −3.54046 35.7262i −0.167834 1.69359i
\(446\) −0.867827 + 4.06057i −0.0410928 + 0.192274i
\(447\) 24.0438i 1.13723i
\(448\) 0 0
\(449\) 18.9993 0.896630 0.448315 0.893876i \(-0.352024\pi\)
0.448315 + 0.893876i \(0.352024\pi\)
\(450\) −1.67101 0.0217215i −0.0787723 0.00102396i
\(451\) −22.7036 −1.06907
\(452\) 7.32371 16.3512i 0.344478 0.769098i
\(453\) 18.1731 0.853845
\(454\) 7.42001 34.7183i 0.348238 1.62941i
\(455\) 0 0
\(456\) −3.78362 + 5.17130i −0.177184 + 0.242168i
\(457\) 17.5990i 0.823248i 0.911354 + 0.411624i \(0.135038\pi\)
−0.911354 + 0.411624i \(0.864962\pi\)
\(458\) −4.94593 + 23.1421i −0.231108 + 1.08136i
\(459\) 27.0252i 1.26143i
\(460\) 21.9897 + 7.34403i 1.02528 + 0.342417i
\(461\) 20.9613i 0.976267i −0.872769 0.488134i \(-0.837678\pi\)
0.872769 0.488134i \(-0.162322\pi\)
\(462\) 0 0
\(463\) 7.63420 0.354791 0.177396 0.984140i \(-0.443233\pi\)
0.177396 + 0.984140i \(0.443233\pi\)
\(464\) −17.1291 19.1950i −0.795197 0.891104i
\(465\) −1.69416 17.0955i −0.0785650 0.792787i
\(466\) −2.59971 + 12.1641i −0.120429 + 0.563489i
\(467\) 34.9494i 1.61726i 0.588315 + 0.808632i \(0.299791\pi\)
−0.588315 + 0.808632i \(0.700209\pi\)
\(468\) −0.925024 0.414318i −0.0427593 0.0191518i
\(469\) 0 0
\(470\) −0.902825 + 8.04346i −0.0416442 + 0.371017i
\(471\) 22.3521i 1.02993i
\(472\) −32.2988 23.6317i −1.48667 1.08774i
\(473\) 0.682321i 0.0313731i
\(474\) 27.3050 + 5.83564i 1.25416 + 0.268040i
\(475\) 6.68115 1.33733i 0.306552 0.0613611i
\(476\) 0 0
\(477\) 1.14571i 0.0524587i
\(478\) −6.19045 + 28.9652i −0.283145 + 1.32484i
\(479\) −26.6182 −1.21622 −0.608108 0.793854i \(-0.708071\pi\)
−0.608108 + 0.793854i \(0.708071\pi\)
\(480\) −17.1533 + 12.1635i −0.782938 + 0.555184i
\(481\) 21.0591i 0.960214i
\(482\) −4.48931 + 21.0055i −0.204482 + 0.956776i
\(483\) 0 0
\(484\) −22.2124 9.94894i −1.00966 0.452224i
\(485\) 3.92061 0.388532i 0.178026 0.0176423i
\(486\) −0.724212 + 3.38860i −0.0328509 + 0.153710i
\(487\) −25.9093 −1.17406 −0.587032 0.809564i \(-0.699704\pi\)
−0.587032 + 0.809564i \(0.699704\pi\)
\(488\) 17.0032 23.2393i 0.769700 1.05199i
\(489\) 27.3087i 1.23494i
\(490\) 0 0
\(491\) 12.9154i 0.582862i −0.956592 0.291431i \(-0.905869\pi\)
0.956592 0.291431i \(-0.0941314\pi\)
\(492\) 14.3123 + 6.41046i 0.645247 + 0.289006i
\(493\) −32.3068 −1.45502
\(494\) 4.04130 + 0.863709i 0.181827 + 0.0388601i
\(495\) 0.250856 + 2.53134i 0.0112751 + 0.113775i
\(496\) 12.3081 + 13.7925i 0.552650 + 0.619304i
\(497\) 0 0
\(498\) 1.86477 + 0.398540i 0.0835624 + 0.0178590i
\(499\) 18.8481i 0.843758i 0.906652 + 0.421879i \(0.138629\pi\)
−0.906652 + 0.421879i \(0.861371\pi\)
\(500\) 22.1868 + 2.78279i 0.992226 + 0.124450i
\(501\) −23.7448 −1.06084
\(502\) 38.5781 + 8.24492i 1.72182 + 0.367989i
\(503\) 27.9050i 1.24422i 0.782930 + 0.622110i \(0.213724\pi\)
−0.782930 + 0.622110i \(0.786276\pi\)
\(504\) 0 0
\(505\) −2.78255 28.0782i −0.123822 1.24946i
\(506\) 7.37542 34.5097i 0.327877 1.53414i
\(507\) 13.9674i 0.620314i
\(508\) −26.4943 11.8668i −1.17549 0.526502i
\(509\) 17.1262i 0.759103i 0.925171 + 0.379552i \(0.123922\pi\)
−0.925171 + 0.379552i \(0.876078\pi\)
\(510\) −2.94549 + 26.2420i −0.130428 + 1.16201i
\(511\) 0 0
\(512\) 7.20752 21.4488i 0.318530 0.947913i
\(513\) 7.33175i 0.323705i
\(514\) −2.72441 0.582261i −0.120168 0.0256824i
\(515\) 1.26435 + 12.7583i 0.0557137 + 0.562198i
\(516\) 0.192656 0.430133i 0.00848121 0.0189355i
\(517\) 12.3202 0.541843
\(518\) 0 0
\(519\) 28.6352i 1.25694i
\(520\) 11.6816 + 6.88972i 0.512271 + 0.302134i
\(521\) 10.6559i 0.466844i −0.972376 0.233422i \(-0.925008\pi\)
0.972376 0.233422i \(-0.0749923\pi\)
\(522\) 2.10217 + 0.449277i 0.0920095 + 0.0196643i
\(523\) 35.5458i 1.55431i −0.629310 0.777155i \(-0.716662\pi\)
0.629310 0.777155i \(-0.283338\pi\)
\(524\) 29.8829 + 13.3845i 1.30544 + 0.584706i
\(525\) 0 0
\(526\) 3.75709 + 0.802968i 0.163817 + 0.0350111i
\(527\) 23.2140 1.01122
\(528\) 21.3115 + 23.8818i 0.927462 + 1.03932i
\(529\) 3.87415 0.168441
\(530\) −1.70997 + 15.2344i −0.0742762 + 0.661742i
\(531\) 3.34405 0.145119
\(532\) 0 0
\(533\) 10.1142i 0.438094i
\(534\) 36.9133 + 7.88914i 1.59740 + 0.341396i
\(535\) −29.3818 + 2.91173i −1.27029 + 0.125885i
\(536\) 22.0273 + 16.1164i 0.951432 + 0.696123i
\(537\) 17.8375 0.769745
\(538\) −2.05357 + 9.60866i −0.0885356 + 0.414259i
\(539\) 0 0
\(540\) 7.62190 22.8217i 0.327994 0.982091i
\(541\) −13.3429 −0.573658 −0.286829 0.957982i \(-0.592601\pi\)
−0.286829 + 0.957982i \(0.592601\pi\)
\(542\) 18.0210 + 3.85147i 0.774070 + 0.165435i
\(543\) 7.51810 0.322633
\(544\) −14.0703 24.6868i −0.603259 1.05844i
\(545\) −1.02723 + 0.101799i −0.0440019 + 0.00436057i
\(546\) 0 0
\(547\) −12.8153 −0.547944 −0.273972 0.961738i \(-0.588338\pi\)
−0.273972 + 0.961738i \(0.588338\pi\)
\(548\) −6.73301 + 15.0324i −0.287620 + 0.642153i
\(549\) 2.40608i 0.102689i
\(550\) 0.442400 34.0334i 0.0188640 1.45119i
\(551\) −8.76460 −0.373385
\(552\) −14.3934 + 19.6723i −0.612623 + 0.837309i
\(553\) 0 0
\(554\) −3.58078 + 16.7545i −0.152133 + 0.711831i
\(555\) 36.3289 3.60019i 1.54208 0.152819i
\(556\) −0.869841 0.389601i −0.0368895 0.0165228i
\(557\) 5.48928i 0.232588i −0.993215 0.116294i \(-0.962898\pi\)
0.993215 0.116294i \(-0.0371015\pi\)
\(558\) −1.51052 0.322828i −0.0639452 0.0136664i
\(559\) −0.303966 −0.0128564
\(560\) 0 0
\(561\) 40.1950 1.69704
\(562\) 5.39613 + 1.15326i 0.227622 + 0.0486474i
\(563\) 12.5073i 0.527122i −0.964643 0.263561i \(-0.915103\pi\)
0.964643 0.263561i \(-0.0848970\pi\)
\(564\) −7.76663 3.47867i −0.327034 0.146478i
\(565\) −1.97541 19.9336i −0.0831062 0.838612i
\(566\) −1.67575 + 7.84086i −0.0704371 + 0.329576i
\(567\) 0 0
\(568\) −16.0015 + 21.8702i −0.671407 + 0.917652i
\(569\) −11.9810 −0.502269 −0.251135 0.967952i \(-0.580804\pi\)
−0.251135 + 0.967952i \(0.580804\pi\)
\(570\) −0.799091 + 7.11927i −0.0334702 + 0.298193i
\(571\) 32.3944i 1.35566i −0.735218 0.677831i \(-0.762920\pi\)
0.735218 0.677831i \(-0.237080\pi\)
\(572\) 8.43838 18.8399i 0.352827 0.787736i
\(573\) 19.1028 0.798031
\(574\) 0 0
\(575\) 25.4160 5.08740i 1.05992 0.212159i
\(576\) 0.572233 + 1.80202i 0.0238430 + 0.0750841i
\(577\) −1.96815 −0.0819350 −0.0409675 0.999160i \(-0.513044\pi\)
−0.0409675 + 0.999160i \(0.513044\pi\)
\(578\) −11.3842 2.43304i −0.473521 0.101201i
\(579\) 11.7565 0.488582
\(580\) −27.2818 9.11145i −1.13282 0.378332i
\(581\) 0 0
\(582\) −0.865756 + 4.05088i −0.0358868 + 0.167914i
\(583\) 23.3347 0.966425
\(584\) 3.82402 + 2.79787i 0.158239 + 0.115777i
\(585\) −1.12768 + 0.111753i −0.0466240 + 0.00462043i
\(586\) 5.82308 + 1.24451i 0.240549 + 0.0514102i
\(587\) 42.2233i 1.74274i −0.490626 0.871370i \(-0.663232\pi\)
0.490626 0.871370i \(-0.336768\pi\)
\(588\) 0 0
\(589\) 6.29780 0.259496
\(590\) −44.4654 4.99095i −1.83061 0.205474i
\(591\) 16.0671 0.660910
\(592\) −29.3099 + 26.1553i −1.20463 + 1.07498i
\(593\) −23.5752 −0.968119 −0.484060 0.875035i \(-0.660838\pi\)
−0.484060 + 0.875035i \(0.660838\pi\)
\(594\) −35.8154 7.65448i −1.46952 0.314067i
\(595\) 0 0
\(596\) 26.3990 + 11.8241i 1.08135 + 0.484334i
\(597\) 15.6445i 0.640288i
\(598\) 15.3737 + 3.28566i 0.628676 + 0.134361i
\(599\) 29.4220i 1.20215i 0.799192 + 0.601076i \(0.205261\pi\)
−0.799192 + 0.601076i \(0.794739\pi\)
\(600\) −9.88836 + 21.3296i −0.403691 + 0.870778i
\(601\) 3.52146i 0.143643i 0.997417 + 0.0718216i \(0.0228812\pi\)
−0.997417 + 0.0718216i \(0.977119\pi\)
\(602\) 0 0
\(603\) −2.28059 −0.0928726
\(604\) −8.93705 + 19.9533i −0.363644 + 0.811887i
\(605\) −27.0789 + 2.68351i −1.10091 + 0.109100i
\(606\) 29.0112 + 6.20029i 1.17850 + 0.251869i
\(607\) 11.3158i 0.459293i 0.973274 + 0.229646i \(0.0737570\pi\)
−0.973274 + 0.229646i \(0.926243\pi\)
\(608\) −3.81718 6.69737i −0.154807 0.271614i
\(609\) 0 0
\(610\) 3.59104 31.9933i 0.145397 1.29537i
\(611\) 5.48852i 0.222042i
\(612\) 2.16687 + 0.970538i 0.0875904 + 0.0392317i
\(613\) 34.8323i 1.40686i −0.710764 0.703431i \(-0.751650\pi\)
0.710764 0.703431i \(-0.248350\pi\)
\(614\) 0.137320 0.642522i 0.00554179 0.0259301i
\(615\) 17.4479 1.72908i 0.703567 0.0697233i
\(616\) 0 0
\(617\) 41.1278i 1.65574i −0.560918 0.827871i \(-0.689552\pi\)
0.560918 0.827871i \(-0.310448\pi\)
\(618\) −13.1822 2.81731i −0.530267 0.113329i
\(619\) 21.8585 0.878566 0.439283 0.898349i \(-0.355232\pi\)
0.439283 + 0.898349i \(0.355232\pi\)
\(620\) 19.6033 + 6.54703i 0.787289 + 0.262935i
\(621\) 27.8910i 1.11923i
\(622\) 31.8141 + 6.79931i 1.27563 + 0.272628i
\(623\) 0 0
\(624\) −10.6391 + 9.49400i −0.425903 + 0.380064i
\(625\) 23.0739 9.62272i 0.922955 0.384909i
\(626\) −6.42904 1.37402i −0.256956 0.0549168i
\(627\) 10.9046 0.435489
\(628\) −24.5417 10.9922i −0.979321 0.438637i
\(629\) 49.3310i 1.96695i
\(630\) 0 0
\(631\) 9.37906i 0.373375i 0.982419 + 0.186687i \(0.0597751\pi\)
−0.982419 + 0.186687i \(0.940225\pi\)
\(632\) −19.8352 + 27.1099i −0.789002 + 1.07838i
\(633\) 27.1461 1.07896
\(634\) 4.03502 18.8799i 0.160251 0.749817i
\(635\) −32.2988 + 3.20080i −1.28174 + 0.127020i
\(636\) −14.7101 6.58865i −0.583294 0.261257i
\(637\) 0 0
\(638\) −9.15040 + 42.8148i −0.362268 + 1.69505i
\(639\) 2.26432i 0.0895752i
\(640\) −4.91942 24.8153i −0.194457 0.980911i
\(641\) 38.3291 1.51391 0.756954 0.653468i \(-0.226686\pi\)
0.756954 + 0.653468i \(0.226686\pi\)
\(642\) 6.48815 30.3581i 0.256067 1.19814i
\(643\) 19.7378i 0.778382i −0.921157 0.389191i \(-0.872755\pi\)
0.921157 0.389191i \(-0.127245\pi\)
\(644\) 0 0
\(645\) −0.0519648 0.524369i −0.00204611 0.0206470i
\(646\) −9.46675 2.02324i −0.372464 0.0796032i
\(647\) 5.26934i 0.207159i −0.994621 0.103580i \(-0.966970\pi\)
0.994621 0.103580i \(-0.0330297\pi\)
\(648\) 18.7982 + 13.7538i 0.738462 + 0.540302i
\(649\) 68.1080i 2.67347i
\(650\) 15.1615 + 0.197084i 0.594682 + 0.00773028i
\(651\) 0 0
\(652\) 29.9838 + 13.4297i 1.17426 + 0.525949i
\(653\) 17.6112i 0.689181i 0.938753 + 0.344591i \(0.111982\pi\)
−0.938753 + 0.344591i \(0.888018\pi\)
\(654\) 0.226836 1.06137i 0.00886998 0.0415027i
\(655\) 36.4298 3.61019i 1.42343 0.141062i
\(656\) −14.0768 + 12.5618i −0.549608 + 0.490455i
\(657\) −0.395918 −0.0154463
\(658\) 0 0
\(659\) 37.0188i 1.44205i −0.692910 0.721024i \(-0.743672\pi\)
0.692910 0.721024i \(-0.256328\pi\)
\(660\) 33.9432 + 11.3362i 1.32124 + 0.441260i
\(661\) 3.40357i 0.132384i −0.997807 0.0661918i \(-0.978915\pi\)
0.997807 0.0661918i \(-0.0210849\pi\)
\(662\) 0.0218415 0.102196i 0.000848892 0.00397197i
\(663\) 17.9064i 0.695428i
\(664\) −1.35463 + 1.85145i −0.0525697 + 0.0718502i
\(665\) 0 0
\(666\) 0.686026 3.20992i 0.0265830 0.124382i
\(667\) −33.3417 −1.29100
\(668\) 11.6771 26.0708i 0.451801 1.00871i
\(669\) −4.88105 −0.188712
\(670\) 30.3247 + 3.40375i 1.17155 + 0.131498i
\(671\) −49.0044 −1.89179
\(672\) 0 0
\(673\) 6.69535i 0.258087i −0.991639 0.129043i \(-0.958809\pi\)
0.991639 0.129043i \(-0.0411906\pi\)
\(674\) 6.13238 28.6934i 0.236210 1.10523i
\(675\) −5.27989 26.3776i −0.203223 1.01528i
\(676\) −15.3356 6.86881i −0.589831 0.264185i
\(677\) 7.74822 0.297788 0.148894 0.988853i \(-0.452429\pi\)
0.148894 + 0.988853i \(0.452429\pi\)
\(678\) 20.5959 + 4.40177i 0.790982 + 0.169049i
\(679\) 0 0
\(680\) −27.3641 16.1392i −1.04936 0.618909i
\(681\) 41.7335 1.59923
\(682\) 6.57502 30.7646i 0.251770 1.17804i
\(683\) −27.2025 −1.04087 −0.520437 0.853900i \(-0.674231\pi\)
−0.520437 + 0.853900i \(0.674231\pi\)
\(684\) 0.587856 + 0.263300i 0.0224772 + 0.0100675i
\(685\) 1.81608 + 18.3258i 0.0693890 + 0.700193i
\(686\) 0 0
\(687\) −27.8181 −1.06133
\(688\) 0.377524 + 0.423057i 0.0143930 + 0.0161289i
\(689\) 10.3953i 0.396031i
\(690\) −3.03985 + 27.0827i −0.115725 + 1.03102i
\(691\) −2.05498 −0.0781750 −0.0390875 0.999236i \(-0.512445\pi\)
−0.0390875 + 0.999236i \(0.512445\pi\)
\(692\) −31.4402 14.0821i −1.19518 0.535319i
\(693\) 0 0
\(694\) −30.8754 6.59870i −1.17201 0.250483i
\(695\) −1.06041 + 0.105087i −0.0402237 + 0.00398616i
\(696\) 17.8573 24.4067i 0.676880 0.925132i
\(697\) 23.6925i 0.897417i
\(698\) 0.104606 0.489452i 0.00395939 0.0185260i
\(699\) −14.6219 −0.553053
\(700\) 0 0
\(701\) −50.3726 −1.90255 −0.951274 0.308348i \(-0.900224\pi\)
−0.951274 + 0.308348i \(0.900224\pi\)
\(702\) 3.40998 15.9553i 0.128701 0.602196i
\(703\) 13.3832i 0.504755i
\(704\) −36.7016 + 11.6546i −1.38324 + 0.439250i
\(705\) −9.46819 + 0.938296i −0.356593 + 0.0353383i
\(706\) −47.1056 10.0674i −1.77284 0.378893i
\(707\) 0 0
\(708\) 19.2306 42.9351i 0.722730 1.61360i
\(709\) −19.9305 −0.748504 −0.374252 0.927327i \(-0.622100\pi\)
−0.374252 + 0.927327i \(0.622100\pi\)
\(710\) −3.37947 + 30.1084i −0.126829 + 1.12995i
\(711\) 2.80682i 0.105264i
\(712\) −26.8150 + 36.6496i −1.00493 + 1.37350i
\(713\) 23.9577 0.897222
\(714\) 0 0
\(715\) −2.27607 22.9675i −0.0851203 0.858935i
\(716\) −8.77203 + 19.5848i −0.327826 + 0.731920i
\(717\) −34.8179 −1.30030
\(718\) 4.45004 20.8218i 0.166074 0.777062i
\(719\) −10.3948 −0.387659 −0.193830 0.981035i \(-0.562091\pi\)
−0.193830 + 0.981035i \(0.562091\pi\)
\(720\) 1.55612 + 1.43070i 0.0579930 + 0.0533191i
\(721\) 0 0
\(722\) 23.7084 + 5.06697i 0.882335 + 0.188573i
\(723\) −25.2499 −0.939054
\(724\) −3.69721 + 8.25456i −0.137406 + 0.306778i
\(725\) −31.5326 + 6.31174i −1.17109 + 0.234412i
\(726\) 5.97961 27.9787i 0.221924 1.03839i
\(727\) 3.78185i 0.140261i −0.997538 0.0701306i \(-0.977658\pi\)
0.997538 0.0701306i \(-0.0223416\pi\)
\(728\) 0 0
\(729\) −28.7787 −1.06588
\(730\) 5.26449 + 0.590904i 0.194847 + 0.0218703i
\(731\) 0.712040 0.0263357
\(732\) 30.8922 + 13.8366i 1.14181 + 0.511415i
\(733\) −21.4770 −0.793272 −0.396636 0.917976i \(-0.629823\pi\)
−0.396636 + 0.917976i \(0.629823\pi\)
\(734\) 4.84809 22.6843i 0.178946 0.837292i
\(735\) 0 0
\(736\) −14.5211 25.4777i −0.535253 0.939120i
\(737\) 46.4486i 1.71096i
\(738\) 0.329482 1.54165i 0.0121284 0.0567489i
\(739\) 16.8457i 0.619678i 0.950789 + 0.309839i \(0.100275\pi\)
−0.950789 + 0.309839i \(0.899725\pi\)
\(740\) −13.9128 + 41.6581i −0.511444 + 1.53138i
\(741\) 4.85789i 0.178459i
\(742\) 0 0
\(743\) −13.0015 −0.476979 −0.238490 0.971145i \(-0.576652\pi\)
−0.238490 + 0.971145i \(0.576652\pi\)
\(744\) −12.8314 + 17.5374i −0.470421 + 0.642952i
\(745\) 32.1827 3.18930i 1.17908 0.116847i
\(746\) 9.20075 43.0504i 0.336864 1.57619i
\(747\) 0.191689i 0.00701355i
\(748\) −19.7669 + 44.1325i −0.722749 + 1.61364i
\(749\) 0 0
\(750\) 2.25196 + 26.1886i 0.0822300 + 0.956274i
\(751\) 15.6430i 0.570822i −0.958405 0.285411i \(-0.907870\pi\)
0.958405 0.285411i \(-0.0921301\pi\)
\(752\) 7.63886 6.81671i 0.278561 0.248580i
\(753\) 46.3732i 1.68993i
\(754\) −19.0735 4.07640i −0.694616 0.148454i
\(755\) 2.41058 + 24.3248i 0.0877299 + 0.885269i
\(756\) 0 0
\(757\) 22.2226i 0.807695i 0.914826 + 0.403848i \(0.132327\pi\)
−0.914826 + 0.403848i \(0.867673\pi\)
\(758\) 9.10384 42.5970i 0.330666 1.54719i
\(759\) 41.4827 1.50573
\(760\) −7.42369 4.37845i −0.269286 0.158823i
\(761\) 15.2848i 0.554074i −0.960859 0.277037i \(-0.910648\pi\)
0.960859 0.277037i \(-0.0893524\pi\)
\(762\) 7.13228 33.3720i 0.258375 1.20894i
\(763\) 0 0
\(764\) −9.39428 + 20.9741i −0.339873 + 0.758816i
\(765\) 2.64160 0.261782i 0.0955072 0.00946474i
\(766\) −6.44288 + 30.1463i −0.232791 + 1.08923i
\(767\) −30.3413 −1.09556
\(768\) 26.4273 + 3.01582i 0.953613 + 0.108824i
\(769\) 20.4048i 0.735816i −0.929862 0.367908i \(-0.880074\pi\)
0.929862 0.367908i \(-0.119926\pi\)
\(770\) 0 0
\(771\) 3.27490i 0.117943i
\(772\) −5.78153 + 12.9081i −0.208082 + 0.464573i
\(773\) −16.8420 −0.605765 −0.302882 0.953028i \(-0.597949\pi\)
−0.302882 + 0.953028i \(0.597949\pi\)
\(774\) −0.0463318 0.00990205i −0.00166536 0.000355922i
\(775\) 22.6578 4.53530i 0.813891 0.162913i
\(776\) −4.02194 2.94269i −0.144379 0.105636i
\(777\) 0 0
\(778\) −16.6048 3.54878i −0.595310 0.127230i
\(779\) 6.42761i 0.230293i
\(780\) −5.05014 + 15.1213i −0.180824 +