Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [980,2,Mod(979,980)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(980, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("980.979");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 980.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.82533939809\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
979.1 | −1.38298 | − | 0.295571i | − | 1.66243i | 1.82528 | + | 0.817539i | 2.22517 | − | 0.220514i | −0.491366 | + | 2.29911i | 0 | −2.28268 | − | 1.67014i | 0.236337 | −3.14254 | − | 0.352730i | |||||
979.2 | −1.38298 | − | 0.295571i | 1.66243i | 1.82528 | + | 0.817539i | −2.22517 | + | 0.220514i | 0.491366 | − | 2.29911i | 0 | −2.28268 | − | 1.67014i | 0.236337 | 3.14254 | + | 0.352730i | ||||||
979.3 | −1.38298 | + | 0.295571i | − | 1.66243i | 1.82528 | − | 0.817539i | −2.22517 | − | 0.220514i | 0.491366 | + | 2.29911i | 0 | −2.28268 | + | 1.67014i | 0.236337 | 3.14254 | − | 0.352730i | |||||
979.4 | −1.38298 | + | 0.295571i | 1.66243i | 1.82528 | − | 0.817539i | 2.22517 | + | 0.220514i | −0.491366 | − | 2.29911i | 0 | −2.28268 | + | 1.67014i | 0.236337 | −3.14254 | + | 0.352730i | ||||||
979.5 | −1.36075 | − | 0.385185i | − | 0.423388i | 1.70326 | + | 1.04828i | 1.74517 | − | 1.39799i | −0.163083 | + | 0.576124i | 0 | −1.91393 | − | 2.08252i | 2.82074 | −2.91323 | + | 1.23009i | |||||
979.6 | −1.36075 | − | 0.385185i | 0.423388i | 1.70326 | + | 1.04828i | −1.74517 | + | 1.39799i | 0.163083 | − | 0.576124i | 0 | −1.91393 | − | 2.08252i | 2.82074 | 2.91323 | − | 1.23009i | ||||||
979.7 | −1.36075 | + | 0.385185i | − | 0.423388i | 1.70326 | − | 1.04828i | −1.74517 | − | 1.39799i | 0.163083 | + | 0.576124i | 0 | −1.91393 | + | 2.08252i | 2.82074 | 2.91323 | + | 1.23009i | |||||
979.8 | −1.36075 | + | 0.385185i | 0.423388i | 1.70326 | − | 1.04828i | 1.74517 | + | 1.39799i | −0.163083 | − | 0.576124i | 0 | −1.91393 | + | 2.08252i | 2.82074 | −2.91323 | − | 1.23009i | ||||||
979.9 | −1.23364 | − | 0.691471i | − | 2.08008i | 1.04374 | + | 1.70605i | 1.52262 | + | 1.63757i | −1.43832 | + | 2.56607i | 0 | −0.107908 | − | 2.82637i | −1.32674 | −0.746026 | − | 3.07302i | |||||
979.10 | −1.23364 | − | 0.691471i | 2.08008i | 1.04374 | + | 1.70605i | −1.52262 | − | 1.63757i | 1.43832 | − | 2.56607i | 0 | −0.107908 | − | 2.82637i | −1.32674 | 0.746026 | + | 3.07302i | ||||||
979.11 | −1.23364 | + | 0.691471i | − | 2.08008i | 1.04374 | − | 1.70605i | −1.52262 | + | 1.63757i | 1.43832 | + | 2.56607i | 0 | −0.107908 | + | 2.82637i | −1.32674 | 0.746026 | − | 3.07302i | |||||
979.12 | −1.23364 | + | 0.691471i | 2.08008i | 1.04374 | − | 1.70605i | 1.52262 | − | 1.63757i | −1.43832 | − | 2.56607i | 0 | −0.107908 | + | 2.82637i | −1.32674 | −0.746026 | + | 3.07302i | ||||||
979.13 | −1.14730 | − | 0.826865i | − | 1.52335i | 0.632590 | + | 1.89732i | 0.0967363 | − | 2.23397i | −1.25961 | + | 1.74774i | 0 | 0.843059 | − | 2.69986i | 0.679393 | −1.95818 | + | 2.48305i | |||||
979.14 | −1.14730 | − | 0.826865i | 1.52335i | 0.632590 | + | 1.89732i | −0.0967363 | + | 2.23397i | 1.25961 | − | 1.74774i | 0 | 0.843059 | − | 2.69986i | 0.679393 | 1.95818 | − | 2.48305i | ||||||
979.15 | −1.14730 | + | 0.826865i | − | 1.52335i | 0.632590 | − | 1.89732i | −0.0967363 | − | 2.23397i | 1.25961 | + | 1.74774i | 0 | 0.843059 | + | 2.69986i | 0.679393 | 1.95818 | + | 2.48305i | |||||
979.16 | −1.14730 | + | 0.826865i | 1.52335i | 0.632590 | − | 1.89732i | 0.0967363 | + | 2.23397i | −1.25961 | − | 1.74774i | 0 | 0.843059 | + | 2.69986i | 0.679393 | −1.95818 | − | 2.48305i | ||||||
979.17 | −0.576258 | − | 1.29148i | − | 2.50150i | −1.33585 | + | 1.48845i | −0.639901 | + | 2.14255i | −3.23064 | + | 1.44151i | 0 | 2.69211 | + | 0.867500i | −3.25749 | 3.13582 | − | 0.408241i | |||||
979.18 | −0.576258 | − | 1.29148i | 2.50150i | −1.33585 | + | 1.48845i | 0.639901 | − | 2.14255i | 3.23064 | − | 1.44151i | 0 | 2.69211 | + | 0.867500i | −3.25749 | −3.13582 | + | 0.408241i | ||||||
979.19 | −0.576258 | + | 1.29148i | − | 2.50150i | −1.33585 | − | 1.48845i | 0.639901 | + | 2.14255i | 3.23064 | + | 1.44151i | 0 | 2.69211 | − | 0.867500i | −3.25749 | −3.13582 | − | 0.408241i | |||||
979.20 | −0.576258 | + | 1.29148i | 2.50150i | −1.33585 | − | 1.48845i | −0.639901 | − | 2.14255i | −3.23064 | − | 1.44151i | 0 | 2.69211 | − | 0.867500i | −3.25749 | 3.13582 | + | 0.408241i | ||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
20.d | odd | 2 | 1 | inner |
28.d | even | 2 | 1 | inner |
35.c | odd | 2 | 1 | inner |
140.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 980.2.c.e | ✓ | 48 |
4.b | odd | 2 | 1 | inner | 980.2.c.e | ✓ | 48 |
5.b | even | 2 | 1 | inner | 980.2.c.e | ✓ | 48 |
7.b | odd | 2 | 1 | inner | 980.2.c.e | ✓ | 48 |
7.c | even | 3 | 2 | 980.2.s.g | 96 | ||
7.d | odd | 6 | 2 | 980.2.s.g | 96 | ||
20.d | odd | 2 | 1 | inner | 980.2.c.e | ✓ | 48 |
28.d | even | 2 | 1 | inner | 980.2.c.e | ✓ | 48 |
28.f | even | 6 | 2 | 980.2.s.g | 96 | ||
28.g | odd | 6 | 2 | 980.2.s.g | 96 | ||
35.c | odd | 2 | 1 | inner | 980.2.c.e | ✓ | 48 |
35.i | odd | 6 | 2 | 980.2.s.g | 96 | ||
35.j | even | 6 | 2 | 980.2.s.g | 96 | ||
140.c | even | 2 | 1 | inner | 980.2.c.e | ✓ | 48 |
140.p | odd | 6 | 2 | 980.2.s.g | 96 | ||
140.s | even | 6 | 2 | 980.2.s.g | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
980.2.c.e | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
980.2.c.e | ✓ | 48 | 4.b | odd | 2 | 1 | inner |
980.2.c.e | ✓ | 48 | 5.b | even | 2 | 1 | inner |
980.2.c.e | ✓ | 48 | 7.b | odd | 2 | 1 | inner |
980.2.c.e | ✓ | 48 | 20.d | odd | 2 | 1 | inner |
980.2.c.e | ✓ | 48 | 28.d | even | 2 | 1 | inner |
980.2.c.e | ✓ | 48 | 35.c | odd | 2 | 1 | inner |
980.2.c.e | ✓ | 48 | 140.c | even | 2 | 1 | inner |
980.2.s.g | 96 | 7.c | even | 3 | 2 | ||
980.2.s.g | 96 | 7.d | odd | 6 | 2 | ||
980.2.s.g | 96 | 28.f | even | 6 | 2 | ||
980.2.s.g | 96 | 28.g | odd | 6 | 2 | ||
980.2.s.g | 96 | 35.i | odd | 6 | 2 | ||
980.2.s.g | 96 | 35.j | even | 6 | 2 | ||
980.2.s.g | 96 | 140.p | odd | 6 | 2 | ||
980.2.s.g | 96 | 140.s | even | 6 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} + 26T_{3}^{10} + 251T_{3}^{8} + 1136T_{3}^{6} + 2456T_{3}^{4} + 2168T_{3}^{2} + 316 \) acting on \(S_{2}^{\mathrm{new}}(980, [\chi])\).