Properties

Label 980.2.c.d.979.5
Level $980$
Weight $2$
Character 980.979
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(979,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.979"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 979.5
Character \(\chi\) \(=\) 980.979
Dual form 980.2.c.d.979.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.940044 - 1.05656i) q^{2} -2.59619i q^{3} +(-0.232633 + 1.98642i) q^{4} +(1.75874 - 1.38089i) q^{5} +(-2.74302 + 2.44053i) q^{6} +(2.31746 - 1.62154i) q^{8} -3.74018 q^{9} +(-3.11228 - 0.560116i) q^{10} -3.60275i q^{11} +(5.15713 + 0.603960i) q^{12} +0.818282 q^{13} +(-3.58504 - 4.56601i) q^{15} +(-3.89176 - 0.924218i) q^{16} +7.39628 q^{17} +(3.51594 + 3.95172i) q^{18} -3.30658 q^{19} +(2.33388 + 3.81484i) q^{20} +(-3.80652 + 3.38675i) q^{22} -2.53515 q^{23} +(-4.20981 - 6.01656i) q^{24} +(1.18631 - 4.85723i) q^{25} +(-0.769222 - 0.864563i) q^{26} +1.92166i q^{27} -2.04334 q^{29} +(-1.45417 + 8.08005i) q^{30} -1.91145 q^{31} +(2.68194 + 4.98068i) q^{32} -9.35342 q^{33} +(-6.95283 - 7.81461i) q^{34} +(0.870092 - 7.42959i) q^{36} -7.16720i q^{37} +(3.10833 + 3.49360i) q^{38} -2.12441i q^{39} +(1.83665 - 6.05200i) q^{40} +2.65824i q^{41} -2.39696 q^{43} +(7.15660 + 0.838121i) q^{44} +(-6.57800 + 5.16476i) q^{45} +(2.38315 + 2.67854i) q^{46} -1.33475i q^{47} +(-2.39944 + 10.1037i) q^{48} +(-6.24713 + 3.31260i) q^{50} -19.2021i q^{51} +(-0.190360 + 1.62546i) q^{52} -1.81101i q^{53} +(2.03034 - 1.80644i) q^{54} +(-4.97499 - 6.33630i) q^{55} +8.58450i q^{57} +(1.92083 + 2.15891i) q^{58} +1.91145 q^{59} +(9.90403 - 6.05920i) q^{60} +9.77598i q^{61} +(1.79685 + 2.01956i) q^{62} +(2.74124 - 7.51569i) q^{64} +(1.43914 - 1.12995i) q^{65} +(8.79263 + 9.88244i) q^{66} +9.26225 q^{67} +(-1.72062 + 14.6922i) q^{68} +6.58172i q^{69} +1.38422i q^{71} +(-8.66773 + 6.06484i) q^{72} -7.39628 q^{73} +(-7.57256 + 6.73748i) q^{74} +(-12.6103 - 3.07989i) q^{75} +(0.769222 - 6.56827i) q^{76} +(-2.24457 + 1.99704i) q^{78} +7.74780i q^{79} +(-8.12083 + 3.74862i) q^{80} -6.23157 q^{81} +(2.80858 - 2.49886i) q^{82} +10.4973i q^{83} +(13.0081 - 10.2134i) q^{85} +(2.25325 + 2.53253i) q^{86} +5.30490i q^{87} +(-5.84199 - 8.34924i) q^{88} +10.6132i q^{89} +(11.6405 + 2.09494i) q^{90} +(0.589761 - 5.03589i) q^{92} +4.96249i q^{93} +(-1.41024 + 1.25473i) q^{94} +(-5.81541 + 4.56601i) q^{95} +(12.9308 - 6.96281i) q^{96} +7.32005 q^{97} +13.4750i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 12 q^{4} - 8 q^{9} - 36 q^{16} + 52 q^{25} + 52 q^{30} - 28 q^{36} + 52 q^{44} + 44 q^{46} + 36 q^{50} - 8 q^{60} + 36 q^{64} + 8 q^{65} - 28 q^{74} - 144 q^{81} + 20 q^{85} - 16 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.940044 1.05656i −0.664712 0.747100i
\(3\) 2.59619i 1.49891i −0.662056 0.749454i \(-0.730316\pi\)
0.662056 0.749454i \(-0.269684\pi\)
\(4\) −0.232633 + 1.98642i −0.116317 + 0.993212i
\(5\) 1.75874 1.38089i 0.786531 0.617551i
\(6\) −2.74302 + 2.44053i −1.11983 + 0.996342i
\(7\) 0 0
\(8\) 2.31746 1.62154i 0.819346 0.573300i
\(9\) −3.74018 −1.24673
\(10\) −3.11228 0.560116i −0.984188 0.177124i
\(11\) 3.60275i 1.08627i −0.839645 0.543136i \(-0.817237\pi\)
0.839645 0.543136i \(-0.182763\pi\)
\(12\) 5.15713 + 0.603960i 1.48873 + 0.174348i
\(13\) 0.818282 0.226951 0.113475 0.993541i \(-0.463802\pi\)
0.113475 + 0.993541i \(0.463802\pi\)
\(14\) 0 0
\(15\) −3.58504 4.56601i −0.925652 1.17894i
\(16\) −3.89176 0.924218i −0.972941 0.231054i
\(17\) 7.39628 1.79386 0.896931 0.442170i \(-0.145791\pi\)
0.896931 + 0.442170i \(0.145791\pi\)
\(18\) 3.51594 + 3.95172i 0.828715 + 0.931431i
\(19\) −3.30658 −0.758582 −0.379291 0.925277i \(-0.623832\pi\)
−0.379291 + 0.925277i \(0.623832\pi\)
\(20\) 2.33388 + 3.81484i 0.521872 + 0.853024i
\(21\) 0 0
\(22\) −3.80652 + 3.38675i −0.811553 + 0.722057i
\(23\) −2.53515 −0.528615 −0.264308 0.964438i \(-0.585143\pi\)
−0.264308 + 0.964438i \(0.585143\pi\)
\(24\) −4.20981 6.01656i −0.859324 1.22812i
\(25\) 1.18631 4.85723i 0.237262 0.971446i
\(26\) −0.769222 0.864563i −0.150857 0.169555i
\(27\) 1.92166i 0.369823i
\(28\) 0 0
\(29\) −2.04334 −0.379439 −0.189720 0.981838i \(-0.560758\pi\)
−0.189720 + 0.981838i \(0.560758\pi\)
\(30\) −1.45417 + 8.08005i −0.265493 + 1.47521i
\(31\) −1.91145 −0.343307 −0.171654 0.985157i \(-0.554911\pi\)
−0.171654 + 0.985157i \(0.554911\pi\)
\(32\) 2.68194 + 4.98068i 0.474104 + 0.880469i
\(33\) −9.35342 −1.62822
\(34\) −6.95283 7.81461i −1.19240 1.34019i
\(35\) 0 0
\(36\) 0.870092 7.42959i 0.145015 1.23827i
\(37\) 7.16720i 1.17828i −0.808031 0.589140i \(-0.799467\pi\)
0.808031 0.589140i \(-0.200533\pi\)
\(38\) 3.10833 + 3.49360i 0.504238 + 0.566736i
\(39\) 2.12441i 0.340178i
\(40\) 1.83665 6.05200i 0.290400 0.956905i
\(41\) 2.65824i 0.415147i 0.978219 + 0.207573i \(0.0665566\pi\)
−0.978219 + 0.207573i \(0.933443\pi\)
\(42\) 0 0
\(43\) −2.39696 −0.365533 −0.182766 0.983156i \(-0.558505\pi\)
−0.182766 + 0.983156i \(0.558505\pi\)
\(44\) 7.15660 + 0.838121i 1.07890 + 0.126352i
\(45\) −6.57800 + 5.16476i −0.980590 + 0.769918i
\(46\) 2.38315 + 2.67854i 0.351377 + 0.394929i
\(47\) 1.33475i 0.194694i −0.995251 0.0973468i \(-0.968964\pi\)
0.995251 0.0973468i \(-0.0310356\pi\)
\(48\) −2.39944 + 10.1037i −0.346330 + 1.45835i
\(49\) 0 0
\(50\) −6.24713 + 3.31260i −0.883478 + 0.468472i
\(51\) 19.2021i 2.68884i
\(52\) −0.190360 + 1.62546i −0.0263982 + 0.225410i
\(53\) 1.81101i 0.248761i −0.992235 0.124380i \(-0.960306\pi\)
0.992235 0.124380i \(-0.0396943\pi\)
\(54\) 2.03034 1.80644i 0.276295 0.245826i
\(55\) −4.97499 6.33630i −0.670827 0.854386i
\(56\) 0 0
\(57\) 8.58450i 1.13705i
\(58\) 1.92083 + 2.15891i 0.252218 + 0.283479i
\(59\) 1.91145 0.248850 0.124425 0.992229i \(-0.460291\pi\)
0.124425 + 0.992229i \(0.460291\pi\)
\(60\) 9.90403 6.05920i 1.27860 0.782239i
\(61\) 9.77598i 1.25169i 0.779949 + 0.625843i \(0.215245\pi\)
−0.779949 + 0.625843i \(0.784755\pi\)
\(62\) 1.79685 + 2.01956i 0.228200 + 0.256485i
\(63\) 0 0
\(64\) 2.74124 7.51569i 0.342655 0.939461i
\(65\) 1.43914 1.12995i 0.178504 0.140154i
\(66\) 8.79263 + 9.88244i 1.08230 + 1.21644i
\(67\) 9.26225 1.13156 0.565782 0.824555i \(-0.308574\pi\)
0.565782 + 0.824555i \(0.308574\pi\)
\(68\) −1.72062 + 14.6922i −0.208656 + 1.78169i
\(69\) 6.58172i 0.792346i
\(70\) 0 0
\(71\) 1.38422i 0.164277i 0.996621 + 0.0821385i \(0.0261750\pi\)
−0.996621 + 0.0821385i \(0.973825\pi\)
\(72\) −8.66773 + 6.06484i −1.02150 + 0.714749i
\(73\) −7.39628 −0.865669 −0.432835 0.901473i \(-0.642487\pi\)
−0.432835 + 0.901473i \(0.642487\pi\)
\(74\) −7.57256 + 6.73748i −0.880293 + 0.783216i
\(75\) −12.6103 3.07989i −1.45611 0.355635i
\(76\) 0.769222 6.56827i 0.0882358 0.753433i
\(77\) 0 0
\(78\) −2.24457 + 1.99704i −0.254147 + 0.226121i
\(79\) 7.74780i 0.871695i 0.900021 + 0.435848i \(0.143551\pi\)
−0.900021 + 0.435848i \(0.856449\pi\)
\(80\) −8.12083 + 3.74862i −0.907936 + 0.419109i
\(81\) −6.23157 −0.692397
\(82\) 2.80858 2.49886i 0.310156 0.275953i
\(83\) 10.4973i 1.15223i 0.817370 + 0.576113i \(0.195431\pi\)
−0.817370 + 0.576113i \(0.804569\pi\)
\(84\) 0 0
\(85\) 13.0081 10.2134i 1.41093 1.10780i
\(86\) 2.25325 + 2.53253i 0.242974 + 0.273089i
\(87\) 5.30490i 0.568745i
\(88\) −5.84199 8.34924i −0.622759 0.890032i
\(89\) 10.6132i 1.12500i 0.826797 + 0.562500i \(0.190160\pi\)
−0.826797 + 0.562500i \(0.809840\pi\)
\(90\) 11.6405 + 2.09494i 1.22702 + 0.220826i
\(91\) 0 0
\(92\) 0.589761 5.03589i 0.0614868 0.525027i
\(93\) 4.96249i 0.514586i
\(94\) −1.41024 + 1.25473i −0.145456 + 0.129415i
\(95\) −5.81541 + 4.56601i −0.596648 + 0.468463i
\(96\) 12.9308 6.96281i 1.31974 0.710639i
\(97\) 7.32005 0.743239 0.371619 0.928385i \(-0.378803\pi\)
0.371619 + 0.928385i \(0.378803\pi\)
\(98\) 0 0
\(99\) 13.4750i 1.35428i
\(100\) 9.37254 + 3.48647i 0.937254 + 0.348647i
\(101\) 6.35787i 0.632632i −0.948654 0.316316i \(-0.897554\pi\)
0.948654 0.316316i \(-0.102446\pi\)
\(102\) −20.2882 + 18.0509i −2.00883 + 1.78730i
\(103\) 1.02208i 0.100708i −0.998731 0.0503541i \(-0.983965\pi\)
0.998731 0.0503541i \(-0.0160350\pi\)
\(104\) 1.89634 1.32687i 0.185951 0.130111i
\(105\) 0 0
\(106\) −1.91343 + 1.70243i −0.185849 + 0.165354i
\(107\) 7.25156 0.701035 0.350517 0.936556i \(-0.386006\pi\)
0.350517 + 0.936556i \(0.386006\pi\)
\(108\) −3.81722 0.447042i −0.367313 0.0430166i
\(109\) −7.97176 −0.763556 −0.381778 0.924254i \(-0.624688\pi\)
−0.381778 + 0.924254i \(0.624688\pi\)
\(110\) −2.01796 + 11.2128i −0.192405 + 1.06910i
\(111\) −18.6074 −1.76613
\(112\) 0 0
\(113\) 7.61610i 0.716462i 0.933633 + 0.358231i \(0.116620\pi\)
−0.933633 + 0.358231i \(0.883380\pi\)
\(114\) 9.07003 8.06981i 0.849486 0.755807i
\(115\) −4.45866 + 3.50075i −0.415773 + 0.326447i
\(116\) 0.475350 4.05895i 0.0441351 0.376864i
\(117\) −3.06053 −0.282946
\(118\) −1.79685 2.01956i −0.165414 0.185916i
\(119\) 0 0
\(120\) −15.7121 4.76828i −1.43431 0.435283i
\(121\) −1.97983 −0.179985
\(122\) 10.3289 9.18986i 0.935135 0.832010i
\(123\) 6.90128 0.622267
\(124\) 0.444668 3.79696i 0.0399324 0.340977i
\(125\) −4.62086 10.1807i −0.413303 0.910594i
\(126\) 0 0
\(127\) −8.78136 −0.779220 −0.389610 0.920980i \(-0.627390\pi\)
−0.389610 + 0.920980i \(0.627390\pi\)
\(128\) −10.5177 + 4.16880i −0.929638 + 0.368473i
\(129\) 6.22295i 0.547900i
\(130\) −2.54672 0.458333i −0.223362 0.0401985i
\(131\) 13.3893 1.16983 0.584916 0.811094i \(-0.301127\pi\)
0.584916 + 0.811094i \(0.301127\pi\)
\(132\) 2.17592 18.5799i 0.189389 1.61717i
\(133\) 0 0
\(134\) −8.70692 9.78611i −0.752164 0.845391i
\(135\) 2.65359 + 3.37969i 0.228384 + 0.290877i
\(136\) 17.1406 11.9933i 1.46979 1.02842i
\(137\) 5.22416i 0.446330i −0.974781 0.223165i \(-0.928361\pi\)
0.974781 0.223165i \(-0.0716389\pi\)
\(138\) 6.95398 6.18711i 0.591962 0.526682i
\(139\) 21.9442 1.86128 0.930641 0.365933i \(-0.119250\pi\)
0.930641 + 0.365933i \(0.119250\pi\)
\(140\) 0 0
\(141\) −3.46527 −0.291828
\(142\) 1.46251 1.30123i 0.122731 0.109197i
\(143\) 2.94807i 0.246530i
\(144\) 14.5559 + 3.45674i 1.21299 + 0.288062i
\(145\) −3.59370 + 2.82162i −0.298441 + 0.234323i
\(146\) 6.95283 + 7.81461i 0.575421 + 0.646742i
\(147\) 0 0
\(148\) 14.2371 + 1.66733i 1.17028 + 0.137054i
\(149\) −23.9497 −1.96204 −0.981019 0.193914i \(-0.937882\pi\)
−0.981019 + 0.193914i \(0.937882\pi\)
\(150\) 8.60013 + 16.2187i 0.702198 + 1.32425i
\(151\) 7.00761i 0.570271i 0.958487 + 0.285135i \(0.0920386\pi\)
−0.958487 + 0.285135i \(0.907961\pi\)
\(152\) −7.66287 + 5.36174i −0.621541 + 0.434895i
\(153\) −27.6635 −2.23646
\(154\) 0 0
\(155\) −3.36174 + 2.63950i −0.270022 + 0.212010i
\(156\) 4.21999 + 0.494210i 0.337869 + 0.0395684i
\(157\) 6.42554 0.512814 0.256407 0.966569i \(-0.417461\pi\)
0.256407 + 0.966569i \(0.417461\pi\)
\(158\) 8.18600 7.28327i 0.651243 0.579426i
\(159\) −4.70171 −0.372870
\(160\) 11.5946 + 5.05626i 0.916632 + 0.399733i
\(161\) 0 0
\(162\) 5.85796 + 6.58403i 0.460245 + 0.517290i
\(163\) 18.4790 1.44739 0.723693 0.690122i \(-0.242443\pi\)
0.723693 + 0.690122i \(0.242443\pi\)
\(164\) −5.28038 0.618395i −0.412329 0.0482885i
\(165\) −16.4502 + 12.9160i −1.28065 + 1.00551i
\(166\) 11.0910 9.86790i 0.860827 0.765898i
\(167\) 1.82894i 0.141527i 0.997493 + 0.0707637i \(0.0225436\pi\)
−0.997493 + 0.0707637i \(0.977456\pi\)
\(168\) 0 0
\(169\) −12.3304 −0.948493
\(170\) −23.0193 4.14278i −1.76550 0.317736i
\(171\) 12.3672 0.945745
\(172\) 0.557613 4.76137i 0.0425176 0.363051i
\(173\) 15.2495 1.15940 0.579700 0.814830i \(-0.303170\pi\)
0.579700 + 0.814830i \(0.303170\pi\)
\(174\) 5.60494 4.98684i 0.424909 0.378051i
\(175\) 0 0
\(176\) −3.32973 + 14.0211i −0.250988 + 1.05688i
\(177\) 4.96249i 0.373004i
\(178\) 11.2135 9.97691i 0.840488 0.747801i
\(179\) 12.5369i 0.937050i −0.883450 0.468525i \(-0.844786\pi\)
0.883450 0.468525i \(-0.155214\pi\)
\(180\) −8.72915 14.2682i −0.650633 1.06349i
\(181\) 8.01839i 0.596002i −0.954566 0.298001i \(-0.903680\pi\)
0.954566 0.298001i \(-0.0963199\pi\)
\(182\) 0 0
\(183\) 25.3803 1.87616
\(184\) −5.87511 + 4.11084i −0.433119 + 0.303055i
\(185\) −9.89707 12.6052i −0.727647 0.926754i
\(186\) 5.24316 4.66496i 0.384447 0.342051i
\(187\) 26.6470i 1.94862i
\(188\) 2.65139 + 0.310508i 0.193372 + 0.0226461i
\(189\) 0 0
\(190\) 10.2910 + 1.85207i 0.746587 + 0.134363i
\(191\) 6.75938i 0.489091i −0.969638 0.244546i \(-0.921361\pi\)
0.969638 0.244546i \(-0.0786388\pi\)
\(192\) −19.5121 7.11678i −1.40817 0.513609i
\(193\) 2.36003i 0.169878i 0.996386 + 0.0849392i \(0.0270696\pi\)
−0.996386 + 0.0849392i \(0.972930\pi\)
\(194\) −6.88118 7.73407i −0.494040 0.555274i
\(195\) −2.93357 3.73628i −0.210077 0.267561i
\(196\) 0 0
\(197\) 20.3205i 1.44777i −0.689918 0.723887i \(-0.742353\pi\)
0.689918 0.723887i \(-0.257647\pi\)
\(198\) 14.2371 12.6671i 1.01179 0.900209i
\(199\) −11.4582 −0.812249 −0.406125 0.913818i \(-0.633120\pi\)
−0.406125 + 0.913818i \(0.633120\pi\)
\(200\) −5.12694 13.1801i −0.362529 0.931972i
\(201\) 24.0465i 1.69611i
\(202\) −6.71746 + 5.97668i −0.472639 + 0.420518i
\(203\) 0 0
\(204\) 38.1436 + 4.46706i 2.67058 + 0.312757i
\(205\) 3.67072 + 4.67514i 0.256374 + 0.326526i
\(206\) −1.07988 + 0.960796i −0.0752390 + 0.0669419i
\(207\) 9.48193 0.659040
\(208\) −3.18456 0.756271i −0.220810 0.0524380i
\(209\) 11.9128i 0.824026i
\(210\) 0 0
\(211\) 22.0647i 1.51900i −0.650510 0.759498i \(-0.725445\pi\)
0.650510 0.759498i \(-0.274555\pi\)
\(212\) 3.59743 + 0.421301i 0.247072 + 0.0289350i
\(213\) 3.59370 0.246236
\(214\) −6.81679 7.66170i −0.465986 0.523743i
\(215\) −4.21562 + 3.30992i −0.287503 + 0.225735i
\(216\) 3.11603 + 4.45336i 0.212019 + 0.303013i
\(217\) 0 0
\(218\) 7.49381 + 8.42263i 0.507545 + 0.570453i
\(219\) 19.2021i 1.29756i
\(220\) 13.7439 8.40840i 0.926615 0.566895i
\(221\) 6.05225 0.407118
\(222\) 17.4918 + 19.6598i 1.17397 + 1.31948i
\(223\) 23.5776i 1.57887i −0.613833 0.789436i \(-0.710373\pi\)
0.613833 0.789436i \(-0.289627\pi\)
\(224\) 0 0
\(225\) −4.43703 + 18.1669i −0.295802 + 1.21113i
\(226\) 8.04686 7.15947i 0.535269 0.476241i
\(227\) 20.9267i 1.38896i 0.719514 + 0.694478i \(0.244364\pi\)
−0.719514 + 0.694478i \(0.755636\pi\)
\(228\) −17.0525 1.99704i −1.12933 0.132257i
\(229\) 5.18155i 0.342406i −0.985236 0.171203i \(-0.945235\pi\)
0.985236 0.171203i \(-0.0547655\pi\)
\(230\) 7.89009 + 1.41998i 0.520257 + 0.0936306i
\(231\) 0 0
\(232\) −4.73536 + 3.31335i −0.310892 + 0.217532i
\(233\) 20.7694i 1.36065i −0.732912 0.680324i \(-0.761839\pi\)
0.732912 0.680324i \(-0.238161\pi\)
\(234\) 2.87703 + 3.23363i 0.188077 + 0.211389i
\(235\) −1.84314 2.34748i −0.120233 0.153133i
\(236\) −0.444668 + 3.79696i −0.0289454 + 0.247161i
\(237\) 20.1147 1.30659
\(238\) 0 0
\(239\) 21.1286i 1.36670i 0.730092 + 0.683349i \(0.239477\pi\)
−0.730092 + 0.683349i \(0.760523\pi\)
\(240\) 9.73212 + 21.0832i 0.628206 + 1.36091i
\(241\) 1.81806i 0.117111i 0.998284 + 0.0585557i \(0.0186495\pi\)
−0.998284 + 0.0585557i \(0.981350\pi\)
\(242\) 1.86113 + 2.09181i 0.119638 + 0.134467i
\(243\) 21.9433i 1.40766i
\(244\) −19.4192 2.27422i −1.24319 0.145592i
\(245\) 0 0
\(246\) −6.48750 7.29160i −0.413628 0.464896i
\(247\) −2.70572 −0.172161
\(248\) −4.42972 + 3.09949i −0.281287 + 0.196818i
\(249\) 27.2529 1.72708
\(250\) −6.41274 + 14.4526i −0.405578 + 0.914061i
\(251\) 14.0187 0.884856 0.442428 0.896804i \(-0.354117\pi\)
0.442428 + 0.896804i \(0.354117\pi\)
\(252\) 0 0
\(253\) 9.13352i 0.574220i
\(254\) 8.25487 + 9.27803i 0.517957 + 0.582155i
\(255\) −26.5159 33.7715i −1.66049 2.11485i
\(256\) 14.2916 + 7.19367i 0.893228 + 0.449605i
\(257\) −17.8725 −1.11485 −0.557427 0.830226i \(-0.688211\pi\)
−0.557427 + 0.830226i \(0.688211\pi\)
\(258\) 6.57491 5.84985i 0.409336 0.364196i
\(259\) 0 0
\(260\) 1.90977 + 3.12161i 0.118439 + 0.193594i
\(261\) 7.64248 0.473057
\(262\) −12.5866 14.1466i −0.777601 0.873982i
\(263\) −21.8965 −1.35019 −0.675097 0.737729i \(-0.735898\pi\)
−0.675097 + 0.737729i \(0.735898\pi\)
\(264\) −21.6762 + 15.1669i −1.33408 + 0.933459i
\(265\) −2.50079 3.18508i −0.153622 0.195658i
\(266\) 0 0
\(267\) 27.5539 1.68627
\(268\) −2.15471 + 18.3988i −0.131620 + 1.12388i
\(269\) 2.88283i 0.175769i 0.996131 + 0.0878847i \(0.0280107\pi\)
−0.996131 + 0.0878847i \(0.971989\pi\)
\(270\) 1.07635 5.98073i 0.0655046 0.363975i
\(271\) 16.9559 1.02999 0.514997 0.857192i \(-0.327793\pi\)
0.514997 + 0.857192i \(0.327793\pi\)
\(272\) −28.7846 6.83578i −1.74532 0.414480i
\(273\) 0 0
\(274\) −5.51963 + 4.91094i −0.333453 + 0.296681i
\(275\) −17.4994 4.27399i −1.05525 0.257731i
\(276\) −13.0741 1.53113i −0.786968 0.0921632i
\(277\) 26.8515i 1.61335i −0.590993 0.806677i \(-0.701264\pi\)
0.590993 0.806677i \(-0.298736\pi\)
\(278\) −20.6285 23.1853i −1.23722 1.39056i
\(279\) 7.14919 0.428011
\(280\) 0 0
\(281\) 24.9497 1.48838 0.744188 0.667971i \(-0.232837\pi\)
0.744188 + 0.667971i \(0.232837\pi\)
\(282\) 3.25750 + 3.66126i 0.193982 + 0.218025i
\(283\) 9.83821i 0.584821i −0.956293 0.292410i \(-0.905543\pi\)
0.956293 0.292410i \(-0.0944573\pi\)
\(284\) −2.74966 0.322017i −0.163162 0.0191082i
\(285\) 11.8542 + 15.0979i 0.702183 + 0.894321i
\(286\) −3.11481 + 2.77132i −0.184183 + 0.163871i
\(287\) 0 0
\(288\) −10.0309 18.6287i −0.591079 1.09770i
\(289\) 37.7050 2.21794
\(290\) 6.35945 + 1.14451i 0.373440 + 0.0672079i
\(291\) 19.0042i 1.11405i
\(292\) 1.72062 14.6922i 0.100692 0.859793i
\(293\) 23.4039 1.36727 0.683636 0.729823i \(-0.260398\pi\)
0.683636 + 0.729823i \(0.260398\pi\)
\(294\) 0 0
\(295\) 3.36174 2.63950i 0.195728 0.153678i
\(296\) −11.6219 16.6097i −0.675507 0.965419i
\(297\) 6.92325 0.401728
\(298\) 22.5138 + 25.3043i 1.30419 + 1.46584i
\(299\) −2.07447 −0.119970
\(300\) 9.05153 24.3329i 0.522591 1.40486i
\(301\) 0 0
\(302\) 7.40395 6.58746i 0.426049 0.379066i
\(303\) −16.5062 −0.948257
\(304\) 12.8684 + 3.05600i 0.738055 + 0.175274i
\(305\) 13.4995 + 17.1934i 0.772980 + 0.984490i
\(306\) 26.0049 + 29.2281i 1.48660 + 1.67086i
\(307\) 2.18529i 0.124721i −0.998054 0.0623606i \(-0.980137\pi\)
0.998054 0.0623606i \(-0.0198629\pi\)
\(308\) 0 0
\(309\) −2.65350 −0.150952
\(310\) 5.94897 + 1.07064i 0.337879 + 0.0608080i
\(311\) 28.9001 1.63878 0.819388 0.573239i \(-0.194313\pi\)
0.819388 + 0.573239i \(0.194313\pi\)
\(312\) −3.44481 4.92324i −0.195024 0.278724i
\(313\) −6.35304 −0.359095 −0.179548 0.983749i \(-0.557463\pi\)
−0.179548 + 0.983749i \(0.557463\pi\)
\(314\) −6.04030 6.78897i −0.340874 0.383124i
\(315\) 0 0
\(316\) −15.3904 1.80240i −0.865778 0.101393i
\(317\) 18.8031i 1.05609i 0.849218 + 0.528043i \(0.177074\pi\)
−0.849218 + 0.528043i \(0.822926\pi\)
\(318\) 4.41981 + 4.96763i 0.247851 + 0.278571i
\(319\) 7.36166i 0.412174i
\(320\) −5.55718 17.0035i −0.310656 0.950522i
\(321\) 18.8264i 1.05079i
\(322\) 0 0
\(323\) −24.4564 −1.36079
\(324\) 1.44967 12.3786i 0.0805374 0.687697i
\(325\) 0.970738 3.97458i 0.0538469 0.220470i
\(326\) −17.3711 19.5241i −0.962095 1.08134i
\(327\) 20.6962i 1.14450i
\(328\) 4.31042 + 6.16035i 0.238003 + 0.340149i
\(329\) 0 0
\(330\) 29.1104 + 5.23900i 1.60248 + 0.288398i
\(331\) 13.0888i 0.719427i 0.933063 + 0.359713i \(0.117126\pi\)
−0.933063 + 0.359713i \(0.882874\pi\)
\(332\) −20.8520 2.44202i −1.14440 0.134023i
\(333\) 26.8066i 1.46899i
\(334\) 1.93238 1.71928i 0.105735 0.0940749i
\(335\) 16.2899 12.7901i 0.890010 0.698798i
\(336\) 0 0
\(337\) 11.7319i 0.639079i −0.947573 0.319539i \(-0.896472\pi\)
0.947573 0.319539i \(-0.103528\pi\)
\(338\) 11.5911 + 13.0278i 0.630475 + 0.708619i
\(339\) 19.7728 1.07391
\(340\) 17.2621 + 28.2156i 0.936167 + 1.53021i
\(341\) 6.88650i 0.372925i
\(342\) −11.6257 13.0667i −0.628648 0.706566i
\(343\) 0 0
\(344\) −5.55485 + 3.88675i −0.299498 + 0.209560i
\(345\) 9.08861 + 11.5755i 0.489314 + 0.623205i
\(346\) −14.3352 16.1120i −0.770666 0.866187i
\(347\) −4.41171 −0.236833 −0.118416 0.992964i \(-0.537782\pi\)
−0.118416 + 0.992964i \(0.537782\pi\)
\(348\) −10.5378 1.23410i −0.564884 0.0661545i
\(349\) 18.3479i 0.982142i 0.871120 + 0.491071i \(0.163394\pi\)
−0.871120 + 0.491071i \(0.836606\pi\)
\(350\) 0 0
\(351\) 1.57246i 0.0839316i
\(352\) 17.9442 9.66237i 0.956428 0.515006i
\(353\) 11.7481 0.625289 0.312645 0.949870i \(-0.398785\pi\)
0.312645 + 0.949870i \(0.398785\pi\)
\(354\) −5.24316 + 4.66496i −0.278671 + 0.247940i
\(355\) 1.91145 + 2.43449i 0.101449 + 0.129209i
\(356\) −21.0824 2.46899i −1.11736 0.130856i
\(357\) 0 0
\(358\) −13.2459 + 11.7852i −0.700070 + 0.622868i
\(359\) 0.197902i 0.0104449i 0.999986 + 0.00522243i \(0.00166236\pi\)
−0.999986 + 0.00522243i \(0.998338\pi\)
\(360\) −6.86940 + 22.6356i −0.362049 + 1.19300i
\(361\) −8.06652 −0.424554
\(362\) −8.47190 + 7.53764i −0.445273 + 0.396170i
\(363\) 5.14002i 0.269781i
\(364\) 0 0
\(365\) −13.0081 + 10.2134i −0.680876 + 0.534595i
\(366\) −23.8586 26.8158i −1.24711 1.40168i
\(367\) 7.52824i 0.392971i −0.980507 0.196485i \(-0.937047\pi\)
0.980507 0.196485i \(-0.0629528\pi\)
\(368\) 9.86621 + 2.34303i 0.514312 + 0.122139i
\(369\) 9.94229i 0.517575i
\(370\) −4.01446 + 22.3063i −0.208702 + 1.15965i
\(371\) 0 0
\(372\) −9.85761 1.15444i −0.511093 0.0598550i
\(373\) 31.1392i 1.61233i 0.591693 + 0.806164i \(0.298460\pi\)
−0.591693 + 0.806164i \(0.701540\pi\)
\(374\) −28.1541 + 25.0493i −1.45581 + 1.29527i
\(375\) −26.4311 + 11.9966i −1.36490 + 0.619503i
\(376\) −2.16435 3.09324i −0.111618 0.159521i
\(377\) −1.67203 −0.0861140
\(378\) 0 0
\(379\) 16.3396i 0.839307i −0.907684 0.419654i \(-0.862152\pi\)
0.907684 0.419654i \(-0.137848\pi\)
\(380\) −7.71717 12.6141i −0.395883 0.647088i
\(381\) 22.7981i 1.16798i
\(382\) −7.14168 + 6.35411i −0.365400 + 0.325105i
\(383\) 8.84868i 0.452147i −0.974110 0.226073i \(-0.927411\pi\)
0.974110 0.226073i \(-0.0725889\pi\)
\(384\) 10.8230 + 27.3058i 0.552307 + 1.39344i
\(385\) 0 0
\(386\) 2.49351 2.21853i 0.126916 0.112920i
\(387\) 8.96506 0.455720
\(388\) −1.70289 + 14.5407i −0.0864511 + 0.738194i
\(389\) 9.34528 0.473824 0.236912 0.971531i \(-0.423865\pi\)
0.236912 + 0.971531i \(0.423865\pi\)
\(390\) −1.18992 + 6.61176i −0.0602538 + 0.334800i
\(391\) −18.7507 −0.948263
\(392\) 0 0
\(393\) 34.7612i 1.75347i
\(394\) −21.4698 + 19.1022i −1.08163 + 0.962353i
\(395\) 10.6988 + 13.6263i 0.538316 + 0.685615i
\(396\) −26.7670 3.13473i −1.34509 0.157526i
\(397\) 20.3026 1.01896 0.509480 0.860482i \(-0.329838\pi\)
0.509480 + 0.860482i \(0.329838\pi\)
\(398\) 10.7712 + 12.1063i 0.539912 + 0.606831i
\(399\) 0 0
\(400\) −9.10598 + 17.8068i −0.455299 + 0.890339i
\(401\) −11.0867 −0.553643 −0.276821 0.960921i \(-0.589281\pi\)
−0.276821 + 0.960921i \(0.589281\pi\)
\(402\) −25.4066 + 22.6048i −1.26716 + 1.12742i
\(403\) −1.56411 −0.0779138
\(404\) 12.6294 + 1.47905i 0.628338 + 0.0735857i
\(405\) −10.9597 + 8.60509i −0.544592 + 0.427590i
\(406\) 0 0
\(407\) −25.8216 −1.27993
\(408\) −31.1369 44.5002i −1.54151 2.20309i
\(409\) 5.88680i 0.291084i 0.989352 + 0.145542i \(0.0464925\pi\)
−0.989352 + 0.145542i \(0.953507\pi\)
\(410\) 1.48892 8.27317i 0.0735325 0.408583i
\(411\) −13.5629 −0.669008
\(412\) 2.03028 + 0.237769i 0.100025 + 0.0117140i
\(413\) 0 0
\(414\) −8.91343 10.0182i −0.438071 0.492369i
\(415\) 14.4955 + 18.4619i 0.711557 + 0.906261i
\(416\) 2.19458 + 4.07560i 0.107598 + 0.199823i
\(417\) 56.9712i 2.78989i
\(418\) 12.5866 11.1986i 0.615629 0.547739i
\(419\) −16.7262 −0.817126 −0.408563 0.912730i \(-0.633970\pi\)
−0.408563 + 0.912730i \(0.633970\pi\)
\(420\) 0 0
\(421\) −1.18823 −0.0579109 −0.0289555 0.999581i \(-0.509218\pi\)
−0.0289555 + 0.999581i \(0.509218\pi\)
\(422\) −23.3126 + 20.7418i −1.13484 + 1.00969i
\(423\) 4.99222i 0.242730i
\(424\) −2.93661 4.19693i −0.142614 0.203821i
\(425\) 8.77430 35.9254i 0.425616 1.74264i
\(426\) −3.37824 3.79696i −0.163676 0.183963i
\(427\) 0 0
\(428\) −1.68696 + 14.4047i −0.0815421 + 0.696276i
\(429\) −7.65374 −0.369526
\(430\) 7.46000 + 1.34257i 0.359753 + 0.0647447i
\(431\) 24.0950i 1.16061i 0.814398 + 0.580307i \(0.197068\pi\)
−0.814398 + 0.580307i \(0.802932\pi\)
\(432\) 1.77603 7.47863i 0.0854492 0.359816i
\(433\) 14.9805 0.719916 0.359958 0.932968i \(-0.382791\pi\)
0.359958 + 0.932968i \(0.382791\pi\)
\(434\) 0 0
\(435\) 7.32546 + 9.32992i 0.351229 + 0.447335i
\(436\) 1.85450 15.8353i 0.0888144 0.758373i
\(437\) 8.38268 0.400998
\(438\) 20.2882 18.0509i 0.969407 0.862503i
\(439\) 17.3253 0.826893 0.413446 0.910528i \(-0.364325\pi\)
0.413446 + 0.910528i \(0.364325\pi\)
\(440\) −21.8039 6.61699i −1.03946 0.315453i
\(441\) 0 0
\(442\) −5.68938 6.39456i −0.270616 0.304158i
\(443\) −25.2325 −1.19883 −0.599416 0.800438i \(-0.704600\pi\)
−0.599416 + 0.800438i \(0.704600\pi\)
\(444\) 4.32870 36.9621i 0.205431 1.75415i
\(445\) 14.6557 + 18.6659i 0.694745 + 0.884848i
\(446\) −24.9111 + 22.1640i −1.17957 + 1.04949i
\(447\) 62.1779i 2.94091i
\(448\) 0 0
\(449\) 7.06145 0.333251 0.166625 0.986020i \(-0.446713\pi\)
0.166625 + 0.986020i \(0.446713\pi\)
\(450\) 23.3654 12.3897i 1.10146 0.584058i
\(451\) 9.57697 0.450962
\(452\) −15.1288 1.77176i −0.711599 0.0833365i
\(453\) 18.1931 0.854784
\(454\) 22.1103 19.6720i 1.03769 0.923255i
\(455\) 0 0
\(456\) 13.9201 + 19.8942i 0.651867 + 0.931633i
\(457\) 18.8816i 0.883242i −0.897202 0.441621i \(-0.854404\pi\)
0.897202 0.441621i \(-0.145596\pi\)
\(458\) −5.47461 + 4.87089i −0.255812 + 0.227602i
\(459\) 14.2131i 0.663411i
\(460\) −5.91674 9.67119i −0.275870 0.450922i
\(461\) 34.6087i 1.61189i 0.591992 + 0.805944i \(0.298342\pi\)
−0.591992 + 0.805944i \(0.701658\pi\)
\(462\) 0 0
\(463\) −15.0235 −0.698202 −0.349101 0.937085i \(-0.613513\pi\)
−0.349101 + 0.937085i \(0.613513\pi\)
\(464\) 7.95221 + 1.88849i 0.369172 + 0.0876711i
\(465\) 6.85263 + 8.72772i 0.317783 + 0.404738i
\(466\) −21.9441 + 19.5241i −1.01654 + 0.904439i
\(467\) 25.4391i 1.17718i 0.808432 + 0.588590i \(0.200317\pi\)
−0.808432 + 0.588590i \(0.799683\pi\)
\(468\) 0.711981 6.07950i 0.0329113 0.281025i
\(469\) 0 0
\(470\) −0.747616 + 4.15412i −0.0344850 + 0.191615i
\(471\) 16.6819i 0.768662i
\(472\) 4.42972 3.09949i 0.203894 0.142666i
\(473\) 8.63565i 0.397067i
\(474\) −18.9087 21.2524i −0.868507 0.976155i
\(475\) −3.92264 + 16.0608i −0.179983 + 0.736921i
\(476\) 0 0
\(477\) 6.77350i 0.310137i
\(478\) 22.3237 19.8619i 1.02106 0.908460i
\(479\) −20.5688 −0.939811 −0.469905 0.882717i \(-0.655712\pi\)
−0.469905 + 0.882717i \(0.655712\pi\)
\(480\) 13.1270 30.1017i 0.599163 1.37395i
\(481\) 5.86479i 0.267411i
\(482\) 1.92089 1.70906i 0.0874939 0.0778453i
\(483\) 0 0
\(484\) 0.460576 3.93279i 0.0209353 0.178763i
\(485\) 12.8741 10.1082i 0.584581 0.458988i
\(486\) 23.1844 20.6277i 1.05167 0.935690i
\(487\) 29.0590 1.31679 0.658394 0.752674i \(-0.271236\pi\)
0.658394 + 0.752674i \(0.271236\pi\)
\(488\) 15.8521 + 22.6554i 0.717591 + 1.02556i
\(489\) 47.9749i 2.16950i
\(490\) 0 0
\(491\) 9.51815i 0.429548i −0.976664 0.214774i \(-0.931098\pi\)
0.976664 0.214774i \(-0.0689015\pi\)
\(492\) −1.60547 + 13.7089i −0.0723801 + 0.618043i
\(493\) −15.1131 −0.680662
\(494\) 2.54349 + 2.85875i 0.114437 + 0.128621i
\(495\) 18.6074 + 23.6989i 0.836339 + 1.06519i
\(496\) 7.43893 + 1.76660i 0.334018 + 0.0793226i
\(497\) 0 0
\(498\) −25.6189 28.7943i −1.14801 1.29030i
\(499\) 20.1905i 0.903853i −0.892055 0.451927i \(-0.850737\pi\)
0.892055 0.451927i \(-0.149263\pi\)
\(500\) 21.2983 6.81061i 0.952487 0.304580i
\(501\) 4.74826 0.212137
\(502\) −13.1782 14.8116i −0.588174 0.661076i
\(503\) 13.3134i 0.593616i −0.954937 0.296808i \(-0.904078\pi\)
0.954937 0.296808i \(-0.0959221\pi\)
\(504\) 0 0
\(505\) −8.77949 11.1818i −0.390682 0.497585i
\(506\) 9.65011 8.58592i 0.429000 0.381691i
\(507\) 32.0121i 1.42171i
\(508\) 2.04284 17.4435i 0.0906363 0.773931i
\(509\) 14.3523i 0.636153i −0.948065 0.318077i \(-0.896963\pi\)
0.948065 0.318077i \(-0.103037\pi\)
\(510\) −10.7554 + 59.7624i −0.476258 + 2.64632i
\(511\) 0 0
\(512\) −5.83424 21.8623i −0.257839 0.966188i
\(513\) 6.35411i 0.280541i
\(514\) 16.8009 + 18.8833i 0.741057 + 0.832908i
\(515\) −1.41137 1.79756i −0.0621924 0.0792101i
\(516\) −12.3614 1.44767i −0.544181 0.0637299i
\(517\) −4.80879 −0.211490
\(518\) 0 0
\(519\) 39.5906i 1.73783i
\(520\) 1.50290 4.95225i 0.0659064 0.217170i
\(521\) 36.9009i 1.61666i −0.588730 0.808330i \(-0.700372\pi\)
0.588730 0.808330i \(-0.299628\pi\)
\(522\) −7.18427 8.07473i −0.314447 0.353421i
\(523\) 18.1502i 0.793652i −0.917894 0.396826i \(-0.870112\pi\)
0.917894 0.396826i \(-0.129888\pi\)
\(524\) −3.11481 + 26.5969i −0.136071 + 1.16189i
\(525\) 0 0
\(526\) 20.5837 + 23.1349i 0.897490 + 1.00873i
\(527\) −14.1377 −0.615846
\(528\) 36.4013 + 8.64460i 1.58416 + 0.376208i
\(529\) −16.5730 −0.720566
\(530\) −1.01437 + 5.63635i −0.0440616 + 0.244828i
\(531\) −7.14919 −0.310248
\(532\) 0 0
\(533\) 2.17519i 0.0942178i
\(534\) −25.9019 29.1124i −1.12089 1.25981i
\(535\) 12.7536 10.0136i 0.551386 0.432924i
\(536\) 21.4649 15.0191i 0.927142 0.648725i
\(537\) −32.5481 −1.40455
\(538\) 3.04588 2.70999i 0.131317 0.116836i
\(539\) 0 0
\(540\) −7.33081 + 4.48492i −0.315468 + 0.193000i
\(541\) −18.7526 −0.806236 −0.403118 0.915148i \(-0.632074\pi\)
−0.403118 + 0.915148i \(0.632074\pi\)
\(542\) −15.9393 17.9149i −0.684649 0.769509i
\(543\) −20.8172 −0.893353
\(544\) 19.8364 + 36.8385i 0.850478 + 1.57944i
\(545\) −14.0202 + 11.0081i −0.600561 + 0.471535i
\(546\) 0 0
\(547\) 34.1580 1.46049 0.730246 0.683185i \(-0.239406\pi\)
0.730246 + 0.683185i \(0.239406\pi\)
\(548\) 10.3774 + 1.21531i 0.443300 + 0.0519157i
\(549\) 36.5640i 1.56051i
\(550\) 11.9345 + 22.5069i 0.508888 + 0.959697i
\(551\) 6.75648 0.287836
\(552\) 10.6725 + 15.2529i 0.454252 + 0.649206i
\(553\) 0 0
\(554\) −28.3702 + 25.2416i −1.20534 + 1.07241i
\(555\) −32.7255 + 25.6947i −1.38912 + 1.09068i
\(556\) −5.10495 + 43.5905i −0.216498 + 1.84865i
\(557\) 40.4367i 1.71336i 0.515851 + 0.856679i \(0.327476\pi\)
−0.515851 + 0.856679i \(0.672524\pi\)
\(558\) −6.72055 7.55354i −0.284504 0.319767i
\(559\) −1.96139 −0.0829579
\(560\) 0 0
\(561\) −69.1805 −2.92080
\(562\) −23.4538 26.3608i −0.989340 1.11197i
\(563\) 0.318930i 0.0134413i −0.999977 0.00672065i \(-0.997861\pi\)
0.999977 0.00672065i \(-0.00213926\pi\)
\(564\) 0.806137 6.88349i 0.0339445 0.289847i
\(565\) 10.5170 + 13.3947i 0.442452 + 0.563520i
\(566\) −10.3946 + 9.24835i −0.436920 + 0.388737i
\(567\) 0 0
\(568\) 2.24457 + 3.20788i 0.0941800 + 0.134600i
\(569\) 30.6115 1.28330 0.641651 0.766997i \(-0.278250\pi\)
0.641651 + 0.766997i \(0.278250\pi\)
\(570\) 4.80832 26.7174i 0.201398 1.11907i
\(571\) 8.48799i 0.355211i 0.984102 + 0.177606i \(0.0568351\pi\)
−0.984102 + 0.177606i \(0.943165\pi\)
\(572\) 5.85612 + 0.685820i 0.244857 + 0.0286756i
\(573\) −17.5486 −0.733103
\(574\) 0 0
\(575\) −3.00748 + 12.3138i −0.125421 + 0.513521i
\(576\) −10.2528 + 28.1101i −0.427198 + 1.17125i
\(577\) 3.36502 0.140088 0.0700438 0.997544i \(-0.477686\pi\)
0.0700438 + 0.997544i \(0.477686\pi\)
\(578\) −35.4444 39.8376i −1.47429 1.65702i
\(579\) 6.12707 0.254632
\(580\) −4.76892 7.79502i −0.198019 0.323671i
\(581\) 0 0
\(582\) −20.0791 + 17.8648i −0.832305 + 0.740520i
\(583\) −6.52461 −0.270222
\(584\) −17.1406 + 11.9933i −0.709283 + 0.496288i
\(585\) −5.38266 + 4.22624i −0.222546 + 0.174733i
\(586\) −22.0007 24.7276i −0.908842 1.02149i
\(587\) 2.02359i 0.0835225i −0.999128 0.0417613i \(-0.986703\pi\)
0.999128 0.0417613i \(-0.0132969\pi\)
\(588\) 0 0
\(589\) 6.32038 0.260427
\(590\) −5.94897 1.07064i −0.244915 0.0440774i
\(591\) −52.7558 −2.17008
\(592\) −6.62405 + 27.8930i −0.272247 + 1.14640i
\(593\) 26.8258 1.10160 0.550802 0.834636i \(-0.314322\pi\)
0.550802 + 0.834636i \(0.314322\pi\)
\(594\) −6.50817 7.31483i −0.267033 0.300131i
\(595\) 0 0
\(596\) 5.57151 47.5743i 0.228218 1.94872i
\(597\) 29.7476i 1.21749i
\(598\) 1.95009 + 2.19180i 0.0797452 + 0.0896293i
\(599\) 37.0618i 1.51430i 0.653239 + 0.757152i \(0.273410\pi\)
−0.653239 + 0.757152i \(0.726590\pi\)
\(600\) −34.2179 + 13.3105i −1.39694 + 0.543398i
\(601\) 1.27911i 0.0521761i 0.999660 + 0.0260880i \(0.00830503\pi\)
−0.999660 + 0.0260880i \(0.991695\pi\)
\(602\) 0 0
\(603\) −34.6425 −1.41075
\(604\) −13.9201 1.63020i −0.566400 0.0663320i
\(605\) −3.48201 + 2.73392i −0.141564 + 0.111150i
\(606\) 15.5166 + 17.4398i 0.630318 + 0.708443i
\(607\) 22.6090i 0.917672i −0.888521 0.458836i \(-0.848267\pi\)
0.888521 0.458836i \(-0.151733\pi\)
\(608\) −8.86805 16.4690i −0.359647 0.667907i
\(609\) 0 0
\(610\) 5.47568 30.4256i 0.221704 1.23190i
\(611\) 1.09220i 0.0441859i
\(612\) 6.43545 54.9514i 0.260138 2.22128i
\(613\) 3.01945i 0.121955i 0.998139 + 0.0609773i \(0.0194217\pi\)
−0.998139 + 0.0609773i \(0.980578\pi\)
\(614\) −2.30889 + 2.05427i −0.0931792 + 0.0829037i
\(615\) 12.1375 9.52987i 0.489432 0.384281i
\(616\) 0 0
\(617\) 14.3344i 0.577081i 0.957468 + 0.288540i \(0.0931700\pi\)
−0.957468 + 0.288540i \(0.906830\pi\)
\(618\) 2.49441 + 2.80358i 0.100340 + 0.112776i
\(619\) −21.7973 −0.876109 −0.438055 0.898948i \(-0.644332\pi\)
−0.438055 + 0.898948i \(0.644332\pi\)
\(620\) −4.46111 7.29189i −0.179162 0.292849i
\(621\) 4.87169i 0.195494i
\(622\) −27.1674 30.5347i −1.08931 1.22433i
\(623\) 0 0
\(624\) −1.96342 + 8.26771i −0.0785997 + 0.330973i
\(625\) −22.1853 11.5244i −0.887413 0.460975i
\(626\) 5.97214 + 6.71236i 0.238695 + 0.268280i
\(627\) 30.9278 1.23514
\(628\) −1.49480 + 12.7639i −0.0596489 + 0.509333i
\(629\) 53.0106i 2.11367i
\(630\) 0 0
\(631\) 15.1512i 0.603160i 0.953441 + 0.301580i \(0.0975140\pi\)
−0.953441 + 0.301580i \(0.902486\pi\)
\(632\) 12.5633 + 17.9552i 0.499742 + 0.714220i
\(633\) −57.2841 −2.27684
\(634\) 19.8665 17.6757i 0.789001 0.701992i
\(635\) −15.4441 + 12.1261i −0.612881 + 0.481208i
\(636\) 1.09378 9.33959i 0.0433710 0.370339i
\(637\) 0 0
\(638\) 7.77803 6.92029i 0.307935 0.273977i
\(639\) 5.17725i 0.204809i
\(640\) −12.7412 + 21.8555i −0.503639 + 0.863914i
\(641\) 29.9921 1.18462 0.592308 0.805712i \(-0.298217\pi\)
0.592308 + 0.805712i \(0.298217\pi\)
\(642\) −19.8912 + 17.6976i −0.785043 + 0.698470i
\(643\) 1.63196i 0.0643583i −0.999482 0.0321792i \(-0.989755\pi\)
0.999482 0.0321792i \(-0.0102447\pi\)
\(644\) 0 0
\(645\) 8.59318 + 10.9445i 0.338356 + 0.430940i
\(646\) 22.9901 + 25.8396i 0.904534 + 1.01665i
\(647\) 32.7664i 1.28818i 0.764950 + 0.644090i \(0.222764\pi\)
−0.764950 + 0.644090i \(0.777236\pi\)
\(648\) −14.4414 + 10.1047i −0.567313 + 0.396951i
\(649\) 6.88650i 0.270319i
\(650\) −5.11192 + 2.71064i −0.200506 + 0.106320i
\(651\) 0 0
\(652\) −4.29883 + 36.7071i −0.168355 + 1.43756i
\(653\) 22.5293i 0.881638i 0.897596 + 0.440819i \(0.145312\pi\)
−0.897596 + 0.440819i \(0.854688\pi\)
\(654\) 21.8667 19.4553i 0.855057 0.760763i
\(655\) 23.5483 18.4891i 0.920109 0.722431i
\(656\) 2.45679 10.3452i 0.0959215 0.403913i
\(657\) 27.6635 1.07925
\(658\) 0 0
\(659\) 19.2525i 0.749969i −0.927031 0.374985i \(-0.877648\pi\)
0.927031 0.374985i \(-0.122352\pi\)
\(660\) −21.8298 35.6818i −0.849723 1.38891i
\(661\) 34.7656i 1.35223i 0.736798 + 0.676113i \(0.236337\pi\)
−0.736798 + 0.676113i \(0.763663\pi\)
\(662\) 13.8291 12.3041i 0.537484 0.478212i
\(663\) 15.7128i 0.610233i
\(664\) 17.0217 + 24.3270i 0.660570 + 0.944071i
\(665\) 0 0
\(666\) 28.3228 25.1994i 1.09749 0.976458i
\(667\) 5.18018 0.200577
\(668\) −3.63304 0.425472i −0.140567 0.0164620i
\(669\) −61.2118 −2.36658
\(670\) −28.8267 5.18793i −1.11367 0.200427i
\(671\) 35.2205 1.35967
\(672\) 0 0
\(673\) 42.6368i 1.64353i 0.569827 + 0.821764i \(0.307010\pi\)
−0.569827 + 0.821764i \(0.692990\pi\)
\(674\) −12.3955 + 11.0285i −0.477456 + 0.424803i
\(675\) 9.33392 + 2.27968i 0.359263 + 0.0877451i
\(676\) 2.86847 24.4934i 0.110326 0.942055i
\(677\) −1.78530 −0.0686145 −0.0343073 0.999411i \(-0.510922\pi\)
−0.0343073 + 0.999411i \(0.510922\pi\)
\(678\) −18.5873 20.8911i −0.713842 0.802319i
\(679\) 0 0
\(680\) 13.5844 44.7623i 0.520937 1.71656i
\(681\) 54.3297 2.08192
\(682\) 7.27599 6.47361i 0.278612 0.247887i
\(683\) 8.60526 0.329271 0.164636 0.986354i \(-0.447355\pi\)
0.164636 + 0.986354i \(0.447355\pi\)
\(684\) −2.87703 + 24.5666i −0.110006 + 0.939326i
\(685\) −7.21396 9.18792i −0.275631 0.351052i
\(686\) 0 0
\(687\) −13.4523 −0.513236
\(688\) 9.32839 + 2.21531i 0.355642 + 0.0844579i
\(689\) 1.48191i 0.0564564i
\(690\) 3.68653 20.4841i 0.140344 0.779818i
\(691\) 40.3022 1.53317 0.766583 0.642145i \(-0.221955\pi\)
0.766583 + 0.642145i \(0.221955\pi\)
\(692\) −3.54755 + 30.2920i −0.134858 + 1.15153i
\(693\) 0 0
\(694\) 4.14720 + 4.66123i 0.157426 + 0.176938i
\(695\) 38.5941 30.3024i 1.46396 1.14944i
\(696\) 8.60208 + 12.2939i 0.326061 + 0.465999i
\(697\) 19.6611i 0.744716i
\(698\) 19.3857 17.2479i 0.733758 0.652841i
\(699\) −53.9212 −2.03949
\(700\) 0 0
\(701\) 37.3051 1.40899 0.704497 0.709707i \(-0.251172\pi\)
0.704497 + 0.709707i \(0.251172\pi\)
\(702\) 1.66139 1.47818i 0.0627053 0.0557903i
\(703\) 23.6989i 0.893822i
\(704\) −27.0772 9.87602i −1.02051 0.372217i
\(705\) −6.09449 + 4.78514i −0.229532 + 0.180219i
\(706\) −11.0438 12.4126i −0.415637 0.467154i
\(707\) 0 0
\(708\) 9.85761 + 1.15444i 0.370472 + 0.0433866i
\(709\) −8.05731 −0.302599 −0.151299 0.988488i \(-0.548346\pi\)
−0.151299 + 0.988488i \(0.548346\pi\)
\(710\) 0.775326 4.30809i 0.0290975 0.161680i
\(711\) 28.9782i 1.08677i
\(712\) 17.2097 + 24.5957i 0.644962 + 0.921765i
\(713\) 4.84582 0.181477
\(714\) 0 0
\(715\) −4.07095 5.18488i −0.152245 0.193903i
\(716\) 24.9035 + 2.91650i 0.930689 + 0.108995i
\(717\) 54.8539 2.04856
\(718\) 0.209095 0.186037i 0.00780336 0.00694283i
\(719\) −11.7448 −0.438008 −0.219004 0.975724i \(-0.570281\pi\)
−0.219004 + 0.975724i \(0.570281\pi\)
\(720\) 30.3734 14.0205i 1.13195 0.522515i
\(721\) 0 0
\(722\) 7.58289 + 8.52275i 0.282206 + 0.317184i
\(723\) 4.72002 0.175539
\(724\) 15.9279 + 1.86535i 0.591957 + 0.0693250i
\(725\) −2.42404 + 9.92498i −0.0900267 + 0.368605i
\(726\) 5.43073 4.83185i 0.201553 0.179327i
\(727\) 33.3549i 1.23706i 0.785760 + 0.618532i \(0.212272\pi\)
−0.785760 + 0.618532i \(0.787728\pi\)
\(728\) 0 0
\(729\) 38.2742 1.41756
\(730\) 23.0193 + 4.14278i 0.851982 + 0.153331i
\(731\) −17.7286 −0.655715
\(732\) −5.90430 + 50.4160i −0.218229 + 1.86343i
\(733\) −11.5001 −0.424764 −0.212382 0.977187i \(-0.568122\pi\)
−0.212382 + 0.977187i \(0.568122\pi\)
\(734\) −7.95403 + 7.07688i −0.293588 + 0.261212i
\(735\) 0 0
\(736\) −6.79912 12.6268i −0.250619 0.465429i
\(737\) 33.3696i 1.22919i
\(738\) −10.5046 + 9.34619i −0.386680 + 0.344038i
\(739\) 11.2041i 0.412148i −0.978536 0.206074i \(-0.933931\pi\)
0.978536 0.206074i \(-0.0660688\pi\)
\(740\) 27.3417 16.7274i 1.00510 0.614911i
\(741\) 7.02455i 0.258053i
\(742\) 0 0
\(743\) 43.7950 1.60668 0.803341 0.595520i \(-0.203054\pi\)
0.803341 + 0.595520i \(0.203054\pi\)
\(744\) 8.04686 + 11.5004i 0.295012 + 0.421624i
\(745\) −42.1213 + 33.0718i −1.54320 + 1.21166i
\(746\) 32.9004 29.2722i 1.20457 1.07173i
\(747\) 39.2617i 1.43651i
\(748\) 52.9322 + 6.19898i 1.93539 + 0.226657i
\(749\) 0 0
\(750\) 37.5216 + 16.6487i 1.37009 + 0.607924i
\(751\) 51.4214i 1.87639i 0.346103 + 0.938196i \(0.387505\pi\)
−0.346103 + 0.938196i \(0.612495\pi\)
\(752\) −1.23360 + 5.19454i −0.0449848 + 0.189425i
\(753\) 36.3953i 1.32632i
\(754\) 1.57178 + 1.76660i 0.0572410 + 0.0643357i
\(755\) 9.67670 + 12.3245i 0.352171 + 0.448536i
\(756\) 0 0
\(757\) 18.1453i 0.659502i −0.944068 0.329751i \(-0.893035\pi\)
0.944068 0.329751i \(-0.106965\pi\)
\(758\) −17.2637 + 15.3599i −0.627046 + 0.557897i
\(759\) 23.7123 0.860703
\(760\) −6.07303 + 20.0114i −0.220292 + 0.725891i
\(761\) 32.8928i 1.19236i 0.802850 + 0.596181i \(0.203316\pi\)
−0.802850 + 0.596181i \(0.796684\pi\)
\(762\) 24.0875 21.4312i 0.872598 0.776370i
\(763\) 0 0
\(764\) 13.4270 + 1.57246i 0.485771 + 0.0568895i
\(765\) −48.6528 + 38.2001i −1.75904 + 1.38113i
\(766\) −9.34915 + 8.31815i −0.337799 + 0.300547i
\(767\) 1.56411 0.0564767
\(768\) 18.6761 37.1038i 0.673916 1.33887i
\(769\) 20.8502i 0.751876i 0.926645 + 0.375938i \(0.122679\pi\)
−0.926645 + 0.375938i \(0.877321\pi\)
\(770\) 0 0
\(771\) 46.4003i 1.67107i
\(772\) −4.68802 0.549021i −0.168725 0.0197597i
\(773\) 8.68759 0.312471 0.156236 0.987720i \(-0.450064\pi\)
0.156236 + 0.987720i \(0.450064\pi\)
\(774\) −8.42756 9.47212i −0.302922 0.340468i
\(775\) −2.26758 + 9.28437i −0.0814539 + 0.333504i
\(776\) 16.9639 11.8697i 0.608970 0.426099i
\(777\) 0 0
\(778\) −8.78497 9.87384i −0.314957 0.353994i
\(779\) 8.78967i 0.314923i
\(780\) 8.10429 4.95813i 0.290180 0.177530i
\(781\) 4.98702 0.178449
\(782\) 17.6265 + 19.8112i 0.630322 + 0.708447i
\(783\) 3.92660i 0.140325i
\(784\) 0 0
\(785\) 11.3008 8.87294i 0.403344 0.316689i
\(786\) −36.7273 + 32.6771i −1.31002 + 1.16555i
\(787\) 37.2125i 1.32648i −0.748406 0.663241i \(-0.769180\pi\)
0.748406 0.663241i \(-0.230820\pi\)
\(788\) 40.3651 + 4.72723i 1.43795 + 0.168400i
\(789\) 56.8473i 2.02382i
\(790\) 4.33966 24.1133i 0.154398 0.857912i
\(791\) 0 0
\(792\) 21.8501 + 31.2277i 0.776411 + 1.10963i
\(793\) 7.99951i 0.284071i
\(794\) −19.0854 21.4509i −0.677315 0.761265i
\(795\) −8.26907 + 6.49252i −0.293274 + 0.230266i
\(796\) 2.66556 22.7608i 0.0944782 0.806736i
\(797\) 21.3900 0.757671 0.378835 0.925464i \(-0.376325\pi\)
0.378835 + 0.925464i \(0.376325\pi\)
\(798\) 0 0
\(799\) 9.87221i 0.349254i
\(800\) 27.3739 7.11815i 0.967815 0.251664i
\(801\) 39.6955i 1.40257i
\(802\) 10.4220 + 11.7137i 0.368013 + 0.413626i
\(803\) 26.6470i 0.940352i
\(804\) 47.7666 + 5.59403i 1.68460 + 0.197286i
\(805\) 0 0
\(806\) 1.47033 + 1.65257i 0.0517902 + 0.0582094i
\(807\) 7.48437 0.263462
\(808\) −10.3095 14.7341i −0.362687 0.518344i
\(809\) 24.3414 0.855799 0.427900 0.903826i \(-0.359254\pi\)
0.427900 + 0.903826i \(0.359254\pi\)
\(810\) 19.3944 + 3.49041i 0.681449 + 0.122640i
\(811\) 31.3778 1.10183 0.550913 0.834563i \(-0.314280\pi\)
0.550913 + 0.834563i \(0.314280\pi\)
\(812\) 0 0
\(813\) 44.0206i 1.54387i
\(814\) 24.2735 + 27.2821i 0.850785 + 0.956237i
\(815\) 32.4997 25.5174i 1.13841 0.893834i
\(816\) −17.7469 + 74.7301i −0.621267 + 2.61608i
\(817\) 7.92573 0.277286
\(818\) 6.21976 5.53386i 0.217469 0.193487i
\(819\) 0 0
\(820\) −10.1407 + 6.20401i −0.354130 + 0.216653i
\(821\) 0.157136 0.00548409 0.00274204 0.999996i \(-0.499127\pi\)
0.00274204 + 0.999996i \(0.499127\pi\)
\(822\) 12.7497 + 14.3300i 0.444697 + 0.499816i
\(823\) 18.6951 0.651669 0.325835 0.945427i \(-0.394355\pi\)
0.325835 + 0.945427i \(0.394355\pi\)
\(824\) −1.65733 2.36862i −0.0577359 0.0825148i
\(825\) −11.0961 + 45.4317i −0.386316 + 1.58173i
\(826\) 0 0
\(827\) 35.2960 1.22736 0.613681 0.789554i \(-0.289688\pi\)
0.613681 + 0.789554i \(0.289688\pi\)
\(828\) −2.20581 + 18.8351i −0.0766574 + 0.654566i
\(829\) 16.4649i 0.571850i −0.958252 0.285925i \(-0.907699\pi\)
0.958252 0.285925i \(-0.0923008\pi\)
\(830\) 5.87969 32.6704i 0.204087 1.13401i
\(831\) −69.7116 −2.41827
\(832\) 2.24311 6.14996i 0.0777659 0.213211i
\(833\) 0 0
\(834\) −60.1934 + 53.5555i −2.08433 + 1.85447i
\(835\) 2.52555 + 3.21662i 0.0874003 + 0.111316i
\(836\) −23.6639 2.77132i −0.818432 0.0958480i
\(837\) 3.67316i 0.126963i
\(838\) 15.7233 + 17.6722i 0.543153 + 0.610475i
\(839\) −54.8000 −1.89191 −0.945953 0.324303i \(-0.894870\pi\)
−0.945953 + 0.324303i \(0.894870\pi\)
\(840\) 0 0
\(841\) −24.8248 −0.856026
\(842\) 1.11699 + 1.25544i 0.0384941 + 0.0432652i
\(843\) 64.7741i 2.23094i
\(844\) 43.8298 + 5.13299i 1.50869 + 0.176685i
\(845\) −21.6860 + 17.0269i −0.746020 + 0.585743i
\(846\) 5.27458 4.69291i 0.181344 0.161346i
\(847\) 0 0
\(848\) −1.67376 + 7.04801i −0.0574773 + 0.242030i
\(849\) −25.5418 −0.876593
\(850\) −46.2056 + 24.5009i −1.58484 + 0.840375i
\(851\) 18.1699i 0.622857i
\(852\) −0.836015 + 7.13862i −0.0286414 + 0.244565i
\(853\) −38.9225 −1.33268 −0.666340 0.745648i \(-0.732140\pi\)
−0.666340 + 0.745648i \(0.732140\pi\)
\(854\) 0 0
\(855\) 21.7507 17.0777i 0.743858 0.584046i
\(856\) 16.8052 11.7587i 0.574390 0.401903i
\(857\) 29.3531 1.00268 0.501342 0.865249i \(-0.332840\pi\)
0.501342 + 0.865249i \(0.332840\pi\)
\(858\) 7.19485 + 8.08663i 0.245628 + 0.276073i
\(859\) −47.3747 −1.61640 −0.808202 0.588905i \(-0.799559\pi\)
−0.808202 + 0.588905i \(0.799559\pi\)
\(860\) −5.59422 9.14400i −0.190761 0.311808i
\(861\) 0 0
\(862\) 25.4578 22.6504i 0.867095 0.771474i
\(863\) 23.7011 0.806794 0.403397 0.915025i \(-0.367829\pi\)
0.403397 + 0.915025i \(0.367829\pi\)
\(864\) −9.57116 + 5.15377i −0.325617 + 0.175335i
\(865\) 26.8199 21.0578i 0.911903 0.715988i
\(866\) −14.0823 15.8278i −0.478537 0.537849i
\(867\) 97.8892i 3.32449i
\(868\) 0 0
\(869\) 27.9134 0.946897
\(870\) 2.97136 16.5103i 0.100738 0.559752i
\(871\) 7.57913 0.256809
\(872\) −18.4742 + 12.9265i −0.625616 + 0.437746i
\(873\) −27.3784 −0.926617
\(874\) −7.88009 8.85680i −0.266548 0.299586i
\(875\) 0 0
\(876\) −38.1436 4.46706i −1.28875 0.150928i
\(877\) 33.2040i 1.12122i −0.828080 0.560610i \(-0.810567\pi\)
0.828080 0.560610i \(-0.189433\pi\)
\(878\) −16.2866 18.3052i −0.549645 0.617772i
\(879\) 60.7610i 2.04942i
\(880\) 13.5054 + 29.2573i 0.455266 + 0.986265i
\(881\) 19.2043i 0.647008i −0.946227 0.323504i \(-0.895139\pi\)
0.946227 0.323504i \(-0.104861\pi\)
\(882\) 0 0
\(883\) −8.57526 −0.288581 −0.144290 0.989535i \(-0.546090\pi\)
−0.144290 + 0.989535i \(0.546090\pi\)
\(884\) −1.40796 + 12.0223i −0.0473547 + 0.404355i
\(885\) −6.85263 8.72772i −0.230349 0.293379i
\(886\) 23.7196 + 26.6596i 0.796877 + 0.895647i
\(887\) 14.7509i 0.495285i 0.968851 + 0.247643i \(0.0796559\pi\)
−0.968851 + 0.247643i \(0.920344\pi\)
\(888\) −43.1219 + 30.1725i −1.44707 + 1.01252i
\(889\) 0 0
\(890\) 5.94464 33.0313i 0.199265 1.10721i
\(891\) 22.4508i 0.752131i
\(892\) 46.8351 + 5.48493i 1.56815 + 0.183649i
\(893\) 4.41347i 0.147691i
\(894\) 65.6946 58.4500i 2.19716 1.95486i
\(895\) −17.3120 22.0491i −0.578676 0.737019i
\(896\) 0 0
\(897\) 5.38571i 0.179824i
\(898\) −6.63808 7.46084i −0.221516 0.248972i
\(899\) 3.90575 0.130264
\(900\) −35.0550 13.0401i −1.16850 0.434668i
\(901\) 13.3947i 0.446243i
\(902\) −9.00277 10.1186i −0.299760 0.336914i
\(903\) 0 0
\(904\) 12.3498 + 17.6500i 0.410747 + 0.587030i
\(905\) −11.0725 14.1022i −0.368062 0.468774i
\(906\) −17.1023 19.2220i −0.568185 0.638609i
\(907\) −47.5891 −1.58017 −0.790085 0.612997i \(-0.789964\pi\)
−0.790085 + 0.612997i \(0.789964\pi\)
\(908\) −41.5693 4.86826i −1.37953 0.161559i
\(909\) 23.7796i 0.788720i
\(910\) 0 0
\(911\) 34.7074i 1.14991i 0.818186 + 0.574954i \(0.194980\pi\)
−0.818186 + 0.574954i \(0.805020\pi\)
\(912\) 7.93395 33.4089i 0.262719 1.10628i
\(913\) 37.8191 1.25163
\(914\) −19.9495 + 17.7495i −0.659870 + 0.587101i
\(915\) 44.6372 35.0472i 1.47566 1.15863i
\(916\) 10.2928 + 1.20540i 0.340082 + 0.0398276i
\(917\) 0 0
\(918\) 15.0170 13.3610i 0.495635 0.440977i
\(919\) 51.8772i 1.71127i −0.517579 0.855635i \(-0.673167\pi\)
0.517579 0.855635i \(-0.326833\pi\)
\(920\) −4.65618 + 15.3427i −0.153510 + 0.505835i
\(921\) −5.67343 −0.186946
\(922\) 36.5661 32.5337i 1.20424 1.07144i
\(923\) 1.13269i 0.0372828i
\(924\) 0 0
\(925\) −34.8127 8.50253i −1.14463 0.279562i
\(926\) 14.1228 + 15.8732i 0.464103 + 0.521627i
\(927\) 3.82275i 0.125556i
\(928\) −5.48012 10.1772i −0.179894 0.334084i
\(929\) 43.7860i 1.43657i −0.695748 0.718286i \(-0.744927\pi\)
0.695748 0.718286i \(-0.255073\pi\)
\(930\) 2.77957 15.4446i 0.0911457 0.506450i
\(931\) 0 0
\(932\) 41.2568 + 4.83166i 1.35141 + 0.158266i
\(933\) 75.0301i 2.45638i
\(934\) 26.8779 23.9138i 0.879471 0.782485i
\(935\) −36.7964 46.8650i −1.20337 1.53265i
\(936\) −7.09265 + 4.96275i −0.231830 + 0.162213i
\(937\) −14.2224 −0.464624 −0.232312 0.972641i \(-0.574629\pi\)
−0.232312 + 0.972641i \(0.574629\pi\)
\(938\) 0 0
\(939\) 16.4937i 0.538251i
\(940\) 5.09187 3.11516i 0.166078 0.101605i
\(941\) 5.54338i 0.180709i 0.995910 + 0.0903544i \(0.0288000\pi\)
−0.995910 + 0.0903544i \(0.971200\pi\)
\(942\) −17.6254 + 15.6817i −0.574267 + 0.510939i
\(943\) 6.73903i 0.219453i
\(944\) −7.43893 1.76660i −0.242116 0.0574979i
\(945\) 0 0
\(946\) 9.12407 8.11789i 0.296649 0.263935i
\(947\) 59.5762 1.93597 0.967983 0.251015i \(-0.0807642\pi\)
0.967983 + 0.251015i \(0.0807642\pi\)
\(948\) −4.67936 + 39.9564i −0.151978 + 1.29772i
\(949\) −6.05225 −0.196464
\(950\) 20.6567 10.9534i 0.670190 0.355375i
\(951\) 48.8163 1.58298
\(952\) 0 0
\(953\) 12.2577i 0.397065i 0.980094 + 0.198532i \(0.0636175\pi\)
−0.980094 + 0.198532i \(0.936383\pi\)
\(954\) 7.15660 6.36739i 0.231703 0.206152i
\(955\) −9.33392 11.8880i −0.302039 0.384686i
\(956\) −41.9704 4.91523i −1.35742 0.158970i
\(957\) 19.1122 0.617811
\(958\) 19.3355 + 21.7321i 0.624703 + 0.702133i
\(959\) 0 0
\(960\) −44.1442 + 14.4275i −1.42475 + 0.465645i
\(961\) −27.3463 −0.882140
\(962\) −6.19650 + 5.51316i −0.199783 + 0.177751i
\(963\) −27.1222 −0.874000
\(964\) −3.61143 0.422941i −0.116316 0.0136220i
\(965\) 3.25893 + 4.15067i 0.104909 + 0.133615i
\(966\) 0 0
\(967\) −53.4551 −1.71900 −0.859499 0.511137i \(-0.829225\pi\)
−0.859499 + 0.511137i \(0.829225\pi\)
\(968\) −4.58819 + 3.21037i −0.147470 + 0.103185i
\(969\) 63.4934i 2.03970i
\(970\) −22.7820 4.10008i −0.731487 0.131646i
\(971\) −22.2567 −0.714253 −0.357126 0.934056i \(-0.616243\pi\)
−0.357126 + 0.934056i \(0.616243\pi\)
\(972\) −43.5887 5.10475i −1.39811 0.163735i
\(973\) 0 0
\(974\) −27.3167 30.7025i −0.875284 0.983772i
\(975\) −10.3188 2.52022i −0.330465 0.0807116i
\(976\) 9.03513 38.0458i 0.289208 1.21782i
\(977\) 31.7948i 1.01721i −0.861001 0.508603i \(-0.830162\pi\)
0.861001 0.508603i \(-0.169838\pi\)
\(978\) −50.6883 + 45.0985i −1.62083 + 1.44209i
\(979\) 38.2369 1.22206
\(980\) 0 0
\(981\) 29.8158 0.951947
\(982\) −10.0565 + 8.94749i −0.320916 + 0.285526i
\(983\) 20.5854i 0.656573i 0.944578 + 0.328287i \(0.106471\pi\)
−0.944578 + 0.328287i \(0.893529\pi\)
\(984\) 15.9934 11.1907i 0.509852 0.356745i
\(985\) −28.0603 35.7384i −0.894074 1.13872i
\(986\) 14.2070 + 15.9679i 0.452444 + 0.508522i
\(987\) 0 0
\(988\) 0.629440 5.37470i 0.0200252 0.170992i
\(989\) 6.07665 0.193226
\(990\) 7.54754 41.9378i 0.239877 1.33287i
\(991\) 37.2779i 1.18417i −0.805875 0.592086i \(-0.798304\pi\)
0.805875 0.592086i \(-0.201696\pi\)
\(992\) −5.12640 9.52034i −0.162763 0.302271i
\(993\) 33.9810 1.07836
\(994\) 0 0
\(995\) −20.1519 + 15.8224i −0.638859 + 0.501605i
\(996\) −6.33993 + 54.1358i −0.200888 + 1.71536i
\(997\) −12.6422 −0.400383 −0.200191 0.979757i \(-0.564156\pi\)
−0.200191 + 0.979757i \(0.564156\pi\)
\(998\) −21.3325 + 18.9800i −0.675269 + 0.600802i
\(999\) 13.7729 0.435755
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.c.d.979.5 32
4.3 odd 2 inner 980.2.c.d.979.26 32
5.4 even 2 inner 980.2.c.d.979.28 32
7.2 even 3 980.2.s.e.619.7 32
7.3 odd 6 980.2.s.e.19.15 32
7.4 even 3 140.2.s.b.19.15 yes 32
7.5 odd 6 140.2.s.b.59.7 yes 32
7.6 odd 2 inner 980.2.c.d.979.6 32
20.19 odd 2 inner 980.2.c.d.979.7 32
28.3 even 6 980.2.s.e.19.10 32
28.11 odd 6 140.2.s.b.19.10 yes 32
28.19 even 6 140.2.s.b.59.2 yes 32
28.23 odd 6 980.2.s.e.619.2 32
28.27 even 2 inner 980.2.c.d.979.25 32
35.4 even 6 140.2.s.b.19.2 32
35.9 even 6 980.2.s.e.619.10 32
35.12 even 12 700.2.p.e.451.2 32
35.18 odd 12 700.2.p.e.551.7 32
35.19 odd 6 140.2.s.b.59.10 yes 32
35.24 odd 6 980.2.s.e.19.2 32
35.32 odd 12 700.2.p.e.551.10 32
35.33 even 12 700.2.p.e.451.15 32
35.34 odd 2 inner 980.2.c.d.979.27 32
140.19 even 6 140.2.s.b.59.15 yes 32
140.39 odd 6 140.2.s.b.19.7 yes 32
140.47 odd 12 700.2.p.e.451.10 32
140.59 even 6 980.2.s.e.19.7 32
140.67 even 12 700.2.p.e.551.2 32
140.79 odd 6 980.2.s.e.619.15 32
140.103 odd 12 700.2.p.e.451.7 32
140.123 even 12 700.2.p.e.551.15 32
140.139 even 2 inner 980.2.c.d.979.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.s.b.19.2 32 35.4 even 6
140.2.s.b.19.7 yes 32 140.39 odd 6
140.2.s.b.19.10 yes 32 28.11 odd 6
140.2.s.b.19.15 yes 32 7.4 even 3
140.2.s.b.59.2 yes 32 28.19 even 6
140.2.s.b.59.7 yes 32 7.5 odd 6
140.2.s.b.59.10 yes 32 35.19 odd 6
140.2.s.b.59.15 yes 32 140.19 even 6
700.2.p.e.451.2 32 35.12 even 12
700.2.p.e.451.7 32 140.103 odd 12
700.2.p.e.451.10 32 140.47 odd 12
700.2.p.e.451.15 32 35.33 even 12
700.2.p.e.551.2 32 140.67 even 12
700.2.p.e.551.7 32 35.18 odd 12
700.2.p.e.551.10 32 35.32 odd 12
700.2.p.e.551.15 32 140.123 even 12
980.2.c.d.979.5 32 1.1 even 1 trivial
980.2.c.d.979.6 32 7.6 odd 2 inner
980.2.c.d.979.7 32 20.19 odd 2 inner
980.2.c.d.979.8 32 140.139 even 2 inner
980.2.c.d.979.25 32 28.27 even 2 inner
980.2.c.d.979.26 32 4.3 odd 2 inner
980.2.c.d.979.27 32 35.34 odd 2 inner
980.2.c.d.979.28 32 5.4 even 2 inner
980.2.s.e.19.2 32 35.24 odd 6
980.2.s.e.19.7 32 140.59 even 6
980.2.s.e.19.10 32 28.3 even 6
980.2.s.e.19.15 32 7.3 odd 6
980.2.s.e.619.2 32 28.23 odd 6
980.2.s.e.619.7 32 7.2 even 3
980.2.s.e.619.10 32 35.9 even 6
980.2.s.e.619.15 32 140.79 odd 6