Properties

Label 980.2.c.d.979.27
Level $980$
Weight $2$
Character 980.979
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(979,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.979"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 979.27
Character \(\chi\) \(=\) 980.979
Dual form 980.2.c.d.979.26

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.940044 + 1.05656i) q^{2} -2.59619i q^{3} +(-0.232633 + 1.98642i) q^{4} +(1.75874 + 1.38089i) q^{5} +(2.74302 - 2.44053i) q^{6} +(-2.31746 + 1.62154i) q^{8} -3.74018 q^{9} +(0.194304 + 3.15630i) q^{10} -3.60275i q^{11} +(5.15713 + 0.603960i) q^{12} +0.818282 q^{13} +(3.58504 - 4.56601i) q^{15} +(-3.89176 - 0.924218i) q^{16} +7.39628 q^{17} +(-3.51594 - 3.95172i) q^{18} +3.30658 q^{19} +(-3.15217 + 3.17236i) q^{20} +(3.80652 - 3.38675i) q^{22} +2.53515 q^{23} +(4.20981 + 6.01656i) q^{24} +(1.18631 + 4.85723i) q^{25} +(0.769222 + 0.864563i) q^{26} +1.92166i q^{27} -2.04334 q^{29} +(8.19435 - 0.504450i) q^{30} +1.91145 q^{31} +(-2.68194 - 4.98068i) q^{32} -9.35342 q^{33} +(6.95283 + 7.81461i) q^{34} +(0.870092 - 7.42959i) q^{36} +7.16720i q^{37} +(3.10833 + 3.49360i) q^{38} -2.12441i q^{39} +(-6.31496 - 0.348291i) q^{40} -2.65824i q^{41} +2.39696 q^{43} +(7.15660 + 0.838121i) q^{44} +(-6.57800 - 5.16476i) q^{45} +(2.38315 + 2.67854i) q^{46} -1.33475i q^{47} +(-2.39944 + 10.1037i) q^{48} +(-4.01676 + 5.81942i) q^{50} -19.2021i q^{51} +(-0.190360 + 1.62546i) q^{52} +1.81101i q^{53} +(-2.03034 + 1.80644i) q^{54} +(4.97499 - 6.33630i) q^{55} -8.58450i q^{57} +(-1.92083 - 2.15891i) q^{58} -1.91145 q^{59} +(8.23603 + 8.18361i) q^{60} -9.77598i q^{61} +(1.79685 + 2.01956i) q^{62} +(2.74124 - 7.51569i) q^{64} +(1.43914 + 1.12995i) q^{65} +(-8.79263 - 9.88244i) q^{66} -9.26225 q^{67} +(-1.72062 + 14.6922i) q^{68} -6.58172i q^{69} +1.38422i q^{71} +(8.66773 - 6.06484i) q^{72} -7.39628 q^{73} +(-7.57256 + 6.73748i) q^{74} +(12.6103 - 3.07989i) q^{75} +(-0.769222 + 6.56827i) q^{76} +(2.24457 - 1.99704i) q^{78} +7.74780i q^{79} +(-5.56835 - 6.99953i) q^{80} -6.23157 q^{81} +(2.80858 - 2.49886i) q^{82} +10.4973i q^{83} +(13.0081 + 10.2134i) q^{85} +(2.25325 + 2.53253i) q^{86} +5.30490i q^{87} +(5.84199 + 8.34924i) q^{88} -10.6132i q^{89} +(-0.726733 - 11.8052i) q^{90} +(-0.589761 + 5.03589i) q^{92} -4.96249i q^{93} +(1.41024 - 1.25473i) q^{94} +(5.81541 + 4.56601i) q^{95} +(-12.9308 + 6.96281i) q^{96} +7.32005 q^{97} +13.4750i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 12 q^{4} - 8 q^{9} - 36 q^{16} + 52 q^{25} + 52 q^{30} - 28 q^{36} + 52 q^{44} + 44 q^{46} + 36 q^{50} - 8 q^{60} + 36 q^{64} + 8 q^{65} - 28 q^{74} - 144 q^{81} + 20 q^{85} - 16 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.940044 + 1.05656i 0.664712 + 0.747100i
\(3\) 2.59619i 1.49891i −0.662056 0.749454i \(-0.730316\pi\)
0.662056 0.749454i \(-0.269684\pi\)
\(4\) −0.232633 + 1.98642i −0.116317 + 0.993212i
\(5\) 1.75874 + 1.38089i 0.786531 + 0.617551i
\(6\) 2.74302 2.44053i 1.11983 0.996342i
\(7\) 0 0
\(8\) −2.31746 + 1.62154i −0.819346 + 0.573300i
\(9\) −3.74018 −1.24673
\(10\) 0.194304 + 3.15630i 0.0614444 + 0.998111i
\(11\) 3.60275i 1.08627i −0.839645 0.543136i \(-0.817237\pi\)
0.839645 0.543136i \(-0.182763\pi\)
\(12\) 5.15713 + 0.603960i 1.48873 + 0.174348i
\(13\) 0.818282 0.226951 0.113475 0.993541i \(-0.463802\pi\)
0.113475 + 0.993541i \(0.463802\pi\)
\(14\) 0 0
\(15\) 3.58504 4.56601i 0.925652 1.17894i
\(16\) −3.89176 0.924218i −0.972941 0.231054i
\(17\) 7.39628 1.79386 0.896931 0.442170i \(-0.145791\pi\)
0.896931 + 0.442170i \(0.145791\pi\)
\(18\) −3.51594 3.95172i −0.828715 0.931431i
\(19\) 3.30658 0.758582 0.379291 0.925277i \(-0.376168\pi\)
0.379291 + 0.925277i \(0.376168\pi\)
\(20\) −3.15217 + 3.17236i −0.704846 + 0.709361i
\(21\) 0 0
\(22\) 3.80652 3.38675i 0.811553 0.722057i
\(23\) 2.53515 0.528615 0.264308 0.964438i \(-0.414857\pi\)
0.264308 + 0.964438i \(0.414857\pi\)
\(24\) 4.20981 + 6.01656i 0.859324 + 1.22812i
\(25\) 1.18631 + 4.85723i 0.237262 + 0.971446i
\(26\) 0.769222 + 0.864563i 0.150857 + 0.169555i
\(27\) 1.92166i 0.369823i
\(28\) 0 0
\(29\) −2.04334 −0.379439 −0.189720 0.981838i \(-0.560758\pi\)
−0.189720 + 0.981838i \(0.560758\pi\)
\(30\) 8.19435 0.504450i 1.49608 0.0920995i
\(31\) 1.91145 0.343307 0.171654 0.985157i \(-0.445089\pi\)
0.171654 + 0.985157i \(0.445089\pi\)
\(32\) −2.68194 4.98068i −0.474104 0.880469i
\(33\) −9.35342 −1.62822
\(34\) 6.95283 + 7.81461i 1.19240 + 1.34019i
\(35\) 0 0
\(36\) 0.870092 7.42959i 0.145015 1.23827i
\(37\) 7.16720i 1.17828i 0.808031 + 0.589140i \(0.200533\pi\)
−0.808031 + 0.589140i \(0.799467\pi\)
\(38\) 3.10833 + 3.49360i 0.504238 + 0.566736i
\(39\) 2.12441i 0.340178i
\(40\) −6.31496 0.348291i −0.998483 0.0550697i
\(41\) 2.65824i 0.415147i −0.978219 0.207573i \(-0.933443\pi\)
0.978219 0.207573i \(-0.0665566\pi\)
\(42\) 0 0
\(43\) 2.39696 0.365533 0.182766 0.983156i \(-0.441495\pi\)
0.182766 + 0.983156i \(0.441495\pi\)
\(44\) 7.15660 + 0.838121i 1.07890 + 0.126352i
\(45\) −6.57800 5.16476i −0.980590 0.769918i
\(46\) 2.38315 + 2.67854i 0.351377 + 0.394929i
\(47\) 1.33475i 0.194694i −0.995251 0.0973468i \(-0.968964\pi\)
0.995251 0.0973468i \(-0.0310356\pi\)
\(48\) −2.39944 + 10.1037i −0.346330 + 1.45835i
\(49\) 0 0
\(50\) −4.01676 + 5.81942i −0.568056 + 0.822990i
\(51\) 19.2021i 2.68884i
\(52\) −0.190360 + 1.62546i −0.0263982 + 0.225410i
\(53\) 1.81101i 0.248761i 0.992235 + 0.124380i \(0.0396943\pi\)
−0.992235 + 0.124380i \(0.960306\pi\)
\(54\) −2.03034 + 1.80644i −0.276295 + 0.245826i
\(55\) 4.97499 6.33630i 0.670827 0.854386i
\(56\) 0 0
\(57\) 8.58450i 1.13705i
\(58\) −1.92083 2.15891i −0.252218 0.283479i
\(59\) −1.91145 −0.248850 −0.124425 0.992229i \(-0.539709\pi\)
−0.124425 + 0.992229i \(0.539709\pi\)
\(60\) 8.23603 + 8.18361i 1.06327 + 1.05650i
\(61\) 9.77598i 1.25169i −0.779949 0.625843i \(-0.784755\pi\)
0.779949 0.625843i \(-0.215245\pi\)
\(62\) 1.79685 + 2.01956i 0.228200 + 0.256485i
\(63\) 0 0
\(64\) 2.74124 7.51569i 0.342655 0.939461i
\(65\) 1.43914 + 1.12995i 0.178504 + 0.140154i
\(66\) −8.79263 9.88244i −1.08230 1.21644i
\(67\) −9.26225 −1.13156 −0.565782 0.824555i \(-0.691426\pi\)
−0.565782 + 0.824555i \(0.691426\pi\)
\(68\) −1.72062 + 14.6922i −0.208656 + 1.78169i
\(69\) 6.58172i 0.792346i
\(70\) 0 0
\(71\) 1.38422i 0.164277i 0.996621 + 0.0821385i \(0.0261750\pi\)
−0.996621 + 0.0821385i \(0.973825\pi\)
\(72\) 8.66773 6.06484i 1.02150 0.714749i
\(73\) −7.39628 −0.865669 −0.432835 0.901473i \(-0.642487\pi\)
−0.432835 + 0.901473i \(0.642487\pi\)
\(74\) −7.57256 + 6.73748i −0.880293 + 0.783216i
\(75\) 12.6103 3.07989i 1.45611 0.355635i
\(76\) −0.769222 + 6.56827i −0.0882358 + 0.753433i
\(77\) 0 0
\(78\) 2.24457 1.99704i 0.254147 0.226121i
\(79\) 7.74780i 0.871695i 0.900021 + 0.435848i \(0.143551\pi\)
−0.900021 + 0.435848i \(0.856449\pi\)
\(80\) −5.56835 6.99953i −0.622560 0.782572i
\(81\) −6.23157 −0.692397
\(82\) 2.80858 2.49886i 0.310156 0.275953i
\(83\) 10.4973i 1.15223i 0.817370 + 0.576113i \(0.195431\pi\)
−0.817370 + 0.576113i \(0.804569\pi\)
\(84\) 0 0
\(85\) 13.0081 + 10.2134i 1.41093 + 1.10780i
\(86\) 2.25325 + 2.53253i 0.242974 + 0.273089i
\(87\) 5.30490i 0.568745i
\(88\) 5.84199 + 8.34924i 0.622759 + 0.890032i
\(89\) 10.6132i 1.12500i −0.826797 0.562500i \(-0.809840\pi\)
0.826797 0.562500i \(-0.190160\pi\)
\(90\) −0.726733 11.8052i −0.0766044 1.24437i
\(91\) 0 0
\(92\) −0.589761 + 5.03589i −0.0614868 + 0.525027i
\(93\) 4.96249i 0.514586i
\(94\) 1.41024 1.25473i 0.145456 0.129415i
\(95\) 5.81541 + 4.56601i 0.596648 + 0.468463i
\(96\) −12.9308 + 6.96281i −1.31974 + 0.710639i
\(97\) 7.32005 0.743239 0.371619 0.928385i \(-0.378803\pi\)
0.371619 + 0.928385i \(0.378803\pi\)
\(98\) 0 0
\(99\) 13.4750i 1.35428i
\(100\) −9.92449 + 1.22657i −0.992449 + 0.122657i
\(101\) 6.35787i 0.632632i 0.948654 + 0.316316i \(0.102446\pi\)
−0.948654 + 0.316316i \(0.897554\pi\)
\(102\) 20.2882 18.0509i 2.00883 1.78730i
\(103\) 1.02208i 0.100708i −0.998731 0.0503541i \(-0.983965\pi\)
0.998731 0.0503541i \(-0.0160350\pi\)
\(104\) −1.89634 + 1.32687i −0.185951 + 0.130111i
\(105\) 0 0
\(106\) −1.91343 + 1.70243i −0.185849 + 0.165354i
\(107\) −7.25156 −0.701035 −0.350517 0.936556i \(-0.613994\pi\)
−0.350517 + 0.936556i \(0.613994\pi\)
\(108\) −3.81722 0.447042i −0.367313 0.0430166i
\(109\) −7.97176 −0.763556 −0.381778 0.924254i \(-0.624688\pi\)
−0.381778 + 0.924254i \(0.624688\pi\)
\(110\) 11.3714 0.700030i 1.08422 0.0667452i
\(111\) 18.6074 1.76613
\(112\) 0 0
\(113\) 7.61610i 0.716462i −0.933633 0.358231i \(-0.883380\pi\)
0.933633 0.358231i \(-0.116620\pi\)
\(114\) 9.07003 8.06981i 0.849486 0.755807i
\(115\) 4.45866 + 3.50075i 0.415773 + 0.326447i
\(116\) 0.475350 4.05895i 0.0441351 0.376864i
\(117\) −3.06053 −0.282946
\(118\) −1.79685 2.01956i −0.165414 0.185916i
\(119\) 0 0
\(120\) −0.904229 + 16.3948i −0.0825444 + 1.49663i
\(121\) −1.97983 −0.179985
\(122\) 10.3289 9.18986i 0.935135 0.832010i
\(123\) −6.90128 −0.622267
\(124\) −0.444668 + 3.79696i −0.0399324 + 0.340977i
\(125\) −4.62086 + 10.1807i −0.413303 + 0.910594i
\(126\) 0 0
\(127\) 8.78136 0.779220 0.389610 0.920980i \(-0.372610\pi\)
0.389610 + 0.920980i \(0.372610\pi\)
\(128\) 10.5177 4.16880i 0.929638 0.368473i
\(129\) 6.22295i 0.547900i
\(130\) 0.158996 + 2.58275i 0.0139448 + 0.226522i
\(131\) −13.3893 −1.16983 −0.584916 0.811094i \(-0.698873\pi\)
−0.584916 + 0.811094i \(0.698873\pi\)
\(132\) 2.17592 18.5799i 0.189389 1.61717i
\(133\) 0 0
\(134\) −8.70692 9.78611i −0.752164 0.845391i
\(135\) −2.65359 + 3.37969i −0.228384 + 0.290877i
\(136\) −17.1406 + 11.9933i −1.46979 + 1.02842i
\(137\) 5.22416i 0.446330i 0.974781 + 0.223165i \(0.0716389\pi\)
−0.974781 + 0.223165i \(0.928361\pi\)
\(138\) 6.95398 6.18711i 0.591962 0.526682i
\(139\) −21.9442 −1.86128 −0.930641 0.365933i \(-0.880750\pi\)
−0.930641 + 0.365933i \(0.880750\pi\)
\(140\) 0 0
\(141\) −3.46527 −0.291828
\(142\) −1.46251 + 1.30123i −0.122731 + 0.109197i
\(143\) 2.94807i 0.246530i
\(144\) 14.5559 + 3.45674i 1.21299 + 0.288062i
\(145\) −3.59370 2.82162i −0.298441 0.234323i
\(146\) −6.95283 7.81461i −0.575421 0.646742i
\(147\) 0 0
\(148\) −14.2371 1.66733i −1.17028 0.137054i
\(149\) −23.9497 −1.96204 −0.981019 0.193914i \(-0.937882\pi\)
−0.981019 + 0.193914i \(0.937882\pi\)
\(150\) 15.1083 + 10.4283i 1.23359 + 0.851464i
\(151\) 7.00761i 0.570271i 0.958487 + 0.285135i \(0.0920386\pi\)
−0.958487 + 0.285135i \(0.907961\pi\)
\(152\) −7.66287 + 5.36174i −0.621541 + 0.434895i
\(153\) −27.6635 −2.23646
\(154\) 0 0
\(155\) 3.36174 + 2.63950i 0.270022 + 0.212010i
\(156\) 4.21999 + 0.494210i 0.337869 + 0.0395684i
\(157\) 6.42554 0.512814 0.256407 0.966569i \(-0.417461\pi\)
0.256407 + 0.966569i \(0.417461\pi\)
\(158\) −8.18600 + 7.28327i −0.651243 + 0.579426i
\(159\) 4.70171 0.372870
\(160\) 2.16092 12.4632i 0.170836 0.985299i
\(161\) 0 0
\(162\) −5.85796 6.58403i −0.460245 0.517290i
\(163\) −18.4790 −1.44739 −0.723693 0.690122i \(-0.757557\pi\)
−0.723693 + 0.690122i \(0.757557\pi\)
\(164\) 5.28038 + 0.618395i 0.412329 + 0.0482885i
\(165\) −16.4502 12.9160i −1.28065 1.00551i
\(166\) −11.0910 + 9.86790i −0.860827 + 0.765898i
\(167\) 1.82894i 0.141527i 0.997493 + 0.0707637i \(0.0225436\pi\)
−0.997493 + 0.0707637i \(0.977456\pi\)
\(168\) 0 0
\(169\) −12.3304 −0.948493
\(170\) 1.43713 + 23.3449i 0.110223 + 1.79047i
\(171\) −12.3672 −0.945745
\(172\) −0.557613 + 4.76137i −0.0425176 + 0.363051i
\(173\) 15.2495 1.15940 0.579700 0.814830i \(-0.303170\pi\)
0.579700 + 0.814830i \(0.303170\pi\)
\(174\) −5.60494 + 4.98684i −0.424909 + 0.378051i
\(175\) 0 0
\(176\) −3.32973 + 14.0211i −0.250988 + 1.05688i
\(177\) 4.96249i 0.373004i
\(178\) 11.2135 9.97691i 0.840488 0.747801i
\(179\) 12.5369i 0.937050i −0.883450 0.468525i \(-0.844786\pi\)
0.883450 0.468525i \(-0.155214\pi\)
\(180\) 11.7897 11.8652i 0.878751 0.884380i
\(181\) 8.01839i 0.596002i 0.954566 + 0.298001i \(0.0963199\pi\)
−0.954566 + 0.298001i \(0.903680\pi\)
\(182\) 0 0
\(183\) −25.3803 −1.87616
\(184\) −5.87511 + 4.11084i −0.433119 + 0.303055i
\(185\) −9.89707 + 12.6052i −0.727647 + 0.926754i
\(186\) 5.24316 4.66496i 0.384447 0.342051i
\(187\) 26.6470i 1.94862i
\(188\) 2.65139 + 0.310508i 0.193372 + 0.0226461i
\(189\) 0 0
\(190\) 0.642483 + 10.4366i 0.0466106 + 0.757148i
\(191\) 6.75938i 0.489091i −0.969638 0.244546i \(-0.921361\pi\)
0.969638 0.244546i \(-0.0786388\pi\)
\(192\) −19.5121 7.11678i −1.40817 0.513609i
\(193\) 2.36003i 0.169878i −0.996386 0.0849392i \(-0.972930\pi\)
0.996386 0.0849392i \(-0.0270696\pi\)
\(194\) 6.88118 + 7.73407i 0.494040 + 0.555274i
\(195\) 2.93357 3.73628i 0.210077 0.267561i
\(196\) 0 0
\(197\) 20.3205i 1.44777i 0.689918 + 0.723887i \(0.257647\pi\)
−0.689918 + 0.723887i \(0.742353\pi\)
\(198\) −14.2371 + 12.6671i −1.01179 + 0.900209i
\(199\) 11.4582 0.812249 0.406125 0.913818i \(-0.366880\pi\)
0.406125 + 0.913818i \(0.366880\pi\)
\(200\) −10.6254 9.33278i −0.751329 0.659928i
\(201\) 24.0465i 1.69611i
\(202\) −6.71746 + 5.97668i −0.472639 + 0.420518i
\(203\) 0 0
\(204\) 38.1436 + 4.46706i 2.67058 + 0.312757i
\(205\) 3.67072 4.67514i 0.256374 0.326526i
\(206\) 1.07988 0.960796i 0.0752390 0.0669419i
\(207\) −9.48193 −0.659040
\(208\) −3.18456 0.756271i −0.220810 0.0524380i
\(209\) 11.9128i 0.824026i
\(210\) 0 0
\(211\) 22.0647i 1.51900i −0.650510 0.759498i \(-0.725445\pi\)
0.650510 0.759498i \(-0.274555\pi\)
\(212\) −3.59743 0.421301i −0.247072 0.0289350i
\(213\) 3.59370 0.246236
\(214\) −6.81679 7.66170i −0.465986 0.523743i
\(215\) 4.21562 + 3.30992i 0.287503 + 0.225735i
\(216\) −3.11603 4.45336i −0.212019 0.303013i
\(217\) 0 0
\(218\) −7.49381 8.42263i −0.507545 0.570453i
\(219\) 19.2021i 1.29756i
\(220\) 11.4292 + 11.3565i 0.770558 + 0.765653i
\(221\) 6.05225 0.407118
\(222\) 17.4918 + 19.6598i 1.17397 + 1.31948i
\(223\) 23.5776i 1.57887i −0.613833 0.789436i \(-0.710373\pi\)
0.613833 0.789436i \(-0.289627\pi\)
\(224\) 0 0
\(225\) −4.43703 18.1669i −0.295802 1.21113i
\(226\) 8.04686 7.15947i 0.535269 0.476241i
\(227\) 20.9267i 1.38896i 0.719514 + 0.694478i \(0.244364\pi\)
−0.719514 + 0.694478i \(0.755636\pi\)
\(228\) 17.0525 + 1.99704i 1.12933 + 0.132257i
\(229\) 5.18155i 0.342406i 0.985236 + 0.171203i \(0.0547655\pi\)
−0.985236 + 0.171203i \(0.945235\pi\)
\(230\) 0.492590 + 8.00170i 0.0324804 + 0.527617i
\(231\) 0 0
\(232\) 4.73536 3.31335i 0.310892 0.217532i
\(233\) 20.7694i 1.36065i 0.732912 + 0.680324i \(0.238161\pi\)
−0.732912 + 0.680324i \(0.761839\pi\)
\(234\) −2.87703 3.23363i −0.188077 0.211389i
\(235\) 1.84314 2.34748i 0.120233 0.153133i
\(236\) 0.444668 3.79696i 0.0289454 0.247161i
\(237\) 20.1147 1.30659
\(238\) 0 0
\(239\) 21.1286i 1.36670i 0.730092 + 0.683349i \(0.239477\pi\)
−0.730092 + 0.683349i \(0.760523\pi\)
\(240\) −18.1721 + 14.4565i −1.17300 + 0.933161i
\(241\) 1.81806i 0.117111i −0.998284 0.0585557i \(-0.981350\pi\)
0.998284 0.0585557i \(-0.0186495\pi\)
\(242\) −1.86113 2.09181i −0.119638 0.134467i
\(243\) 21.9433i 1.40766i
\(244\) 19.4192 + 2.27422i 1.24319 + 0.145592i
\(245\) 0 0
\(246\) −6.48750 7.29160i −0.413628 0.464896i
\(247\) 2.70572 0.172161
\(248\) −4.42972 + 3.09949i −0.281287 + 0.196818i
\(249\) 27.2529 1.72708
\(250\) −15.1004 + 4.68814i −0.955032 + 0.296504i
\(251\) −14.0187 −0.884856 −0.442428 0.896804i \(-0.645883\pi\)
−0.442428 + 0.896804i \(0.645883\pi\)
\(252\) 0 0
\(253\) 9.13352i 0.574220i
\(254\) 8.25487 + 9.27803i 0.517957 + 0.582155i
\(255\) 26.5159 33.7715i 1.66049 2.11485i
\(256\) 14.2916 + 7.19367i 0.893228 + 0.449605i
\(257\) −17.8725 −1.11485 −0.557427 0.830226i \(-0.688211\pi\)
−0.557427 + 0.830226i \(0.688211\pi\)
\(258\) 6.57491 5.84985i 0.409336 0.364196i
\(259\) 0 0
\(260\) −2.57936 + 2.59588i −0.159965 + 0.160990i
\(261\) 7.64248 0.473057
\(262\) −12.5866 14.1466i −0.777601 0.873982i
\(263\) 21.8965 1.35019 0.675097 0.737729i \(-0.264102\pi\)
0.675097 + 0.737729i \(0.264102\pi\)
\(264\) 21.6762 15.1669i 1.33408 0.933459i
\(265\) −2.50079 + 3.18508i −0.153622 + 0.195658i
\(266\) 0 0
\(267\) −27.5539 −1.68627
\(268\) 2.15471 18.3988i 0.131620 1.12388i
\(269\) 2.88283i 0.175769i −0.996131 0.0878847i \(-0.971989\pi\)
0.996131 0.0878847i \(-0.0280107\pi\)
\(270\) −6.06533 + 0.373386i −0.369124 + 0.0227235i
\(271\) −16.9559 −1.02999 −0.514997 0.857192i \(-0.672207\pi\)
−0.514997 + 0.857192i \(0.672207\pi\)
\(272\) −28.7846 6.83578i −1.74532 0.414480i
\(273\) 0 0
\(274\) −5.51963 + 4.91094i −0.333453 + 0.296681i
\(275\) 17.4994 4.27399i 1.05525 0.257731i
\(276\) 13.0741 + 1.53113i 0.786968 + 0.0921632i
\(277\) 26.8515i 1.61335i 0.590993 + 0.806677i \(0.298736\pi\)
−0.590993 + 0.806677i \(0.701264\pi\)
\(278\) −20.6285 23.1853i −1.23722 1.39056i
\(279\) −7.14919 −0.428011
\(280\) 0 0
\(281\) 24.9497 1.48838 0.744188 0.667971i \(-0.232837\pi\)
0.744188 + 0.667971i \(0.232837\pi\)
\(282\) −3.25750 3.66126i −0.193982 0.218025i
\(283\) 9.83821i 0.584821i −0.956293 0.292410i \(-0.905543\pi\)
0.956293 0.292410i \(-0.0944573\pi\)
\(284\) −2.74966 0.322017i −0.163162 0.0191082i
\(285\) 11.8542 15.0979i 0.702183 0.894321i
\(286\) 3.11481 2.77132i 0.184183 0.163871i
\(287\) 0 0
\(288\) 10.0309 + 18.6287i 0.591079 + 1.09770i
\(289\) 37.7050 2.21794
\(290\) −0.397030 6.44941i −0.0233144 0.378722i
\(291\) 19.0042i 1.11405i
\(292\) 1.72062 14.6922i 0.100692 0.859793i
\(293\) 23.4039 1.36727 0.683636 0.729823i \(-0.260398\pi\)
0.683636 + 0.729823i \(0.260398\pi\)
\(294\) 0 0
\(295\) −3.36174 2.63950i −0.195728 0.153678i
\(296\) −11.6219 16.6097i −0.675507 0.965419i
\(297\) 6.92325 0.401728
\(298\) −22.5138 25.3043i −1.30419 1.46584i
\(299\) 2.07447 0.119970
\(300\) 3.18439 + 25.7658i 0.183851 + 1.48759i
\(301\) 0 0
\(302\) −7.40395 + 6.58746i −0.426049 + 0.379066i
\(303\) 16.5062 0.948257
\(304\) −12.8684 3.05600i −0.738055 0.175274i
\(305\) 13.4995 17.1934i 0.772980 0.984490i
\(306\) −26.0049 29.2281i −1.48660 1.67086i
\(307\) 2.18529i 0.124721i −0.998054 0.0623606i \(-0.980137\pi\)
0.998054 0.0623606i \(-0.0198629\pi\)
\(308\) 0 0
\(309\) −2.65350 −0.150952
\(310\) 0.371403 + 6.03313i 0.0210943 + 0.342659i
\(311\) −28.9001 −1.63878 −0.819388 0.573239i \(-0.805687\pi\)
−0.819388 + 0.573239i \(0.805687\pi\)
\(312\) 3.44481 + 4.92324i 0.195024 + 0.278724i
\(313\) −6.35304 −0.359095 −0.179548 0.983749i \(-0.557463\pi\)
−0.179548 + 0.983749i \(0.557463\pi\)
\(314\) 6.04030 + 6.78897i 0.340874 + 0.383124i
\(315\) 0 0
\(316\) −15.3904 1.80240i −0.865778 0.101393i
\(317\) 18.8031i 1.05609i −0.849218 0.528043i \(-0.822926\pi\)
0.849218 0.528043i \(-0.177074\pi\)
\(318\) 4.41981 + 4.96763i 0.247851 + 0.278571i
\(319\) 7.36166i 0.412174i
\(320\) 15.1994 9.43278i 0.849674 0.527308i
\(321\) 18.8264i 1.05079i
\(322\) 0 0
\(323\) 24.4564 1.36079
\(324\) 1.44967 12.3786i 0.0805374 0.687697i
\(325\) 0.970738 + 3.97458i 0.0538469 + 0.220470i
\(326\) −17.3711 19.5241i −0.962095 1.08134i
\(327\) 20.6962i 1.14450i
\(328\) 4.31042 + 6.16035i 0.238003 + 0.340149i
\(329\) 0 0
\(330\) −1.81741 29.5222i −0.100045 1.62514i
\(331\) 13.0888i 0.719427i 0.933063 + 0.359713i \(0.117126\pi\)
−0.933063 + 0.359713i \(0.882874\pi\)
\(332\) −20.8520 2.44202i −1.14440 0.134023i
\(333\) 26.8066i 1.46899i
\(334\) −1.93238 + 1.71928i −0.105735 + 0.0940749i
\(335\) −16.2899 12.7901i −0.890010 0.698798i
\(336\) 0 0
\(337\) 11.7319i 0.639079i 0.947573 + 0.319539i \(0.103528\pi\)
−0.947573 + 0.319539i \(0.896472\pi\)
\(338\) −11.5911 13.0278i −0.630475 0.708619i
\(339\) −19.7728 −1.07391
\(340\) −23.3143 + 23.4637i −1.26440 + 1.27250i
\(341\) 6.88650i 0.372925i
\(342\) −11.6257 13.0667i −0.628648 0.706566i
\(343\) 0 0
\(344\) −5.55485 + 3.88675i −0.299498 + 0.209560i
\(345\) 9.08861 11.5755i 0.489314 0.623205i
\(346\) 14.3352 + 16.1120i 0.770666 + 0.866187i
\(347\) 4.41171 0.236833 0.118416 0.992964i \(-0.462218\pi\)
0.118416 + 0.992964i \(0.462218\pi\)
\(348\) −10.5378 1.23410i −0.564884 0.0661545i
\(349\) 18.3479i 0.982142i −0.871120 0.491071i \(-0.836606\pi\)
0.871120 0.491071i \(-0.163394\pi\)
\(350\) 0 0
\(351\) 1.57246i 0.0839316i
\(352\) −17.9442 + 9.66237i −0.956428 + 0.515006i
\(353\) 11.7481 0.625289 0.312645 0.949870i \(-0.398785\pi\)
0.312645 + 0.949870i \(0.398785\pi\)
\(354\) −5.24316 + 4.66496i −0.278671 + 0.247940i
\(355\) −1.91145 + 2.43449i −0.101449 + 0.129209i
\(356\) 21.0824 + 2.46899i 1.11736 + 0.130856i
\(357\) 0 0
\(358\) 13.2459 11.7852i 0.700070 0.622868i
\(359\) 0.197902i 0.0104449i 0.999986 + 0.00522243i \(0.00166236\pi\)
−0.999986 + 0.00522243i \(0.998338\pi\)
\(360\) 23.6191 + 1.30267i 1.24484 + 0.0686569i
\(361\) −8.06652 −0.424554
\(362\) −8.47190 + 7.53764i −0.445273 + 0.396170i
\(363\) 5.14002i 0.269781i
\(364\) 0 0
\(365\) −13.0081 10.2134i −0.680876 0.534595i
\(366\) −23.8586 26.8158i −1.24711 1.40168i
\(367\) 7.52824i 0.392971i −0.980507 0.196485i \(-0.937047\pi\)
0.980507 0.196485i \(-0.0629528\pi\)
\(368\) −9.86621 2.34303i −0.514312 0.122139i
\(369\) 9.94229i 0.517575i
\(370\) −22.6218 + 1.39262i −1.17605 + 0.0723987i
\(371\) 0 0
\(372\) 9.85761 + 1.15444i 0.511093 + 0.0598550i
\(373\) 31.1392i 1.61233i −0.591693 0.806164i \(-0.701540\pi\)
0.591693 0.806164i \(-0.298460\pi\)
\(374\) 28.1541 25.0493i 1.45581 1.29527i
\(375\) 26.4311 + 11.9966i 1.36490 + 0.619503i
\(376\) 2.16435 + 3.09324i 0.111618 + 0.159521i
\(377\) −1.67203 −0.0861140
\(378\) 0 0
\(379\) 16.3396i 0.839307i −0.907684 0.419654i \(-0.862152\pi\)
0.907684 0.419654i \(-0.137848\pi\)
\(380\) −10.4229 + 10.4897i −0.534683 + 0.538108i
\(381\) 22.7981i 1.16798i
\(382\) 7.14168 6.35411i 0.365400 0.325105i
\(383\) 8.84868i 0.452147i −0.974110 0.226073i \(-0.927411\pi\)
0.974110 0.226073i \(-0.0725889\pi\)
\(384\) −10.8230 27.3058i −0.552307 1.39344i
\(385\) 0 0
\(386\) 2.49351 2.21853i 0.126916 0.112920i
\(387\) −8.96506 −0.455720
\(388\) −1.70289 + 14.5407i −0.0864511 + 0.738194i
\(389\) 9.34528 0.473824 0.236912 0.971531i \(-0.423865\pi\)
0.236912 + 0.971531i \(0.423865\pi\)
\(390\) 6.70529 0.412782i 0.339536 0.0209020i
\(391\) 18.7507 0.948263
\(392\) 0 0
\(393\) 34.7612i 1.75347i
\(394\) −21.4698 + 19.1022i −1.08163 + 0.962353i
\(395\) −10.6988 + 13.6263i −0.538316 + 0.685615i
\(396\) −26.7670 3.13473i −1.34509 0.157526i
\(397\) 20.3026 1.01896 0.509480 0.860482i \(-0.329838\pi\)
0.509480 + 0.860482i \(0.329838\pi\)
\(398\) 10.7712 + 12.1063i 0.539912 + 0.606831i
\(399\) 0 0
\(400\) −0.127710 19.9996i −0.00638551 0.999980i
\(401\) −11.0867 −0.553643 −0.276821 0.960921i \(-0.589281\pi\)
−0.276821 + 0.960921i \(0.589281\pi\)
\(402\) −25.4066 + 22.6048i −1.26716 + 1.12742i
\(403\) 1.56411 0.0779138
\(404\) −12.6294 1.47905i −0.628338 0.0735857i
\(405\) −10.9597 8.60509i −0.544592 0.427590i
\(406\) 0 0
\(407\) 25.8216 1.27993
\(408\) 31.1369 + 44.5002i 1.54151 + 2.20309i
\(409\) 5.88680i 0.291084i −0.989352 0.145542i \(-0.953507\pi\)
0.989352 0.145542i \(-0.0464925\pi\)
\(410\) 8.39020 0.516506i 0.414362 0.0255084i
\(411\) 13.5629 0.669008
\(412\) 2.03028 + 0.237769i 0.100025 + 0.0117140i
\(413\) 0 0
\(414\) −8.91343 10.0182i −0.438071 0.492369i
\(415\) −14.4955 + 18.4619i −0.711557 + 0.906261i
\(416\) −2.19458 4.07560i −0.107598 0.199823i
\(417\) 56.9712i 2.78989i
\(418\) 12.5866 11.1986i 0.615629 0.547739i
\(419\) 16.7262 0.817126 0.408563 0.912730i \(-0.366030\pi\)
0.408563 + 0.912730i \(0.366030\pi\)
\(420\) 0 0
\(421\) −1.18823 −0.0579109 −0.0289555 0.999581i \(-0.509218\pi\)
−0.0289555 + 0.999581i \(0.509218\pi\)
\(422\) 23.3126 20.7418i 1.13484 1.00969i
\(423\) 4.99222i 0.242730i
\(424\) −2.93661 4.19693i −0.142614 0.203821i
\(425\) 8.77430 + 35.9254i 0.425616 + 1.74264i
\(426\) 3.37824 + 3.79696i 0.163676 + 0.183963i
\(427\) 0 0
\(428\) 1.68696 14.4047i 0.0815421 0.696276i
\(429\) −7.65374 −0.369526
\(430\) 0.465739 + 7.56552i 0.0224599 + 0.364842i
\(431\) 24.0950i 1.16061i 0.814398 + 0.580307i \(0.197068\pi\)
−0.814398 + 0.580307i \(0.802932\pi\)
\(432\) 1.77603 7.47863i 0.0854492 0.359816i
\(433\) 14.9805 0.719916 0.359958 0.932968i \(-0.382791\pi\)
0.359958 + 0.932968i \(0.382791\pi\)
\(434\) 0 0
\(435\) −7.32546 + 9.32992i −0.351229 + 0.447335i
\(436\) 1.85450 15.8353i 0.0888144 0.758373i
\(437\) 8.38268 0.400998
\(438\) −20.2882 + 18.0509i −0.969407 + 0.862503i
\(439\) −17.3253 −0.826893 −0.413446 0.910528i \(-0.635675\pi\)
−0.413446 + 0.910528i \(0.635675\pi\)
\(440\) −1.25481 + 22.7512i −0.0598206 + 1.08462i
\(441\) 0 0
\(442\) 5.68938 + 6.39456i 0.270616 + 0.304158i
\(443\) 25.2325 1.19883 0.599416 0.800438i \(-0.295400\pi\)
0.599416 + 0.800438i \(0.295400\pi\)
\(444\) −4.32870 + 36.9621i −0.205431 + 1.75415i
\(445\) 14.6557 18.6659i 0.694745 0.884848i
\(446\) 24.9111 22.1640i 1.17957 1.04949i
\(447\) 62.1779i 2.94091i
\(448\) 0 0
\(449\) 7.06145 0.333251 0.166625 0.986020i \(-0.446713\pi\)
0.166625 + 0.986020i \(0.446713\pi\)
\(450\) 15.0234 21.7657i 0.708211 1.02604i
\(451\) −9.57697 −0.450962
\(452\) 15.1288 + 1.77176i 0.711599 + 0.0833365i
\(453\) 18.1931 0.854784
\(454\) −22.1103 + 19.6720i −1.03769 + 0.923255i
\(455\) 0 0
\(456\) 13.9201 + 19.8942i 0.651867 + 0.931633i
\(457\) 18.8816i 0.883242i 0.897202 + 0.441621i \(0.145596\pi\)
−0.897202 + 0.441621i \(0.854404\pi\)
\(458\) −5.47461 + 4.87089i −0.255812 + 0.227602i
\(459\) 14.2131i 0.663411i
\(460\) −7.99121 + 8.04241i −0.372592 + 0.374979i
\(461\) 34.6087i 1.61189i −0.591992 0.805944i \(-0.701658\pi\)
0.591992 0.805944i \(-0.298342\pi\)
\(462\) 0 0
\(463\) 15.0235 0.698202 0.349101 0.937085i \(-0.386487\pi\)
0.349101 + 0.937085i \(0.386487\pi\)
\(464\) 7.95221 + 1.88849i 0.369172 + 0.0876711i
\(465\) 6.85263 8.72772i 0.317783 0.404738i
\(466\) −21.9441 + 19.5241i −1.01654 + 0.904439i
\(467\) 25.4391i 1.17718i 0.808432 + 0.588590i \(0.200317\pi\)
−0.808432 + 0.588590i \(0.799683\pi\)
\(468\) 0.711981 6.07950i 0.0329113 0.281025i
\(469\) 0 0
\(470\) 4.21288 0.259348i 0.194326 0.0119628i
\(471\) 16.6819i 0.768662i
\(472\) 4.42972 3.09949i 0.203894 0.142666i
\(473\) 8.63565i 0.397067i
\(474\) 18.9087 + 21.2524i 0.868507 + 0.976155i
\(475\) 3.92264 + 16.0608i 0.179983 + 0.736921i
\(476\) 0 0
\(477\) 6.77350i 0.310137i
\(478\) −22.3237 + 19.8619i −1.02106 + 0.908460i
\(479\) 20.5688 0.939811 0.469905 0.882717i \(-0.344288\pi\)
0.469905 + 0.882717i \(0.344288\pi\)
\(480\) −32.3567 5.61016i −1.47687 0.256068i
\(481\) 5.86479i 0.267411i
\(482\) 1.92089 1.70906i 0.0874939 0.0778453i
\(483\) 0 0
\(484\) 0.460576 3.93279i 0.0209353 0.178763i
\(485\) 12.8741 + 10.1082i 0.584581 + 0.458988i
\(486\) −23.1844 + 20.6277i −1.05167 + 0.935690i
\(487\) −29.0590 −1.31679 −0.658394 0.752674i \(-0.728764\pi\)
−0.658394 + 0.752674i \(0.728764\pi\)
\(488\) 15.8521 + 22.6554i 0.717591 + 1.02556i
\(489\) 47.9749i 2.16950i
\(490\) 0 0
\(491\) 9.51815i 0.429548i −0.976664 0.214774i \(-0.931098\pi\)
0.976664 0.214774i \(-0.0689015\pi\)
\(492\) 1.60547 13.7089i 0.0723801 0.618043i
\(493\) −15.1131 −0.680662
\(494\) 2.54349 + 2.85875i 0.114437 + 0.128621i
\(495\) −18.6074 + 23.6989i −0.836339 + 1.06519i
\(496\) −7.43893 1.76660i −0.334018 0.0793226i
\(497\) 0 0
\(498\) 25.6189 + 28.7943i 1.14801 + 1.29030i
\(499\) 20.1905i 0.903853i −0.892055 0.451927i \(-0.850737\pi\)
0.892055 0.451927i \(-0.149263\pi\)
\(500\) −19.1483 11.5474i −0.856339 0.516414i
\(501\) 4.74826 0.212137
\(502\) −13.1782 14.8116i −0.588174 0.661076i
\(503\) 13.3134i 0.593616i −0.954937 0.296808i \(-0.904078\pi\)
0.954937 0.296808i \(-0.0959221\pi\)
\(504\) 0 0
\(505\) −8.77949 + 11.1818i −0.390682 + 0.497585i
\(506\) 9.65011 8.58592i 0.429000 0.381691i
\(507\) 32.0121i 1.42171i
\(508\) −2.04284 + 17.4435i −0.0906363 + 0.773931i
\(509\) 14.3523i 0.636153i 0.948065 + 0.318077i \(0.103037\pi\)
−0.948065 + 0.318077i \(0.896963\pi\)
\(510\) 60.6077 3.73105i 2.68376 0.165214i
\(511\) 0 0
\(512\) 5.83424 + 21.8623i 0.257839 + 0.966188i
\(513\) 6.35411i 0.280541i
\(514\) −16.8009 18.8833i −0.741057 0.832908i
\(515\) 1.41137 1.79756i 0.0621924 0.0792101i
\(516\) 12.3614 + 1.44767i 0.544181 + 0.0637299i
\(517\) −4.80879 −0.211490
\(518\) 0 0
\(519\) 39.5906i 1.73783i
\(520\) −5.16742 0.285000i −0.226606 0.0124981i
\(521\) 36.9009i 1.61666i 0.588730 + 0.808330i \(0.299628\pi\)
−0.588730 + 0.808330i \(0.700372\pi\)
\(522\) 7.18427 + 8.07473i 0.314447 + 0.353421i
\(523\) 18.1502i 0.793652i −0.917894 0.396826i \(-0.870112\pi\)
0.917894 0.396826i \(-0.129888\pi\)
\(524\) 3.11481 26.5969i 0.136071 1.16189i
\(525\) 0 0
\(526\) 20.5837 + 23.1349i 0.897490 + 1.00873i
\(527\) 14.1377 0.615846
\(528\) 36.4013 + 8.64460i 1.58416 + 0.376208i
\(529\) −16.5730 −0.720566
\(530\) −5.71608 + 0.351886i −0.248291 + 0.0152850i
\(531\) 7.14919 0.310248
\(532\) 0 0
\(533\) 2.17519i 0.0942178i
\(534\) −25.9019 29.1124i −1.12089 1.25981i
\(535\) −12.7536 10.0136i −0.551386 0.432924i
\(536\) 21.4649 15.0191i 0.927142 0.648725i
\(537\) −32.5481 −1.40455
\(538\) 3.04588 2.70999i 0.131317 0.116836i
\(539\) 0 0
\(540\) −6.09618 6.05738i −0.262338 0.260668i
\(541\) −18.7526 −0.806236 −0.403118 0.915148i \(-0.632074\pi\)
−0.403118 + 0.915148i \(0.632074\pi\)
\(542\) −15.9393 17.9149i −0.684649 0.769509i
\(543\) 20.8172 0.893353
\(544\) −19.8364 36.8385i −0.850478 1.57944i
\(545\) −14.0202 11.0081i −0.600561 0.471535i
\(546\) 0 0
\(547\) −34.1580 −1.46049 −0.730246 0.683185i \(-0.760594\pi\)
−0.730246 + 0.683185i \(0.760594\pi\)
\(548\) −10.3774 1.21531i −0.443300 0.0519157i
\(549\) 36.5640i 1.56051i
\(550\) 20.9659 + 14.4714i 0.893990 + 0.617063i
\(551\) −6.75648 −0.287836
\(552\) 10.6725 + 15.2529i 0.454252 + 0.649206i
\(553\) 0 0
\(554\) −28.3702 + 25.2416i −1.20534 + 1.07241i
\(555\) 32.7255 + 25.6947i 1.38912 + 1.09068i
\(556\) 5.10495 43.5905i 0.216498 1.84865i
\(557\) 40.4367i 1.71336i −0.515851 0.856679i \(-0.672524\pi\)
0.515851 0.856679i \(-0.327476\pi\)
\(558\) −6.72055 7.55354i −0.284504 0.319767i
\(559\) 1.96139 0.0829579
\(560\) 0 0
\(561\) −69.1805 −2.92080
\(562\) 23.4538 + 26.3608i 0.989340 + 1.11197i
\(563\) 0.318930i 0.0134413i −0.999977 0.00672065i \(-0.997861\pi\)
0.999977 0.00672065i \(-0.00213926\pi\)
\(564\) 0.806137 6.88349i 0.0339445 0.289847i
\(565\) 10.5170 13.3947i 0.442452 0.563520i
\(566\) 10.3946 9.24835i 0.436920 0.388737i
\(567\) 0 0
\(568\) −2.24457 3.20788i −0.0941800 0.134600i
\(569\) 30.6115 1.28330 0.641651 0.766997i \(-0.278250\pi\)
0.641651 + 0.766997i \(0.278250\pi\)
\(570\) 27.0953 1.66800i 1.13490 0.0698650i
\(571\) 8.48799i 0.355211i 0.984102 + 0.177606i \(0.0568351\pi\)
−0.984102 + 0.177606i \(0.943165\pi\)
\(572\) 5.85612 + 0.685820i 0.244857 + 0.0286756i
\(573\) −17.5486 −0.733103
\(574\) 0 0
\(575\) 3.00748 + 12.3138i 0.125421 + 0.513521i
\(576\) −10.2528 + 28.1101i −0.427198 + 1.17125i
\(577\) 3.36502 0.140088 0.0700438 0.997544i \(-0.477686\pi\)
0.0700438 + 0.997544i \(0.477686\pi\)
\(578\) 35.4444 + 39.8376i 1.47429 + 1.65702i
\(579\) −6.12707 −0.254632
\(580\) 6.44095 6.48221i 0.267446 0.269159i
\(581\) 0 0
\(582\) 20.0791 17.8648i 0.832305 0.740520i
\(583\) 6.52461 0.270222
\(584\) 17.1406 11.9933i 0.709283 0.496288i
\(585\) −5.38266 4.22624i −0.222546 0.174733i
\(586\) 22.0007 + 24.7276i 0.908842 + 1.02149i
\(587\) 2.02359i 0.0835225i −0.999128 0.0417613i \(-0.986703\pi\)
0.999128 0.0417613i \(-0.0132969\pi\)
\(588\) 0 0
\(589\) 6.32038 0.260427
\(590\) −0.371403 6.03313i −0.0152904 0.248380i
\(591\) 52.7558 2.17008
\(592\) 6.62405 27.8930i 0.272247 1.14640i
\(593\) 26.8258 1.10160 0.550802 0.834636i \(-0.314322\pi\)
0.550802 + 0.834636i \(0.314322\pi\)
\(594\) 6.50817 + 7.31483i 0.267033 + 0.300131i
\(595\) 0 0
\(596\) 5.57151 47.5743i 0.228218 1.94872i
\(597\) 29.7476i 1.21749i
\(598\) 1.95009 + 2.19180i 0.0797452 + 0.0896293i
\(599\) 37.0618i 1.51430i 0.653239 + 0.757152i \(0.273410\pi\)
−0.653239 + 0.757152i \(0.726590\pi\)
\(600\) −24.2296 + 27.5855i −0.989171 + 1.12617i
\(601\) 1.27911i 0.0521761i −0.999660 0.0260880i \(-0.991695\pi\)
0.999660 0.0260880i \(-0.00830503\pi\)
\(602\) 0 0
\(603\) 34.6425 1.41075
\(604\) −13.9201 1.63020i −0.566400 0.0663320i
\(605\) −3.48201 2.73392i −0.141564 0.111150i
\(606\) 15.5166 + 17.4398i 0.630318 + 0.708443i
\(607\) 22.6090i 0.917672i −0.888521 0.458836i \(-0.848267\pi\)
0.888521 0.458836i \(-0.151733\pi\)
\(608\) −8.86805 16.4690i −0.359647 0.667907i
\(609\) 0 0
\(610\) 30.8560 1.89951i 1.24932 0.0769091i
\(611\) 1.09220i 0.0441859i
\(612\) 6.43545 54.9514i 0.260138 2.22128i
\(613\) 3.01945i 0.121955i −0.998139 0.0609773i \(-0.980578\pi\)
0.998139 0.0609773i \(-0.0194217\pi\)
\(614\) 2.30889 2.05427i 0.0931792 0.0829037i
\(615\) −12.1375 9.52987i −0.489432 0.384281i
\(616\) 0 0
\(617\) 14.3344i 0.577081i −0.957468 0.288540i \(-0.906830\pi\)
0.957468 0.288540i \(-0.0931700\pi\)
\(618\) −2.49441 2.80358i −0.100340 0.112776i
\(619\) 21.7973 0.876109 0.438055 0.898948i \(-0.355668\pi\)
0.438055 + 0.898948i \(0.355668\pi\)
\(620\) −6.02522 + 6.06382i −0.241979 + 0.243529i
\(621\) 4.87169i 0.195494i
\(622\) −27.1674 30.5347i −1.08931 1.22433i
\(623\) 0 0
\(624\) −1.96342 + 8.26771i −0.0785997 + 0.330973i
\(625\) −22.1853 + 11.5244i −0.887413 + 0.460975i
\(626\) −5.97214 6.71236i −0.238695 0.268280i
\(627\) −30.9278 −1.23514
\(628\) −1.49480 + 12.7639i −0.0596489 + 0.509333i
\(629\) 53.0106i 2.11367i
\(630\) 0 0
\(631\) 15.1512i 0.603160i 0.953441 + 0.301580i \(0.0975140\pi\)
−0.953441 + 0.301580i \(0.902486\pi\)
\(632\) −12.5633 17.9552i −0.499742 0.714220i
\(633\) −57.2841 −2.27684
\(634\) 19.8665 17.6757i 0.789001 0.701992i
\(635\) 15.4441 + 12.1261i 0.612881 + 0.481208i
\(636\) −1.09378 + 9.33959i −0.0433710 + 0.370339i
\(637\) 0 0
\(638\) −7.77803 + 6.92029i −0.307935 + 0.273977i
\(639\) 5.17725i 0.204809i
\(640\) 24.2544 + 7.19186i 0.958740 + 0.284283i
\(641\) 29.9921 1.18462 0.592308 0.805712i \(-0.298217\pi\)
0.592308 + 0.805712i \(0.298217\pi\)
\(642\) −19.8912 + 17.6976i −0.785043 + 0.698470i
\(643\) 1.63196i 0.0643583i −0.999482 0.0321792i \(-0.989755\pi\)
0.999482 0.0321792i \(-0.0102447\pi\)
\(644\) 0 0
\(645\) 8.59318 10.9445i 0.338356 0.430940i
\(646\) 22.9901 + 25.8396i 0.904534 + 1.01665i
\(647\) 32.7664i 1.28818i 0.764950 + 0.644090i \(0.222764\pi\)
−0.764950 + 0.644090i \(0.777236\pi\)
\(648\) 14.4414 10.1047i 0.567313 0.396951i
\(649\) 6.88650i 0.270319i
\(650\) −3.28684 + 4.76193i −0.128921 + 0.186778i
\(651\) 0 0
\(652\) 4.29883 36.7071i 0.168355 1.43756i
\(653\) 22.5293i 0.881638i −0.897596 0.440819i \(-0.854688\pi\)
0.897596 0.440819i \(-0.145312\pi\)
\(654\) −21.8667 + 19.4553i −0.855057 + 0.760763i
\(655\) −23.5483 18.4891i −0.920109 0.722431i
\(656\) −2.45679 + 10.3452i −0.0959215 + 0.403913i
\(657\) 27.6635 1.07925
\(658\) 0 0
\(659\) 19.2525i 0.749969i −0.927031 0.374985i \(-0.877648\pi\)
0.927031 0.374985i \(-0.122352\pi\)
\(660\) 29.4835 29.6724i 1.14764 1.15500i
\(661\) 34.7656i 1.35223i −0.736798 0.676113i \(-0.763663\pi\)
0.736798 0.676113i \(-0.236337\pi\)
\(662\) −13.8291 + 12.3041i −0.537484 + 0.478212i
\(663\) 15.7128i 0.610233i
\(664\) −17.0217 24.3270i −0.660570 0.944071i
\(665\) 0 0
\(666\) 28.3228 25.1994i 1.09749 0.976458i
\(667\) −5.18018 −0.200577
\(668\) −3.63304 0.425472i −0.140567 0.0164620i
\(669\) −61.2118 −2.36658
\(670\) −1.79969 29.2345i −0.0695282 1.12943i
\(671\) −35.2205 −1.35967
\(672\) 0 0
\(673\) 42.6368i 1.64353i −0.569827 0.821764i \(-0.692990\pi\)
0.569827 0.821764i \(-0.307010\pi\)
\(674\) −12.3955 + 11.0285i −0.477456 + 0.424803i
\(675\) −9.33392 + 2.27968i −0.359263 + 0.0877451i
\(676\) 2.86847 24.4934i 0.110326 0.942055i
\(677\) −1.78530 −0.0686145 −0.0343073 0.999411i \(-0.510922\pi\)
−0.0343073 + 0.999411i \(0.510922\pi\)
\(678\) −18.5873 20.8911i −0.713842 0.802319i
\(679\) 0 0
\(680\) −46.7072 2.57606i −1.79114 0.0987874i
\(681\) 54.3297 2.08192
\(682\) 7.27599 6.47361i 0.278612 0.247887i
\(683\) −8.60526 −0.329271 −0.164636 0.986354i \(-0.552645\pi\)
−0.164636 + 0.986354i \(0.552645\pi\)
\(684\) 2.87703 24.5666i 0.110006 0.939326i
\(685\) −7.21396 + 9.18792i −0.275631 + 0.351052i
\(686\) 0 0
\(687\) 13.4523 0.513236
\(688\) −9.32839 2.21531i −0.355642 0.0844579i
\(689\) 1.48191i 0.0564564i
\(690\) 20.7739 1.27886i 0.790849 0.0486852i
\(691\) −40.3022 −1.53317 −0.766583 0.642145i \(-0.778045\pi\)
−0.766583 + 0.642145i \(0.778045\pi\)
\(692\) −3.54755 + 30.2920i −0.134858 + 1.15153i
\(693\) 0 0
\(694\) 4.14720 + 4.66123i 0.157426 + 0.176938i
\(695\) −38.5941 30.3024i −1.46396 1.14944i
\(696\) −8.60208 12.2939i −0.326061 0.465999i
\(697\) 19.6611i 0.744716i
\(698\) 19.3857 17.2479i 0.733758 0.652841i
\(699\) 53.9212 2.03949
\(700\) 0 0
\(701\) 37.3051 1.40899 0.704497 0.709707i \(-0.251172\pi\)
0.704497 + 0.709707i \(0.251172\pi\)
\(702\) −1.66139 + 1.47818i −0.0627053 + 0.0557903i
\(703\) 23.6989i 0.893822i
\(704\) −27.0772 9.87602i −1.02051 0.372217i
\(705\) −6.09449 4.78514i −0.229532 0.180219i
\(706\) 11.0438 + 12.4126i 0.415637 + 0.467154i
\(707\) 0 0
\(708\) −9.85761 1.15444i −0.370472 0.0433866i
\(709\) −8.05731 −0.302599 −0.151299 0.988488i \(-0.548346\pi\)
−0.151299 + 0.988488i \(0.548346\pi\)
\(710\) −4.36903 + 0.268960i −0.163967 + 0.0100939i
\(711\) 28.9782i 1.08677i
\(712\) 17.2097 + 24.5957i 0.644962 + 0.921765i
\(713\) 4.84582 0.181477
\(714\) 0 0
\(715\) 4.07095 5.18488i 0.152245 0.193903i
\(716\) 24.9035 + 2.91650i 0.930689 + 0.108995i
\(717\) 54.8539 2.04856
\(718\) −0.209095 + 0.186037i −0.00780336 + 0.00694283i
\(719\) 11.7448 0.438008 0.219004 0.975724i \(-0.429719\pi\)
0.219004 + 0.975724i \(0.429719\pi\)
\(720\) 20.8267 + 26.1795i 0.776164 + 0.975654i
\(721\) 0 0
\(722\) −7.58289 8.52275i −0.282206 0.317184i
\(723\) −4.72002 −0.175539
\(724\) −15.9279 1.86535i −0.591957 0.0693250i
\(725\) −2.42404 9.92498i −0.0900267 0.368605i
\(726\) −5.43073 + 4.83185i −0.201553 + 0.179327i
\(727\) 33.3549i 1.23706i 0.785760 + 0.618532i \(0.212272\pi\)
−0.785760 + 0.618532i \(0.787728\pi\)
\(728\) 0 0
\(729\) 38.2742 1.41756
\(730\) −1.43713 23.3449i −0.0531905 0.864034i
\(731\) 17.7286 0.655715
\(732\) 5.90430 50.4160i 0.218229 1.86343i
\(733\) −11.5001 −0.424764 −0.212382 0.977187i \(-0.568122\pi\)
−0.212382 + 0.977187i \(0.568122\pi\)
\(734\) 7.95403 7.07688i 0.293588 0.261212i
\(735\) 0 0
\(736\) −6.79912 12.6268i −0.250619 0.465429i
\(737\) 33.3696i 1.22919i
\(738\) −10.5046 + 9.34619i −0.386680 + 0.344038i
\(739\) 11.2041i 0.412148i −0.978536 0.206074i \(-0.933931\pi\)
0.978536 0.206074i \(-0.0660688\pi\)
\(740\) −22.7369 22.5922i −0.835825 0.830505i
\(741\) 7.02455i 0.258053i
\(742\) 0 0
\(743\) −43.7950 −1.60668 −0.803341 0.595520i \(-0.796946\pi\)
−0.803341 + 0.595520i \(0.796946\pi\)
\(744\) 8.04686 + 11.5004i 0.295012 + 0.421624i
\(745\) −42.1213 33.0718i −1.54320 1.21166i
\(746\) 32.9004 29.2722i 1.20457 1.07173i
\(747\) 39.2617i 1.43651i
\(748\) 52.9322 + 6.19898i 1.93539 + 0.226657i
\(749\) 0 0
\(750\) 12.1713 + 39.2034i 0.444432 + 1.43151i
\(751\) 51.4214i 1.87639i 0.346103 + 0.938196i \(0.387505\pi\)
−0.346103 + 0.938196i \(0.612495\pi\)
\(752\) −1.23360 + 5.19454i −0.0449848 + 0.189425i
\(753\) 36.3953i 1.32632i
\(754\) −1.57178 1.76660i −0.0572410 0.0643357i
\(755\) −9.67670 + 12.3245i −0.352171 + 0.448536i
\(756\) 0 0
\(757\) 18.1453i 0.659502i 0.944068 + 0.329751i \(0.106965\pi\)
−0.944068 + 0.329751i \(0.893035\pi\)
\(758\) 17.2637 15.3599i 0.627046 0.557897i
\(759\) −23.7123 −0.860703
\(760\) −20.8809 1.15165i −0.757431 0.0417748i
\(761\) 32.8928i 1.19236i −0.802850 0.596181i \(-0.796684\pi\)
0.802850 0.596181i \(-0.203316\pi\)
\(762\) 24.0875 21.4312i 0.872598 0.776370i
\(763\) 0 0
\(764\) 13.4270 + 1.57246i 0.485771 + 0.0568895i
\(765\) −48.6528 38.2001i −1.75904 1.38113i
\(766\) 9.34915 8.31815i 0.337799 0.300547i
\(767\) −1.56411 −0.0564767
\(768\) 18.6761 37.1038i 0.673916 1.33887i
\(769\) 20.8502i 0.751876i −0.926645 0.375938i \(-0.877321\pi\)
0.926645 0.375938i \(-0.122679\pi\)
\(770\) 0 0
\(771\) 46.4003i 1.67107i
\(772\) 4.68802 + 0.549021i 0.168725 + 0.0197597i
\(773\) 8.68759 0.312471 0.156236 0.987720i \(-0.450064\pi\)
0.156236 + 0.987720i \(0.450064\pi\)
\(774\) −8.42756 9.47212i −0.302922 0.340468i
\(775\) 2.26758 + 9.28437i 0.0814539 + 0.333504i
\(776\) −16.9639 + 11.8697i −0.608970 + 0.426099i
\(777\) 0 0
\(778\) 8.78497 + 9.87384i 0.314957 + 0.353994i
\(779\) 8.78967i 0.314923i
\(780\) 6.73940 + 6.69650i 0.241309 + 0.239773i
\(781\) 4.98702 0.178449
\(782\) 17.6265 + 19.8112i 0.630322 + 0.708447i
\(783\) 3.92660i 0.140325i
\(784\) 0 0
\(785\) 11.3008 + 8.87294i 0.403344 + 0.316689i
\(786\) −36.7273 + 32.6771i −1.31002 + 1.16555i
\(787\) 37.2125i 1.32648i −0.748406 0.663241i \(-0.769180\pi\)
0.748406 0.663241i \(-0.230820\pi\)
\(788\) −40.3651 4.72723i −1.43795 0.168400i
\(789\) 56.8473i 2.02382i
\(790\) −24.4544 + 1.50543i −0.870048 + 0.0535608i
\(791\) 0 0
\(792\) −21.8501 31.2277i −0.776411 1.10963i
\(793\) 7.99951i 0.284071i
\(794\) 19.0854 + 21.4509i 0.677315 + 0.761265i
\(795\) 8.26907 + 6.49252i 0.293274 + 0.230266i
\(796\) −2.66556 + 22.7608i −0.0944782 + 0.806736i
\(797\) 21.3900 0.757671 0.378835 0.925464i \(-0.376325\pi\)
0.378835 + 0.925464i \(0.376325\pi\)
\(798\) 0 0
\(799\) 9.87221i 0.349254i
\(800\) 21.0107 18.9354i 0.742840 0.669469i
\(801\) 39.6955i 1.40257i
\(802\) −10.4220 11.7137i −0.368013 0.413626i
\(803\) 26.6470i 0.940352i
\(804\) −47.7666 5.59403i −1.68460 0.197286i
\(805\) 0 0
\(806\) 1.47033 + 1.65257i 0.0517902 + 0.0582094i
\(807\) −7.48437 −0.263462
\(808\) −10.3095 14.7341i −0.362687 0.518344i
\(809\) 24.3414 0.855799 0.427900 0.903826i \(-0.359254\pi\)
0.427900 + 0.903826i \(0.359254\pi\)
\(810\) −1.21082 19.6687i −0.0425439 0.691089i
\(811\) −31.3778 −1.10183 −0.550913 0.834563i \(-0.685720\pi\)
−0.550913 + 0.834563i \(0.685720\pi\)
\(812\) 0 0
\(813\) 44.0206i 1.54387i
\(814\) 24.2735 + 27.2821i 0.850785 + 0.956237i
\(815\) −32.4997 25.5174i −1.13841 0.893834i
\(816\) −17.7469 + 74.7301i −0.621267 + 2.61608i
\(817\) 7.92573 0.277286
\(818\) 6.21976 5.53386i 0.217469 0.193487i
\(819\) 0 0
\(820\) 8.43287 + 8.37920i 0.294489 + 0.292614i
\(821\) 0.157136 0.00548409 0.00274204 0.999996i \(-0.499127\pi\)
0.00274204 + 0.999996i \(0.499127\pi\)
\(822\) 12.7497 + 14.3300i 0.444697 + 0.499816i
\(823\) −18.6951 −0.651669 −0.325835 0.945427i \(-0.605645\pi\)
−0.325835 + 0.945427i \(0.605645\pi\)
\(824\) 1.65733 + 2.36862i 0.0577359 + 0.0825148i
\(825\) −11.0961 45.4317i −0.386316 1.58173i
\(826\) 0 0
\(827\) −35.2960 −1.22736 −0.613681 0.789554i \(-0.710312\pi\)
−0.613681 + 0.789554i \(0.710312\pi\)
\(828\) 2.20581 18.8351i 0.0766574 0.654566i
\(829\) 16.4649i 0.571850i 0.958252 + 0.285925i \(0.0923008\pi\)
−0.958252 + 0.285925i \(0.907699\pi\)
\(830\) −33.1326 + 2.03966i −1.15005 + 0.0707978i
\(831\) 69.7116 2.41827
\(832\) 2.24311 6.14996i 0.0777659 0.213211i
\(833\) 0 0
\(834\) −60.1934 + 53.5555i −2.08433 + 1.85447i
\(835\) −2.52555 + 3.21662i −0.0874003 + 0.111316i
\(836\) 23.6639 + 2.77132i 0.818432 + 0.0958480i
\(837\) 3.67316i 0.126963i
\(838\) 15.7233 + 17.6722i 0.543153 + 0.610475i
\(839\) 54.8000 1.89191 0.945953 0.324303i \(-0.105130\pi\)
0.945953 + 0.324303i \(0.105130\pi\)
\(840\) 0 0
\(841\) −24.8248 −0.856026
\(842\) −1.11699 1.25544i −0.0384941 0.0432652i
\(843\) 64.7741i 2.23094i
\(844\) 43.8298 + 5.13299i 1.50869 + 0.176685i
\(845\) −21.6860 17.0269i −0.746020 0.585743i
\(846\) −5.27458 + 4.69291i −0.181344 + 0.161346i
\(847\) 0 0
\(848\) 1.67376 7.04801i 0.0574773 0.242030i
\(849\) −25.5418 −0.876593
\(850\) −29.7091 + 43.0421i −1.01901 + 1.47633i
\(851\) 18.1699i 0.622857i
\(852\) −0.836015 + 7.13862i −0.0286414 + 0.244565i
\(853\) −38.9225 −1.33268 −0.666340 0.745648i \(-0.732140\pi\)
−0.666340 + 0.745648i \(0.732140\pi\)
\(854\) 0 0
\(855\) −21.7507 17.0777i −0.743858 0.584046i
\(856\) 16.8052 11.7587i 0.574390 0.401903i
\(857\) 29.3531 1.00268 0.501342 0.865249i \(-0.332840\pi\)
0.501342 + 0.865249i \(0.332840\pi\)
\(858\) −7.19485 8.08663i −0.245628 0.276073i
\(859\) 47.3747 1.61640 0.808202 0.588905i \(-0.200441\pi\)
0.808202 + 0.588905i \(0.200441\pi\)
\(860\) −7.55561 + 7.60401i −0.257644 + 0.259294i
\(861\) 0 0
\(862\) −25.4578 + 22.6504i −0.867095 + 0.771474i
\(863\) −23.7011 −0.806794 −0.403397 0.915025i \(-0.632171\pi\)
−0.403397 + 0.915025i \(0.632171\pi\)
\(864\) 9.57116 5.15377i 0.325617 0.175335i
\(865\) 26.8199 + 21.0578i 0.911903 + 0.715988i
\(866\) 14.0823 + 15.8278i 0.478537 + 0.537849i
\(867\) 97.8892i 3.32449i
\(868\) 0 0
\(869\) 27.9134 0.946897
\(870\) −16.7439 + 1.03076i −0.567670 + 0.0349462i
\(871\) −7.57913 −0.256809
\(872\) 18.4742 12.9265i 0.625616 0.437746i
\(873\) −27.3784 −0.926617
\(874\) 7.88009 + 8.85680i 0.266548 + 0.299586i
\(875\) 0 0
\(876\) −38.1436 4.46706i −1.28875 0.150928i
\(877\) 33.2040i 1.12122i 0.828080 + 0.560610i \(0.189433\pi\)
−0.828080 + 0.560610i \(0.810567\pi\)
\(878\) −16.2866 18.3052i −0.549645 0.617772i
\(879\) 60.7610i 2.04942i
\(880\) −25.2176 + 20.0614i −0.850085 + 0.676269i
\(881\) 19.2043i 0.647008i 0.946227 + 0.323504i \(0.104861\pi\)
−0.946227 + 0.323504i \(0.895139\pi\)
\(882\) 0 0
\(883\) 8.57526 0.288581 0.144290 0.989535i \(-0.453910\pi\)
0.144290 + 0.989535i \(0.453910\pi\)
\(884\) −1.40796 + 12.0223i −0.0473547 + 0.404355i
\(885\) −6.85263 + 8.72772i −0.230349 + 0.293379i
\(886\) 23.7196 + 26.6596i 0.796877 + 0.895647i
\(887\) 14.7509i 0.495285i 0.968851 + 0.247643i \(0.0796559\pi\)
−0.968851 + 0.247643i \(0.920344\pi\)
\(888\) −43.1219 + 30.1725i −1.44707 + 1.01252i
\(889\) 0 0
\(890\) 33.4986 2.06220i 1.12287 0.0691250i
\(891\) 22.4508i 0.752131i
\(892\) 46.8351 + 5.48493i 1.56815 + 0.183649i
\(893\) 4.41347i 0.147691i
\(894\) −65.6946 + 58.4500i −2.19716 + 1.95486i
\(895\) 17.3120 22.0491i 0.578676 0.737019i
\(896\) 0 0
\(897\) 5.38571i 0.179824i
\(898\) 6.63808 + 7.46084i 0.221516 + 0.248972i
\(899\) −3.90575 −0.130264
\(900\) 37.1194 4.58758i 1.23731 0.152919i
\(901\) 13.3947i 0.446243i
\(902\) −9.00277 10.1186i −0.299760 0.336914i
\(903\) 0 0
\(904\) 12.3498 + 17.6500i 0.410747 + 0.587030i
\(905\) −11.0725 + 14.1022i −0.368062 + 0.468774i
\(906\) 17.1023 + 19.2220i 0.568185 + 0.638609i
\(907\) 47.5891 1.58017 0.790085 0.612997i \(-0.210036\pi\)
0.790085 + 0.612997i \(0.210036\pi\)
\(908\) −41.5693 4.86826i −1.37953 0.161559i
\(909\) 23.7796i 0.788720i
\(910\) 0 0
\(911\) 34.7074i 1.14991i 0.818186 + 0.574954i \(0.194980\pi\)
−0.818186 + 0.574954i \(0.805020\pi\)
\(912\) −7.93395 + 33.4089i −0.262719 + 1.10628i
\(913\) 37.8191 1.25163
\(914\) −19.9495 + 17.7495i −0.659870 + 0.587101i
\(915\) −44.6372 35.0472i −1.47566 1.15863i
\(916\) −10.2928 1.20540i −0.340082 0.0398276i
\(917\) 0 0
\(918\) −15.0170 + 13.3610i −0.495635 + 0.440977i
\(919\) 51.8772i 1.71127i −0.517579 0.855635i \(-0.673167\pi\)
0.517579 0.855635i \(-0.326833\pi\)
\(920\) −16.0094 0.882971i −0.527813 0.0291107i
\(921\) −5.67343 −0.186946
\(922\) 36.5661 32.5337i 1.20424 1.07144i
\(923\) 1.13269i 0.0372828i
\(924\) 0 0
\(925\) −34.8127 + 8.50253i −1.14463 + 0.279562i
\(926\) 14.1228 + 15.8732i 0.464103 + 0.521627i
\(927\) 3.82275i 0.125556i
\(928\) 5.48012 + 10.1772i 0.179894 + 0.334084i
\(929\) 43.7860i 1.43657i 0.695748 + 0.718286i \(0.255073\pi\)
−0.695748 + 0.718286i \(0.744927\pi\)
\(930\) 15.6631 0.964232i 0.513614 0.0316184i
\(931\) 0 0
\(932\) −41.2568 4.83166i −1.35141 0.158266i
\(933\) 75.0301i 2.45638i
\(934\) −26.8779 + 23.9138i −0.879471 + 0.782485i
\(935\) 36.7964 46.8650i 1.20337 1.53265i
\(936\) 7.09265 4.96275i 0.231830 0.162213i
\(937\) −14.2224 −0.464624 −0.232312 0.972641i \(-0.574629\pi\)
−0.232312 + 0.972641i \(0.574629\pi\)
\(938\) 0 0
\(939\) 16.4937i 0.538251i
\(940\) 4.23431 + 4.20736i 0.138108 + 0.137229i
\(941\) 5.54338i 0.180709i −0.995910 0.0903544i \(-0.971200\pi\)
0.995910 0.0903544i \(-0.0288000\pi\)
\(942\) 17.6254 15.6817i 0.574267 0.510939i
\(943\) 6.73903i 0.219453i
\(944\) 7.43893 + 1.76660i 0.242116 + 0.0574979i
\(945\) 0 0
\(946\) 9.12407 8.11789i 0.296649 0.263935i
\(947\) −59.5762 −1.93597 −0.967983 0.251015i \(-0.919236\pi\)
−0.967983 + 0.251015i \(0.919236\pi\)
\(948\) −4.67936 + 39.9564i −0.151978 + 1.29772i
\(949\) −6.05225 −0.196464
\(950\) −13.2817 + 19.2424i −0.430917 + 0.624305i
\(951\) −48.8163 −1.58298
\(952\) 0 0
\(953\) 12.2577i 0.397065i −0.980094 0.198532i \(-0.936383\pi\)
0.980094 0.198532i \(-0.0636175\pi\)
\(954\) 7.15660 6.36739i 0.231703 0.206152i
\(955\) 9.33392 11.8880i 0.302039 0.384686i
\(956\) −41.9704 4.91523i −1.35742 0.158970i
\(957\) 19.1122 0.617811
\(958\) 19.3355 + 21.7321i 0.624703 + 0.702133i
\(959\) 0 0
\(960\) −24.4893 39.4606i −0.790387 1.27358i
\(961\) −27.3463 −0.882140
\(962\) −6.19650 + 5.51316i −0.199783 + 0.177751i
\(963\) 27.1222 0.874000
\(964\) 3.61143 + 0.422941i 0.116316 + 0.0136220i
\(965\) 3.25893 4.15067i 0.104909 0.133615i
\(966\) 0 0
\(967\) 53.4551 1.71900 0.859499 0.511137i \(-0.170775\pi\)
0.859499 + 0.511137i \(0.170775\pi\)
\(968\) 4.58819 3.21037i 0.147470 0.103185i
\(969\) 63.4934i 2.03970i
\(970\) 1.42232 + 23.1043i 0.0456679 + 0.741835i
\(971\) 22.2567 0.714253 0.357126 0.934056i \(-0.383757\pi\)
0.357126 + 0.934056i \(0.383757\pi\)
\(972\) −43.5887 5.10475i −1.39811 0.163735i
\(973\) 0 0
\(974\) −27.3167 30.7025i −0.875284 0.983772i
\(975\) 10.3188 2.52022i 0.330465 0.0807116i
\(976\) −9.03513 + 38.0458i −0.289208 + 1.21782i
\(977\) 31.7948i 1.01721i 0.861001 + 0.508603i \(0.169838\pi\)
−0.861001 + 0.508603i \(0.830162\pi\)
\(978\) −50.6883 + 45.0985i −1.62083 + 1.44209i
\(979\) −38.2369 −1.22206
\(980\) 0 0
\(981\) 29.8158 0.951947
\(982\) 10.0565 8.94749i 0.320916 0.285526i
\(983\) 20.5854i 0.656573i 0.944578 + 0.328287i \(0.106471\pi\)
−0.944578 + 0.328287i \(0.893529\pi\)
\(984\) 15.9934 11.1907i 0.509852 0.356745i
\(985\) −28.0603 + 35.7384i −0.894074 + 1.13872i
\(986\) −14.2070 15.9679i −0.452444 0.508522i
\(987\) 0 0
\(988\) −0.629440 + 5.37470i −0.0200252 + 0.170992i
\(989\) 6.07665 0.193226
\(990\) −42.5311 + 2.61824i −1.35173 + 0.0832132i
\(991\) 37.2779i 1.18417i −0.805875 0.592086i \(-0.798304\pi\)
0.805875 0.592086i \(-0.201696\pi\)
\(992\) −5.12640 9.52034i −0.162763 0.302271i
\(993\) 33.9810 1.07836
\(994\) 0 0
\(995\) 20.1519 + 15.8224i 0.638859 + 0.501605i
\(996\) −6.33993 + 54.1358i −0.200888 + 1.71536i
\(997\) −12.6422 −0.400383 −0.200191 0.979757i \(-0.564156\pi\)
−0.200191 + 0.979757i \(0.564156\pi\)
\(998\) 21.3325 18.9800i 0.675269 0.600802i
\(999\) −13.7729 −0.435755
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.c.d.979.27 32
4.3 odd 2 inner 980.2.c.d.979.8 32
5.4 even 2 inner 980.2.c.d.979.6 32
7.2 even 3 140.2.s.b.59.10 yes 32
7.3 odd 6 140.2.s.b.19.2 32
7.4 even 3 980.2.s.e.19.2 32
7.5 odd 6 980.2.s.e.619.10 32
7.6 odd 2 inner 980.2.c.d.979.28 32
20.19 odd 2 inner 980.2.c.d.979.25 32
28.3 even 6 140.2.s.b.19.7 yes 32
28.11 odd 6 980.2.s.e.19.7 32
28.19 even 6 980.2.s.e.619.15 32
28.23 odd 6 140.2.s.b.59.15 yes 32
28.27 even 2 inner 980.2.c.d.979.7 32
35.2 odd 12 700.2.p.e.451.15 32
35.3 even 12 700.2.p.e.551.10 32
35.4 even 6 980.2.s.e.19.15 32
35.9 even 6 140.2.s.b.59.7 yes 32
35.17 even 12 700.2.p.e.551.7 32
35.19 odd 6 980.2.s.e.619.7 32
35.23 odd 12 700.2.p.e.451.2 32
35.24 odd 6 140.2.s.b.19.15 yes 32
35.34 odd 2 inner 980.2.c.d.979.5 32
140.3 odd 12 700.2.p.e.551.2 32
140.19 even 6 980.2.s.e.619.2 32
140.23 even 12 700.2.p.e.451.10 32
140.39 odd 6 980.2.s.e.19.10 32
140.59 even 6 140.2.s.b.19.10 yes 32
140.79 odd 6 140.2.s.b.59.2 yes 32
140.87 odd 12 700.2.p.e.551.15 32
140.107 even 12 700.2.p.e.451.7 32
140.139 even 2 inner 980.2.c.d.979.26 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.s.b.19.2 32 7.3 odd 6
140.2.s.b.19.7 yes 32 28.3 even 6
140.2.s.b.19.10 yes 32 140.59 even 6
140.2.s.b.19.15 yes 32 35.24 odd 6
140.2.s.b.59.2 yes 32 140.79 odd 6
140.2.s.b.59.7 yes 32 35.9 even 6
140.2.s.b.59.10 yes 32 7.2 even 3
140.2.s.b.59.15 yes 32 28.23 odd 6
700.2.p.e.451.2 32 35.23 odd 12
700.2.p.e.451.7 32 140.107 even 12
700.2.p.e.451.10 32 140.23 even 12
700.2.p.e.451.15 32 35.2 odd 12
700.2.p.e.551.2 32 140.3 odd 12
700.2.p.e.551.7 32 35.17 even 12
700.2.p.e.551.10 32 35.3 even 12
700.2.p.e.551.15 32 140.87 odd 12
980.2.c.d.979.5 32 35.34 odd 2 inner
980.2.c.d.979.6 32 5.4 even 2 inner
980.2.c.d.979.7 32 28.27 even 2 inner
980.2.c.d.979.8 32 4.3 odd 2 inner
980.2.c.d.979.25 32 20.19 odd 2 inner
980.2.c.d.979.26 32 140.139 even 2 inner
980.2.c.d.979.27 32 1.1 even 1 trivial
980.2.c.d.979.28 32 7.6 odd 2 inner
980.2.s.e.19.2 32 7.4 even 3
980.2.s.e.19.7 32 28.11 odd 6
980.2.s.e.19.10 32 140.39 odd 6
980.2.s.e.19.15 32 35.4 even 6
980.2.s.e.619.2 32 140.19 even 6
980.2.s.e.619.7 32 35.19 odd 6
980.2.s.e.619.10 32 7.5 odd 6
980.2.s.e.619.15 32 28.19 even 6