Properties

Label 980.2.c.a
Level $980$
Weight $2$
Character orbit 980.c
Analytic conductor $7.825$
Analytic rank $0$
Dimension $8$
CM discriminant -4
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(979,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.979"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - 2 q^{4} - \beta_{4} q^{5} + 2 \beta_{2} q^{8} + 3 q^{9} + \beta_{3} q^{10} + (\beta_{6} + \beta_{5} + \cdots - \beta_{3}) q^{13} + 4 q^{16} + (\beta_{6} - \beta_{5} + \cdots - \beta_{3}) q^{17}+ \cdots + ( - 2 \beta_{6} + 3 \beta_{5} + \cdots + 2 \beta_{3}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{4} + 24 q^{9} + 32 q^{16} - 48 q^{36} - 8 q^{50} - 64 q^{64} - 32 q^{65} - 80 q^{74} + 72 q^{81} + 48 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 7\zeta_{16}^{4} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{16}^{6} + \zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{16}^{7} + 3\zeta_{16}^{3} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\zeta_{16}^{5} + 2\zeta_{16} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -2\zeta_{16}^{7} + \zeta_{16}^{3} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( 3\zeta_{16}^{5} + \zeta_{16} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -4\zeta_{16}^{6} + 3\zeta_{16}^{2} \) Copy content Toggle raw display
\(\zeta_{16}\)\(=\) \( ( \beta_{6} + 3\beta_{4} ) / 7 \) Copy content Toggle raw display
\(\zeta_{16}^{2}\)\(=\) \( ( \beta_{7} + 4\beta_{2} ) / 7 \) Copy content Toggle raw display
\(\zeta_{16}^{3}\)\(=\) \( ( \beta_{5} + 2\beta_{3} ) / 7 \) Copy content Toggle raw display
\(\zeta_{16}^{4}\)\(=\) \( ( \beta_1 ) / 7 \) Copy content Toggle raw display
\(\zeta_{16}^{5}\)\(=\) \( ( 2\beta_{6} - \beta_{4} ) / 7 \) Copy content Toggle raw display
\(\zeta_{16}^{6}\)\(=\) \( ( -\beta_{7} + 3\beta_{2} ) / 7 \) Copy content Toggle raw display
\(\zeta_{16}^{7}\)\(=\) \( ( -3\beta_{5} + \beta_{3} ) / 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
979.1
0.923880 + 0.382683i
−0.382683 0.923880i
0.382683 + 0.923880i
−0.923880 0.382683i
0.923880 0.382683i
−0.382683 + 0.923880i
0.382683 0.923880i
−0.923880 + 0.382683i
1.41421i 0 −2.00000 −2.23044 + 0.158513i 0 0 2.82843i 3.00000 0.224171 + 3.15432i
979.2 1.41421i 0 −2.00000 −0.158513 + 2.23044i 0 0 2.82843i 3.00000 3.15432 + 0.224171i
979.3 1.41421i 0 −2.00000 0.158513 2.23044i 0 0 2.82843i 3.00000 −3.15432 0.224171i
979.4 1.41421i 0 −2.00000 2.23044 0.158513i 0 0 2.82843i 3.00000 −0.224171 3.15432i
979.5 1.41421i 0 −2.00000 −2.23044 0.158513i 0 0 2.82843i 3.00000 0.224171 3.15432i
979.6 1.41421i 0 −2.00000 −0.158513 2.23044i 0 0 2.82843i 3.00000 3.15432 0.224171i
979.7 1.41421i 0 −2.00000 0.158513 + 2.23044i 0 0 2.82843i 3.00000 −3.15432 + 0.224171i
979.8 1.41421i 0 −2.00000 2.23044 + 0.158513i 0 0 2.82843i 3.00000 −0.224171 + 3.15432i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 979.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
5.b even 2 1 inner
7.b odd 2 1 inner
20.d odd 2 1 inner
28.d even 2 1 inner
35.c odd 2 1 inner
140.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.2.c.a 8
4.b odd 2 1 CM 980.2.c.a 8
5.b even 2 1 inner 980.2.c.a 8
7.b odd 2 1 inner 980.2.c.a 8
7.c even 3 2 980.2.s.c 16
7.d odd 6 2 980.2.s.c 16
20.d odd 2 1 inner 980.2.c.a 8
28.d even 2 1 inner 980.2.c.a 8
28.f even 6 2 980.2.s.c 16
28.g odd 6 2 980.2.s.c 16
35.c odd 2 1 inner 980.2.c.a 8
35.i odd 6 2 980.2.s.c 16
35.j even 6 2 980.2.s.c 16
140.c even 2 1 inner 980.2.c.a 8
140.p odd 6 2 980.2.s.c 16
140.s even 6 2 980.2.s.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
980.2.c.a 8 1.a even 1 1 trivial
980.2.c.a 8 4.b odd 2 1 CM
980.2.c.a 8 5.b even 2 1 inner
980.2.c.a 8 7.b odd 2 1 inner
980.2.c.a 8 20.d odd 2 1 inner
980.2.c.a 8 28.d even 2 1 inner
980.2.c.a 8 35.c odd 2 1 inner
980.2.c.a 8 140.c even 2 1 inner
980.2.s.c 16 7.c even 3 2
980.2.s.c 16 7.d odd 6 2
980.2.s.c 16 28.f even 6 2
980.2.s.c 16 28.g odd 6 2
980.2.s.c 16 35.i odd 6 2
980.2.s.c 16 35.j even 6 2
980.2.s.c 16 140.p odd 6 2
980.2.s.c 16 140.s even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{2}^{\mathrm{new}}(980, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - 48T^{4} + 625 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( (T^{4} - 52 T^{2} + 578)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 68 T^{2} + 1058)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( (T^{2} - 98)^{4} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( (T^{2} + 50)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 164 T^{2} + 1922)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T^{2} + 196)^{4} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( (T^{4} + 244 T^{2} + 10082)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( (T^{4} - 292 T^{2} + 21218)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( (T^{4} + 356 T^{2} + 3362)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - 388 T^{2} + 37538)^{2} \) Copy content Toggle raw display
show more
show less