Defining parameters
Level: | \( N \) | \(=\) | \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 980.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 140 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(980, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 184 | 128 | 56 |
Cusp forms | 152 | 112 | 40 |
Eisenstein series | 32 | 16 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(980, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
980.2.c.a | $8$ | $7.825$ | \(\Q(\zeta_{16})\) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta_{2} q^{2}-2 q^{4}-\beta_{4} q^{5}+2\beta_{2} q^{8}+\cdots\) |
980.2.c.b | $8$ | $7.825$ | 8.0.3317760000.3 | \(\Q(\sqrt{-5}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{2}+\beta _{3}q^{3}+2q^{4}+\beta _{6}q^{5}+(-\beta _{5}+\cdots)q^{6}+\cdots\) |
980.2.c.c | $16$ | $7.825$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{2}+(-\beta _{8}-\beta _{10}-\beta _{12})q^{3}+\cdots\) |
980.2.c.d | $32$ | $7.825$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
980.2.c.e | $48$ | $7.825$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(980, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(980, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)