Properties

Label 980.1.n.a
Level 980980
Weight 11
Character orbit 980.n
Analytic conductor 0.4890.489
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -35
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,1,Mod(129,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.129"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: N N == 980=22572 980 = 2^{2} \cdot 5 \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 980.n (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4890837123800.489083712380
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 140)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.140.1
Artin image: C6×S3C_6\times S_3
Artin field: Galois closure of 12.0.1129900996000000.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ6q3ζ62q5+ζ6q11+q13q15ζ6q17ζ6q25q27q29ζ62q33ζ6q39+ζ62q47++q97+O(q100) q - \zeta_{6} q^{3} - \zeta_{6}^{2} q^{5} + \zeta_{6} q^{11} + q^{13} - q^{15} - \zeta_{6} q^{17} - \zeta_{6} q^{25} - q^{27} - q^{29} - \zeta_{6}^{2} q^{33} - \zeta_{6} q^{39} + \zeta_{6}^{2} q^{47} + \cdots + q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq3+q5+q11+2q132q15q17q252q272q29+q33q39q47q51+2q55+q65+4q71+2q73q75+q79+q81++2q97+O(q100) 2 q - q^{3} + q^{5} + q^{11} + 2 q^{13} - 2 q^{15} - q^{17} - q^{25} - 2 q^{27} - 2 q^{29} + q^{33} - q^{39} - q^{47} - q^{51} + 2 q^{55} + q^{65} + 4 q^{71} + 2 q^{73} - q^{75} + q^{79} + q^{81}+ \cdots + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/980Z)×\left(\mathbb{Z}/980\mathbb{Z}\right)^\times.

nn 101101 197197 491491
χ(n)\chi(n) ζ62-\zeta_{6}^{2} 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
129.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 0 0 0 0
509.1 0 −0.500000 0.866025i 0 0.500000 0.866025i 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.c odd 2 1 CM by Q(35)\Q(\sqrt{-35})
7.c even 3 1 inner
35.i odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.1.n.a 2
4.b odd 2 1 3920.1.br.b 2
5.b even 2 1 980.1.n.b 2
7.b odd 2 1 980.1.n.b 2
7.c even 3 1 140.1.h.b yes 1
7.c even 3 1 inner 980.1.n.a 2
7.d odd 6 1 140.1.h.a 1
7.d odd 6 1 980.1.n.b 2
20.d odd 2 1 3920.1.br.a 2
21.g even 6 1 1260.1.p.a 1
21.h odd 6 1 1260.1.p.b 1
28.d even 2 1 3920.1.br.a 2
28.f even 6 1 560.1.p.b 1
28.f even 6 1 3920.1.br.a 2
28.g odd 6 1 560.1.p.a 1
28.g odd 6 1 3920.1.br.b 2
35.c odd 2 1 CM 980.1.n.a 2
35.i odd 6 1 140.1.h.b yes 1
35.i odd 6 1 inner 980.1.n.a 2
35.j even 6 1 140.1.h.a 1
35.j even 6 1 980.1.n.b 2
35.k even 12 2 700.1.d.a 2
35.l odd 12 2 700.1.d.a 2
56.j odd 6 1 2240.1.p.c 1
56.k odd 6 1 2240.1.p.d 1
56.m even 6 1 2240.1.p.a 1
56.p even 6 1 2240.1.p.b 1
105.o odd 6 1 1260.1.p.a 1
105.p even 6 1 1260.1.p.b 1
140.c even 2 1 3920.1.br.b 2
140.p odd 6 1 560.1.p.b 1
140.p odd 6 1 3920.1.br.a 2
140.s even 6 1 560.1.p.a 1
140.s even 6 1 3920.1.br.b 2
140.w even 12 2 2800.1.f.c 2
140.x odd 12 2 2800.1.f.c 2
280.ba even 6 1 2240.1.p.d 1
280.bf even 6 1 2240.1.p.c 1
280.bi odd 6 1 2240.1.p.a 1
280.bk odd 6 1 2240.1.p.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.1.h.a 1 7.d odd 6 1
140.1.h.a 1 35.j even 6 1
140.1.h.b yes 1 7.c even 3 1
140.1.h.b yes 1 35.i odd 6 1
560.1.p.a 1 28.g odd 6 1
560.1.p.a 1 140.s even 6 1
560.1.p.b 1 28.f even 6 1
560.1.p.b 1 140.p odd 6 1
700.1.d.a 2 35.k even 12 2
700.1.d.a 2 35.l odd 12 2
980.1.n.a 2 1.a even 1 1 trivial
980.1.n.a 2 7.c even 3 1 inner
980.1.n.a 2 35.c odd 2 1 CM
980.1.n.a 2 35.i odd 6 1 inner
980.1.n.b 2 5.b even 2 1
980.1.n.b 2 7.b odd 2 1
980.1.n.b 2 7.d odd 6 1
980.1.n.b 2 35.j even 6 1
1260.1.p.a 1 21.g even 6 1
1260.1.p.a 1 105.o odd 6 1
1260.1.p.b 1 21.h odd 6 1
1260.1.p.b 1 105.p even 6 1
2240.1.p.a 1 56.m even 6 1
2240.1.p.a 1 280.bi odd 6 1
2240.1.p.b 1 56.p even 6 1
2240.1.p.b 1 280.bk odd 6 1
2240.1.p.c 1 56.j odd 6 1
2240.1.p.c 1 280.bf even 6 1
2240.1.p.d 1 56.k odd 6 1
2240.1.p.d 1 280.ba even 6 1
2800.1.f.c 2 140.w even 12 2
2800.1.f.c 2 140.x odd 12 2
3920.1.br.a 2 20.d odd 2 1
3920.1.br.a 2 28.d even 2 1
3920.1.br.a 2 28.f even 6 1
3920.1.br.a 2 140.p odd 6 1
3920.1.br.b 2 4.b odd 2 1
3920.1.br.b 2 28.g odd 6 1
3920.1.br.b 2 140.c even 2 1
3920.1.br.b 2 140.s even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+T3+1 T_{3}^{2} + T_{3} + 1 acting on S1new(980,[χ])S_{1}^{\mathrm{new}}(980, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
55 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1313 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1717 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 (T2)2 (T - 2)^{2} Copy content Toggle raw display
7373 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
7979 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
8383 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 (T1)2 (T - 1)^{2} Copy content Toggle raw display
show more
show less