Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [98,8,Mod(9,98)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(98, base_ring=CyclotomicField(42))
chi = DirichletCharacter(H, H._module([2]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("98.9");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 98 = 2 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 98.g (of order \(21\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(30.6137324974\) |
Analytic rank: | \(0\) |
Dimension: | \(192\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{21})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{21}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | −5.86441 | − | 5.44138i | −75.7140 | − | 11.4121i | 4.78273 | + | 63.8210i | 108.271 | + | 275.870i | 381.921 | + | 478.914i | 800.419 | + | 427.637i | 319.227 | − | 400.298i | 3512.54 | + | 1083.48i | 866.168 | − | 2206.96i |
9.2 | −5.86441 | − | 5.44138i | −73.5376 | − | 11.0840i | 4.78273 | + | 63.8210i | −166.596 | − | 424.481i | 370.942 | + | 465.147i | 411.362 | − | 808.903i | 319.227 | − | 400.298i | 3195.08 | + | 985.551i | −1332.77 | + | 3395.85i |
9.3 | −5.86441 | − | 5.44138i | −72.3491 | − | 10.9049i | 4.78273 | + | 63.8210i | −7.21605 | − | 18.3862i | 364.948 | + | 457.630i | −907.483 | + | 4.19463i | 319.227 | − | 400.298i | 3025.64 | + | 933.285i | −57.7284 | + | 147.090i |
9.4 | −5.86441 | − | 5.44138i | −55.4096 | − | 8.35166i | 4.78273 | + | 63.8210i | 26.0816 | + | 66.4548i | 279.501 | + | 350.483i | −189.144 | − | 887.563i | 319.227 | − | 400.298i | 910.641 | + | 280.896i | 208.653 | − | 531.638i |
9.5 | −5.86441 | − | 5.44138i | −37.9974 | − | 5.72719i | 4.78273 | + | 63.8210i | −101.292 | − | 258.087i | 191.669 | + | 240.345i | −331.590 | + | 844.743i | 319.227 | − | 400.298i | −678.835 | − | 209.393i | −810.332 | + | 2064.69i |
9.6 | −5.86441 | − | 5.44138i | −21.7480 | − | 3.27799i | 4.78273 | + | 63.8210i | 39.0505 | + | 99.4991i | 109.703 | + | 137.563i | 759.117 | + | 497.276i | 319.227 | − | 400.298i | −1627.61 | − | 502.050i | 312.404 | − | 795.993i |
9.7 | −5.86441 | − | 5.44138i | −17.9042 | − | 2.69862i | 4.78273 | + | 63.8210i | −184.621 | − | 470.406i | 90.3132 | + | 113.249i | 801.608 | + | 425.404i | 319.227 | − | 400.298i | −1776.56 | − | 547.997i | −1476.97 | + | 3763.25i |
9.8 | −5.86441 | − | 5.44138i | −10.9774 | − | 1.65457i | 4.78273 | + | 63.8210i | 178.263 | + | 454.206i | 55.3727 | + | 69.4352i | −405.835 | − | 811.690i | 319.227 | − | 400.298i | −1972.07 | − | 608.304i | 1426.10 | − | 3633.65i |
9.9 | −5.86441 | − | 5.44138i | 5.18439 | + | 0.781420i | 4.78273 | + | 63.8210i | 63.2085 | + | 161.053i | −26.1514 | − | 32.7928i | 584.371 | − | 694.300i | 319.227 | − | 400.298i | −2063.57 | − | 636.527i | 505.668 | − | 1288.42i |
9.10 | −5.86441 | − | 5.44138i | 9.93628 | + | 1.49765i | 4.78273 | + | 63.8210i | 58.1431 | + | 148.146i | −50.1212 | − | 62.8499i | −450.266 | + | 787.911i | 319.227 | − | 400.298i | −1993.35 | − | 614.867i | 465.144 | − | 1185.17i |
9.11 | −5.86441 | − | 5.44138i | 24.3984 | + | 3.67747i | 4.78273 | + | 63.8210i | −108.317 | − | 275.987i | −123.072 | − | 154.327i | −790.874 | − | 445.040i | 319.227 | − | 400.298i | −1508.08 | − | 465.180i | −866.535 | + | 2207.89i |
9.12 | −5.86441 | − | 5.44138i | 41.3624 | + | 6.23438i | 4.78273 | + | 63.8210i | −72.3162 | − | 184.259i | −208.643 | − | 261.630i | 663.372 | − | 619.258i | 319.227 | − | 400.298i | −417.856 | − | 128.892i | −578.530 | + | 1474.07i |
9.13 | −5.86441 | − | 5.44138i | 61.5884 | + | 9.28295i | 4.78273 | + | 63.8210i | 137.855 | + | 351.248i | −310.668 | − | 389.565i | 638.463 | + | 644.909i | 319.227 | − | 400.298i | 1617.12 | + | 498.814i | 1102.84 | − | 2809.99i |
9.14 | −5.86441 | − | 5.44138i | 65.6190 | + | 9.89047i | 4.78273 | + | 63.8210i | 106.681 | + | 271.820i | −330.999 | − | 415.060i | −906.956 | − | 31.2066i | 319.227 | − | 400.298i | 2118.19 | + | 653.375i | 853.450 | − | 2174.56i |
9.15 | −5.86441 | − | 5.44138i | 76.8199 | + | 11.5787i | 4.78273 | + | 63.8210i | −156.475 | − | 398.693i | −387.499 | − | 485.909i | −271.134 | + | 866.042i | 319.227 | − | 400.298i | 3677.39 | + | 1134.32i | −1251.80 | + | 3189.54i |
9.16 | −5.86441 | − | 5.44138i | 86.4739 | + | 13.0338i | 4.78273 | + | 63.8210i | −21.0780 | − | 53.7058i | −436.197 | − | 546.973i | 320.189 | − | 849.130i | 319.227 | − | 400.298i | 5218.02 | + | 1609.54i | −168.624 | + | 429.646i |
11.1 | −5.86441 | + | 5.44138i | −75.7140 | + | 11.4121i | 4.78273 | − | 63.8210i | 108.271 | − | 275.870i | 381.921 | − | 478.914i | 800.419 | − | 427.637i | 319.227 | + | 400.298i | 3512.54 | − | 1083.48i | 866.168 | + | 2206.96i |
11.2 | −5.86441 | + | 5.44138i | −73.5376 | + | 11.0840i | 4.78273 | − | 63.8210i | −166.596 | + | 424.481i | 370.942 | − | 465.147i | 411.362 | + | 808.903i | 319.227 | + | 400.298i | 3195.08 | − | 985.551i | −1332.77 | − | 3395.85i |
11.3 | −5.86441 | + | 5.44138i | −72.3491 | + | 10.9049i | 4.78273 | − | 63.8210i | −7.21605 | + | 18.3862i | 364.948 | − | 457.630i | −907.483 | − | 4.19463i | 319.227 | + | 400.298i | 3025.64 | − | 933.285i | −57.7284 | − | 147.090i |
11.4 | −5.86441 | + | 5.44138i | −55.4096 | + | 8.35166i | 4.78273 | − | 63.8210i | 26.0816 | − | 66.4548i | 279.501 | − | 350.483i | −189.144 | + | 887.563i | 319.227 | + | 400.298i | 910.641 | − | 280.896i | 208.653 | + | 531.638i |
See next 80 embeddings (of 192 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
49.g | even | 21 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 98.8.g.b | ✓ | 192 |
49.g | even | 21 | 1 | inner | 98.8.g.b | ✓ | 192 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
98.8.g.b | ✓ | 192 | 1.a | even | 1 | 1 | trivial |
98.8.g.b | ✓ | 192 | 49.g | even | 21 | 1 | inner |