Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [98,8,Mod(9,98)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(98, base_ring=CyclotomicField(42))
chi = DirichletCharacter(H, H._module([2]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("98.9");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 98 = 2 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 98.g (of order \(21\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(30.6137324974\) |
Analytic rank: | \(0\) |
Dimension: | \(192\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{21})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{21}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | 5.86441 | + | 5.44138i | −84.7851 | − | 12.7793i | 4.78273 | + | 63.8210i | −115.488 | − | 294.260i | −427.678 | − | 536.291i | −102.397 | − | 901.697i | −319.227 | + | 400.298i | 4935.37 | + | 1522.36i | 923.907 | − | 2354.08i |
9.2 | 5.86441 | + | 5.44138i | −75.6682 | − | 11.4051i | 4.78273 | + | 63.8210i | 90.3509 | + | 230.210i | −381.690 | − | 478.624i | 123.140 | + | 899.099i | −319.227 | + | 400.298i | 3505.76 | + | 1081.38i | −722.807 | + | 1841.68i |
9.3 | 5.86441 | + | 5.44138i | −66.5794 | − | 10.0352i | 4.78273 | + | 63.8210i | −18.5758 | − | 47.3305i | −335.844 | − | 421.135i | 858.678 | + | 293.624i | −319.227 | + | 400.298i | 2242.28 | + | 691.651i | 148.607 | − | 378.644i |
9.4 | 5.86441 | + | 5.44138i | −56.3081 | − | 8.48708i | 4.78273 | + | 63.8210i | 81.0622 | + | 206.543i | −284.033 | − | 356.166i | −899.426 | − | 120.729i | −319.227 | + | 400.298i | 1008.73 | + | 311.153i | −648.498 | + | 1652.35i |
9.5 | 5.86441 | + | 5.44138i | −44.0648 | − | 6.64170i | 4.78273 | + | 63.8210i | −119.922 | − | 305.555i | −222.274 | − | 278.723i | −714.362 | + | 559.670i | −319.227 | + | 400.298i | −192.244 | − | 59.2995i | 959.373 | − | 2444.44i |
9.6 | 5.86441 | + | 5.44138i | −24.5910 | − | 3.70650i | 4.78273 | + | 63.8210i | −94.1241 | − | 239.824i | −124.044 | − | 155.546i | 95.2065 | − | 902.485i | −319.227 | + | 400.298i | −1498.86 | − | 462.336i | 752.993 | − | 1918.59i |
9.7 | 5.86441 | + | 5.44138i | −11.4009 | − | 1.71841i | 4.78273 | + | 63.8210i | 116.184 | + | 296.031i | −57.5090 | − | 72.1140i | −834.528 | − | 356.519i | −319.227 | + | 400.298i | −1962.81 | − | 605.447i | −929.468 | + | 2368.25i |
9.8 | 5.86441 | + | 5.44138i | −5.67930 | − | 0.856016i | 4.78273 | + | 63.8210i | −10.0713 | − | 25.6613i | −28.6478 | − | 35.9233i | 878.717 | − | 226.714i | −319.227 | + | 400.298i | −2058.32 | − | 634.906i | 80.5704 | − | 205.290i |
9.9 | 5.86441 | + | 5.44138i | 6.05998 | + | 0.913395i | 4.78273 | + | 63.8210i | 53.6783 | + | 136.770i | 30.5681 | + | 38.3312i | 400.369 | + | 814.400i | −319.227 | + | 400.298i | −2053.95 | − | 633.559i | −429.426 | + | 1094.16i |
9.10 | 5.86441 | + | 5.44138i | 19.6534 | + | 2.96227i | 4.78273 | + | 63.8210i | 186.155 | + | 474.315i | 99.1368 | + | 124.314i | 149.871 | + | 895.032i | −319.227 | + | 400.298i | −1712.36 | − | 528.192i | −1489.24 | + | 3794.52i |
9.11 | 5.86441 | + | 5.44138i | 22.4554 | + | 3.38461i | 4.78273 | + | 63.8210i | −188.461 | − | 480.190i | 113.271 | + | 142.037i | 385.316 | + | 821.629i | −319.227 | + | 400.298i | −1597.05 | − | 492.624i | 1507.69 | − | 3841.52i |
9.12 | 5.86441 | + | 5.44138i | 40.1709 | + | 6.05479i | 4.78273 | + | 63.8210i | 87.4053 | + | 222.705i | 202.633 | + | 254.093i | −183.592 | − | 888.728i | −319.227 | + | 400.298i | −512.795 | − | 158.176i | −699.242 | + | 1781.64i |
9.13 | 5.86441 | + | 5.44138i | 50.0661 | + | 7.54625i | 4.78273 | + | 63.8210i | −87.2444 | − | 222.295i | 252.546 | + | 316.683i | −812.549 | − | 404.113i | −319.227 | + | 400.298i | 359.830 | + | 110.993i | 697.955 | − | 1778.36i |
9.14 | 5.86441 | + | 5.44138i | 69.9795 | + | 10.5477i | 4.78273 | + | 63.8210i | 142.350 | + | 362.702i | 352.995 | + | 442.641i | 512.540 | − | 748.896i | −319.227 | + | 400.298i | 2696.04 | + | 831.618i | −1138.80 | + | 2901.62i |
9.15 | 5.86441 | + | 5.44138i | 75.6338 | + | 11.4000i | 4.78273 | + | 63.8210i | −138.922 | − | 353.967i | 381.517 | + | 478.407i | 835.662 | − | 353.854i | −319.227 | + | 400.298i | 3500.68 | + | 1079.82i | 1111.38 | − | 2831.74i |
9.16 | 5.86441 | + | 5.44138i | 79.3124 | + | 11.9544i | 4.78273 | + | 63.8210i | 24.7543 | + | 63.0729i | 400.072 | + | 501.675i | −250.767 | + | 872.157i | −319.227 | + | 400.298i | 4057.71 | + | 1251.64i | −198.034 | + | 504.583i |
11.1 | 5.86441 | − | 5.44138i | −84.7851 | + | 12.7793i | 4.78273 | − | 63.8210i | −115.488 | + | 294.260i | −427.678 | + | 536.291i | −102.397 | + | 901.697i | −319.227 | − | 400.298i | 4935.37 | − | 1522.36i | 923.907 | + | 2354.08i |
11.2 | 5.86441 | − | 5.44138i | −75.6682 | + | 11.4051i | 4.78273 | − | 63.8210i | 90.3509 | − | 230.210i | −381.690 | + | 478.624i | 123.140 | − | 899.099i | −319.227 | − | 400.298i | 3505.76 | − | 1081.38i | −722.807 | − | 1841.68i |
11.3 | 5.86441 | − | 5.44138i | −66.5794 | + | 10.0352i | 4.78273 | − | 63.8210i | −18.5758 | + | 47.3305i | −335.844 | + | 421.135i | 858.678 | − | 293.624i | −319.227 | − | 400.298i | 2242.28 | − | 691.651i | 148.607 | + | 378.644i |
11.4 | 5.86441 | − | 5.44138i | −56.3081 | + | 8.48708i | 4.78273 | − | 63.8210i | 81.0622 | − | 206.543i | −284.033 | + | 356.166i | −899.426 | + | 120.729i | −319.227 | − | 400.298i | 1008.73 | − | 311.153i | −648.498 | − | 1652.35i |
See next 80 embeddings (of 192 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
49.g | even | 21 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 98.8.g.a | ✓ | 192 |
49.g | even | 21 | 1 | inner | 98.8.g.a | ✓ | 192 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
98.8.g.a | ✓ | 192 | 1.a | even | 1 | 1 | trivial |
98.8.g.a | ✓ | 192 | 49.g | even | 21 | 1 | inner |