Properties

Label 98.8.g
Level $98$
Weight $8$
Character orbit 98.g
Rep. character $\chi_{98}(9,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $384$
Newform subspaces $2$
Sturm bound $112$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.g (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{21})\)
Newform subspaces: \( 2 \)
Sturm bound: \(112\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(98, [\chi])\).

Total New Old
Modular forms 1200 384 816
Cusp forms 1152 384 768
Eisenstein series 48 0 48

Trace form

\( 384 q + 2048 q^{4} - 252 q^{5} - 1456 q^{6} + 1680 q^{7} + 27902 q^{9} - 1792 q^{10} + 29382 q^{11} - 24080 q^{13} + 24192 q^{14} + 28002 q^{15} + 131072 q^{16} + 6622 q^{17} - 2272 q^{18} + 52570 q^{19}+ \cdots + 163460072 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(98, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
98.8.g.a 98.g 49.g $192$ $30.614$ None 98.8.g.a \(-128\) \(259\) \(-14\) \(1848\) $\mathrm{SU}(2)[C_{21}]$
98.8.g.b 98.g 49.g $192$ $30.614$ None 98.8.g.b \(128\) \(-259\) \(-238\) \(-168\) $\mathrm{SU}(2)[C_{21}]$

Decomposition of \(S_{8}^{\mathrm{old}}(98, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(98, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)