Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [98,8,Mod(15,98)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(98, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([10]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("98.15");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 98 = 2 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 98.e (of order \(7\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(30.6137324974\) |
Analytic rank: | \(0\) |
Dimension: | \(102\) |
Relative dimension: | \(17\) over \(\Q(\zeta_{7})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{7}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15.1 | 1.78017 | − | 7.79942i | −55.7774 | + | 69.9426i | −57.6620 | − | 27.7686i | 91.4953 | − | 114.731i | 446.219 | + | 559.541i | −813.026 | + | 403.153i | −319.227 | + | 400.298i | −1294.20 | − | 5670.27i | −731.962 | − | 917.852i |
15.2 | 1.78017 | − | 7.79942i | −52.5259 | + | 65.8654i | −57.6620 | − | 27.7686i | −152.040 | + | 190.653i | 420.208 | + | 526.924i | 679.141 | − | 601.922i | −319.227 | + | 400.298i | −1092.63 | − | 4787.12i | 1216.32 | + | 1525.22i |
15.3 | 1.78017 | − | 7.79942i | −38.4819 | + | 48.2548i | −57.6620 | − | 27.7686i | −55.7583 | + | 69.9187i | 307.855 | + | 386.038i | 328.861 | + | 845.809i | −319.227 | + | 400.298i | −361.014 | − | 1581.71i | 446.066 | + | 559.349i |
15.4 | 1.78017 | − | 7.79942i | −33.9176 | + | 42.5313i | −57.6620 | − | 27.7686i | 325.129 | − | 407.699i | 271.341 | + | 340.250i | 879.931 | + | 221.957i | −319.227 | + | 400.298i | −171.856 | − | 752.950i | −2601.03 | − | 3261.59i |
15.5 | 1.78017 | − | 7.79942i | −32.5928 | + | 40.8701i | −57.6620 | − | 27.7686i | −312.974 | + | 392.457i | 260.742 | + | 326.960i | −741.847 | − | 522.691i | −319.227 | + | 400.298i | −121.419 | − | 531.971i | 2503.79 | + | 3139.66i |
15.6 | 1.78017 | − | 7.79942i | −27.4194 | + | 34.3829i | −57.6620 | − | 27.7686i | 195.595 | − | 245.269i | 219.356 | + | 275.063i | −226.683 | − | 878.725i | −319.227 | + | 400.298i | 56.2955 | + | 246.647i | −1564.76 | − | 1962.15i |
15.7 | 1.78017 | − | 7.79942i | −11.6444 | + | 14.6016i | −57.6620 | − | 27.7686i | −57.8585 | + | 72.5522i | 93.1551 | + | 116.813i | 209.537 | − | 882.971i | −319.227 | + | 400.298i | 409.038 | + | 1792.11i | 462.868 | + | 580.418i |
15.8 | 1.78017 | − | 7.79942i | −10.2478 | + | 12.8504i | −57.6620 | − | 27.7686i | −258.215 | + | 323.791i | 81.9827 | + | 102.803i | 397.750 | + | 815.683i | −319.227 | + | 400.298i | 426.539 | + | 1868.79i | 2065.72 | + | 2590.33i |
15.9 | 1.78017 | − | 7.79942i | −9.65569 | + | 12.1078i | −57.6620 | − | 27.7686i | 9.08707 | − | 11.3948i | 77.2455 | + | 96.8628i | −905.628 | − | 58.1530i | −319.227 | + | 400.298i | 433.286 | + | 1898.35i | −72.6966 | − | 91.1586i |
15.10 | 1.78017 | − | 7.79942i | 7.56516 | − | 9.48641i | −57.6620 | − | 27.7686i | 43.7139 | − | 54.8155i | −60.5213 | − | 75.8913i | 838.976 | − | 345.923i | −319.227 | + | 400.298i | 453.893 | + | 1988.64i | −349.711 | − | 438.524i |
15.11 | 1.78017 | − | 7.79942i | 18.3592 | − | 23.0217i | −57.6620 | − | 27.7686i | 219.842 | − | 275.673i | −146.874 | − | 184.174i | −662.230 | + | 620.480i | −319.227 | + | 400.298i | 293.714 | + | 1286.85i | −1758.73 | − | 2205.38i |
15.12 | 1.78017 | − | 7.79942i | 29.1030 | − | 36.4940i | −57.6620 | − | 27.7686i | −180.044 | + | 225.768i | −232.824 | − | 291.952i | 904.138 | + | 77.9552i | −319.227 | + | 400.298i | 1.82441 | + | 7.99325i | 1440.35 | + | 1806.14i |
15.13 | 1.78017 | − | 7.79942i | 29.1375 | − | 36.5372i | −57.6620 | − | 27.7686i | 197.304 | − | 247.412i | −233.100 | − | 292.298i | 463.570 | + | 780.157i | −319.227 | + | 400.298i | 0.676716 | + | 2.96488i | −1578.44 | − | 1979.30i |
15.14 | 1.78017 | − | 7.79942i | 29.3763 | − | 36.8367i | −57.6620 | − | 27.7686i | −202.735 | + | 254.222i | −235.010 | − | 294.693i | −898.131 | + | 130.015i | −319.227 | + | 400.298i | −7.32243 | − | 32.0817i | 1621.88 | + | 2033.77i |
15.15 | 1.78017 | − | 7.79942i | 35.7645 | − | 44.8473i | −57.6620 | − | 27.7686i | 282.977 | − | 354.842i | −286.116 | − | 358.778i | −218.313 | − | 880.842i | −319.227 | + | 400.298i | −245.526 | − | 1075.72i | −2263.82 | − | 2838.74i |
15.16 | 1.78017 | − | 7.79942i | 48.7234 | − | 61.0972i | −57.6620 | − | 27.7686i | −110.281 | + | 138.288i | −389.787 | − | 488.777i | −502.110 | + | 755.929i | −319.227 | + | 400.298i | −872.244 | − | 3821.55i | 882.248 | + | 1106.30i |
15.17 | 1.78017 | − | 7.79942i | 51.6871 | − | 64.8135i | −57.6620 | − | 27.7686i | −39.9684 | + | 50.1188i | −413.497 | − | 518.508i | 27.7587 | − | 907.068i | −319.227 | + | 400.298i | −1042.59 | − | 4567.88i | 319.747 | + | 400.951i |
29.1 | 7.20775 | + | 3.47107i | −19.2316 | − | 84.2593i | 39.9033 | + | 50.0372i | −89.6368 | − | 392.724i | 153.853 | − | 674.074i | −412.536 | + | 808.305i | 113.931 | + | 499.163i | −4759.35 | + | 2291.98i | 717.094 | − | 3141.79i |
29.2 | 7.20775 | + | 3.47107i | −18.3841 | − | 80.5460i | 39.9033 | + | 50.0372i | 36.1367 | + | 158.325i | 147.073 | − | 644.368i | 905.041 | − | 66.6577i | 113.931 | + | 499.163i | −4179.26 | + | 2012.63i | −289.093 | + | 1266.60i |
29.3 | 7.20775 | + | 3.47107i | −13.2057 | − | 57.8581i | 39.9033 | + | 50.0372i | 107.513 | + | 471.047i | 105.646 | − | 462.865i | 100.323 | + | 901.930i | 113.931 | + | 499.163i | −1202.75 | + | 579.212i | −860.106 | + | 3768.37i |
See next 80 embeddings (of 102 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
49.e | even | 7 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 98.8.e.b | ✓ | 102 |
49.e | even | 7 | 1 | inner | 98.8.e.b | ✓ | 102 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
98.8.e.b | ✓ | 102 | 1.a | even | 1 | 1 | trivial |
98.8.e.b | ✓ | 102 | 49.e | even | 7 | 1 | inner |