Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [98,8,Mod(15,98)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(98, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([10]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("98.15");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 98 = 2 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 98.e (of order \(7\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(30.6137324974\) |
Analytic rank: | \(0\) |
Dimension: | \(102\) |
Relative dimension: | \(17\) over \(\Q(\zeta_{7})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{7}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15.1 | −1.78017 | + | 7.79942i | −56.7562 | + | 71.1701i | −57.6620 | − | 27.7686i | 225.835 | − | 283.188i | −454.050 | − | 569.360i | 867.502 | − | 266.427i | 319.227 | − | 400.298i | −1357.25 | − | 5946.52i | 1806.68 | + | 2265.50i |
15.2 | −1.78017 | + | 7.79942i | −54.1604 | + | 67.9150i | −57.6620 | − | 27.7686i | −294.379 | + | 369.139i | −433.283 | − | 543.320i | 501.476 | + | 756.349i | 319.227 | − | 400.298i | −1192.44 | − | 5224.43i | −2355.03 | − | 2953.11i |
15.3 | −1.78017 | + | 7.79942i | −38.9447 | + | 48.8351i | −57.6620 | − | 27.7686i | −143.458 | + | 179.891i | −311.558 | − | 390.681i | −649.820 | − | 633.464i | 319.227 | − | 400.298i | −381.526 | − | 1671.58i | −1147.67 | − | 1439.13i |
15.4 | −1.78017 | + | 7.79942i | −37.5566 | + | 47.0945i | −57.6620 | − | 27.7686i | 204.312 | − | 256.200i | −300.453 | − | 376.756i | −891.423 | − | 170.025i | 319.227 | − | 400.298i | −320.741 | − | 1405.26i | 1634.50 | + | 2049.60i |
15.5 | −1.78017 | + | 7.79942i | −25.0262 | + | 31.3819i | −57.6620 | − | 27.7686i | 102.644 | − | 128.712i | −200.210 | − | 251.055i | −345.305 | + | 839.230i | 319.227 | − | 400.298i | 128.142 | + | 561.427i | 821.152 | + | 1029.69i |
15.6 | −1.78017 | + | 7.79942i | −19.6631 | + | 24.6568i | −57.6620 | − | 27.7686i | 3.04150 | − | 3.81392i | −157.305 | − | 197.254i | 715.482 | − | 558.238i | 319.227 | − | 400.298i | 265.335 | + | 1162.51i | 24.3320 | + | 30.5113i |
15.7 | −1.78017 | + | 7.79942i | −15.8734 | + | 19.9046i | −57.6620 | − | 27.7686i | −58.6019 | + | 73.4844i | −126.987 | − | 159.237i | 842.259 | + | 337.851i | 319.227 | − | 400.298i | 342.424 | + | 1500.26i | −468.815 | − | 587.875i |
15.8 | −1.78017 | + | 7.79942i | −11.4446 | + | 14.3511i | −57.6620 | − | 27.7686i | −206.925 | + | 259.476i | −91.5569 | − | 114.809i | −432.215 | + | 797.956i | 319.227 | − | 400.298i | 411.679 | + | 1803.68i | −1655.40 | − | 2075.81i |
15.9 | −1.78017 | + | 7.79942i | −1.09526 | + | 1.37342i | −57.6620 | − | 27.7686i | 312.714 | − | 392.131i | −8.76210 | − | 10.9873i | 372.584 | − | 827.481i | 319.227 | − | 400.298i | 485.967 | + | 2129.16i | 2501.71 | + | 3137.04i |
15.10 | −1.78017 | + | 7.79942i | 15.2217 | − | 19.0875i | −57.6620 | − | 27.7686i | −295.340 | + | 370.344i | 121.774 | + | 152.700i | 660.360 | − | 622.469i | 319.227 | − | 400.298i | 354.024 | + | 1551.08i | −2362.72 | − | 2962.75i |
15.11 | −1.78017 | + | 7.79942i | 16.7315 | − | 20.9807i | −57.6620 | − | 27.7686i | −224.935 | + | 282.059i | 133.852 | + | 167.845i | −504.041 | − | 754.643i | 319.227 | − | 400.298i | 326.409 | + | 1430.09i | −1799.48 | − | 2256.47i |
15.12 | −1.78017 | + | 7.79942i | 22.2524 | − | 27.9036i | −57.6620 | − | 27.7686i | 308.589 | − | 386.959i | 178.019 | + | 223.229i | 396.272 | + | 816.401i | 319.227 | − | 400.298i | 203.211 | + | 890.324i | 2468.72 | + | 3095.67i |
15.13 | −1.78017 | + | 7.79942i | 22.5618 | − | 28.2916i | −57.6620 | − | 27.7686i | 84.6849 | − | 106.192i | 180.494 | + | 226.333i | −812.225 | + | 404.763i | 319.227 | − | 400.298i | 195.273 | + | 855.548i | 677.479 | + | 849.532i |
15.14 | −1.78017 | + | 7.79942i | 27.3099 | − | 34.2455i | −57.6620 | − | 27.7686i | 10.7890 | − | 13.5289i | 218.479 | + | 273.964i | 659.270 | + | 623.623i | 319.227 | − | 400.298i | 59.7271 | + | 261.682i | 86.3117 | + | 108.231i |
15.15 | −1.78017 | + | 7.79942i | 40.4768 | − | 50.7563i | −57.6620 | − | 27.7686i | 8.03553 | − | 10.0762i | 323.815 | + | 406.051i | −856.937 | − | 298.667i | 319.227 | − | 400.298i | −451.178 | − | 1976.74i | 64.2843 | + | 80.6099i |
15.16 | −1.78017 | + | 7.79942i | 51.2277 | − | 64.2375i | −57.6620 | − | 27.7686i | 97.8098 | − | 122.650i | 409.822 | + | 513.900i | 512.516 | − | 748.913i | 319.227 | − | 400.298i | −1015.53 | − | 4449.31i | 782.478 | + | 981.197i |
15.17 | −1.78017 | + | 7.79942i | 53.6172 | − | 67.2338i | −57.6620 | − | 27.7686i | −288.205 | + | 361.398i | 428.937 | + | 537.870i | −119.993 | + | 899.525i | 319.227 | − | 400.298i | −1158.93 | − | 5077.61i | −2305.64 | − | 2891.18i |
29.1 | −7.20775 | − | 3.47107i | −20.7448 | − | 90.8888i | 39.9033 | + | 50.0372i | −87.6751 | − | 384.130i | −165.958 | + | 727.110i | −339.848 | − | 841.455i | −113.931 | − | 499.163i | −5860.01 | + | 2822.03i | −701.401 | + | 3073.04i |
29.2 | −7.20775 | − | 3.47107i | −16.2091 | − | 71.0169i | 39.9033 | + | 50.0372i | 55.2644 | + | 242.129i | −129.673 | + | 568.135i | −534.226 | + | 733.584i | −113.931 | − | 499.163i | −2810.25 | + | 1353.34i | 442.116 | − | 1937.03i |
29.3 | −7.20775 | − | 3.47107i | −14.1864 | − | 62.1546i | 39.9033 | + | 50.0372i | 12.1770 | + | 53.3510i | −113.491 | + | 497.237i | −635.405 | + | 647.922i | −113.931 | − | 499.163i | −1691.52 | + | 814.594i | 97.4161 | − | 426.808i |
See next 80 embeddings (of 102 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
49.e | even | 7 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 98.8.e.a | ✓ | 102 |
49.e | even | 7 | 1 | inner | 98.8.e.a | ✓ | 102 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
98.8.e.a | ✓ | 102 | 1.a | even | 1 | 1 | trivial |
98.8.e.a | ✓ | 102 | 49.e | even | 7 | 1 | inner |