Defining parameters
Level: | \( N \) | \(=\) | \( 98 = 2 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 98.e (of order \(7\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 49 \) |
Character field: | \(\Q(\zeta_{7})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(98, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 600 | 204 | 396 |
Cusp forms | 576 | 204 | 372 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(98, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
98.8.e.a | $102$ | $30.614$ | None | \(-136\) | \(199\) | \(274\) | \(-343\) | ||
98.8.e.b | $102$ | $30.614$ | None | \(136\) | \(-145\) | \(-28\) | \(-673\) |
Decomposition of \(S_{8}^{\mathrm{old}}(98, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(98, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)