Properties

Label 98.8.e
Level $98$
Weight $8$
Character orbit 98.e
Rep. character $\chi_{98}(15,\cdot)$
Character field $\Q(\zeta_{7})$
Dimension $204$
Newform subspaces $2$
Sturm bound $112$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.e (of order \(7\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{7})\)
Newform subspaces: \( 2 \)
Sturm bound: \(112\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(98, [\chi])\).

Total New Old
Modular forms 600 204 396
Cusp forms 576 204 372
Eisenstein series 24 0 24

Trace form

\( 204 q + 54 q^{3} - 2176 q^{4} + 246 q^{5} + 2752 q^{6} - 1016 q^{7} - 31472 q^{9} + 2416 q^{10} - 22338 q^{11} + 3456 q^{12} + 970 q^{13} + 2640 q^{14} - 28002 q^{15} - 139264 q^{16} - 119290 q^{17} - 4544 q^{18}+ \cdots - 163460072 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(98, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
98.8.e.a 98.e 49.e $102$ $30.614$ None 98.8.e.a \(-136\) \(199\) \(274\) \(-343\) $\mathrm{SU}(2)[C_{7}]$
98.8.e.b 98.e 49.e $102$ $30.614$ None 98.8.e.b \(136\) \(-145\) \(-28\) \(-673\) $\mathrm{SU}(2)[C_{7}]$

Decomposition of \(S_{8}^{\mathrm{old}}(98, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(98, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)