Properties

Label 98.8.c.h.79.2
Level $98$
Weight $8$
Character 98.79
Analytic conductor $30.614$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,8,Mod(67,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.67"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-16,-56,-128,-238,896,0,2048,-1972] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6137324974\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{2389})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 598x^{2} + 597x + 356409 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.2
Root \(-11.9693 - 20.7315i\) of defining polynomial
Character \(\chi\) \(=\) 98.79
Dual form 98.8.c.h.67.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 + 6.92820i) q^{2} +(10.4387 + 18.0804i) q^{3} +(-32.0000 - 55.4256i) q^{4} +(-108.377 + 187.715i) q^{5} -167.019 q^{6} +512.000 q^{8} +(875.567 - 1516.53i) q^{9} +(-867.019 - 1501.72i) q^{10} +(-1290.93 - 2235.95i) q^{11} +(668.077 - 1157.14i) q^{12} +8921.97 q^{13} -4525.28 q^{15} +(-2048.00 + 3547.24i) q^{16} +(-5556.44 - 9624.03i) q^{17} +(7004.54 + 12132.2i) q^{18} +(-4323.40 + 7488.34i) q^{19} +13872.3 q^{20} +20654.9 q^{22} +(33028.6 - 57207.2i) q^{23} +(5344.61 + 9257.14i) q^{24} +(15571.2 + 26970.1i) q^{25} +(-35687.9 + 61813.2i) q^{26} +82218.0 q^{27} +128836. q^{29} +(18101.1 - 31352.0i) q^{30} +(-102048. - 176752. i) q^{31} +(-16384.0 - 28377.9i) q^{32} +(26951.2 - 46680.9i) q^{33} +88903.0 q^{34} -112073. q^{36} +(-245856. + 425834. i) q^{37} +(-34587.2 - 59906.7i) q^{38} +(93133.8 + 161312. i) q^{39} +(-55489.2 + 96110.2i) q^{40} +623293. q^{41} +422919. q^{43} +(-82619.5 + 143101. i) q^{44} +(189783. + 328714. i) q^{45} +(264229. + 457657. i) q^{46} +(-602714. + 1.04393e6i) q^{47} -85513.8 q^{48} -249139. q^{50} +(116004. - 200925. i) q^{51} +(-285503. - 494506. i) q^{52} +(636483. + 1.10242e6i) q^{53} +(-328872. + 569623. i) q^{54} +559630. q^{55} -180523. q^{57} +(-515342. + 892599. i) q^{58} +(840430. + 1.45567e6i) q^{59} +(144809. + 250816. i) q^{60} +(1.06128e6 - 1.83818e6i) q^{61} +1.63276e6 q^{62} +262144. q^{64} +(-966940. + 1.67479e6i) q^{65} +(215610. + 373447. i) q^{66} +(1.67466e6 + 2.90060e6i) q^{67} +(-355612. + 615938. i) q^{68} +1.37910e6 q^{69} +2.49257e6 q^{71} +(448290. - 776462. i) q^{72} +(-1.63676e6 - 2.83496e6i) q^{73} +(-1.96684e6 - 3.40667e6i) q^{74} +(-325086. + 563065. i) q^{75} +553395. q^{76} -1.49014e6 q^{78} +(2.09920e6 - 3.63591e6i) q^{79} +(-443914. - 768881. i) q^{80} +(-1.05662e6 - 1.83011e6i) q^{81} +(-2.49317e6 + 4.31830e6i) q^{82} -3.35527e6 q^{83} +2.40877e6 q^{85} +(-1.69168e6 + 2.93007e6i) q^{86} +(1.34488e6 + 2.32939e6i) q^{87} +(-660956. - 1.14481e6i) q^{88} +(1.19979e6 - 2.07810e6i) q^{89} -3.03653e6 q^{90} -4.22766e6 q^{92} +(2.13049e6 - 3.69011e6i) q^{93} +(-4.82171e6 - 8.35145e6i) q^{94} +(-937117. - 1.62313e6i) q^{95} +(342055. - 592457. i) q^{96} -4.51506e6 q^{97} -4.52118e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{2} - 56 q^{3} - 128 q^{4} - 238 q^{5} + 896 q^{6} + 2048 q^{8} - 1972 q^{9} - 1904 q^{10} - 5848 q^{11} - 3584 q^{12} - 2632 q^{13} - 5784 q^{15} - 8192 q^{16} - 47642 q^{17} - 15776 q^{18}+ \cdots + 15278208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 + 6.92820i −0.353553 + 0.612372i
\(3\) 10.4387 + 18.0804i 0.223214 + 0.386618i 0.955782 0.294075i \(-0.0950117\pi\)
−0.732568 + 0.680694i \(0.761678\pi\)
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) −108.377 + 187.715i −0.387743 + 0.671590i −0.992146 0.125089i \(-0.960078\pi\)
0.604403 + 0.796679i \(0.293412\pi\)
\(6\) −167.019 −0.315673
\(7\) 0 0
\(8\) 512.000 0.353553
\(9\) 875.567 1516.53i 0.400351 0.693428i
\(10\) −867.019 1501.72i −0.274176 0.474886i
\(11\) −1290.93 2235.95i −0.292434 0.506511i 0.681951 0.731398i \(-0.261132\pi\)
−0.974385 + 0.224887i \(0.927799\pi\)
\(12\) 668.077 1157.14i 0.111607 0.193309i
\(13\) 8921.97 1.12631 0.563156 0.826350i \(-0.309587\pi\)
0.563156 + 0.826350i \(0.309587\pi\)
\(14\) 0 0
\(15\) −4525.28 −0.346199
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) −5556.44 9624.03i −0.274300 0.475101i 0.695659 0.718373i \(-0.255113\pi\)
−0.969958 + 0.243272i \(0.921779\pi\)
\(18\) 7004.54 + 12132.2i 0.283091 + 0.490328i
\(19\) −4323.40 + 7488.34i −0.144606 + 0.250466i −0.929226 0.369512i \(-0.879525\pi\)
0.784620 + 0.619977i \(0.212858\pi\)
\(20\) 13872.3 0.387743
\(21\) 0 0
\(22\) 20654.9 0.413564
\(23\) 33028.6 57207.2i 0.566034 0.980399i −0.430919 0.902391i \(-0.641810\pi\)
0.996953 0.0780088i \(-0.0248562\pi\)
\(24\) 5344.61 + 9257.14i 0.0789182 + 0.136690i
\(25\) 15571.2 + 26970.1i 0.199311 + 0.345217i
\(26\) −35687.9 + 61813.2i −0.398212 + 0.689723i
\(27\) 82218.0 0.803885
\(28\) 0 0
\(29\) 128836. 0.980941 0.490470 0.871458i \(-0.336825\pi\)
0.490470 + 0.871458i \(0.336825\pi\)
\(30\) 18101.1 31352.0i 0.122400 0.212003i
\(31\) −102048. 176752.i −0.615229 1.06561i −0.990344 0.138630i \(-0.955730\pi\)
0.375115 0.926978i \(-0.377603\pi\)
\(32\) −16384.0 28377.9i −0.0883883 0.153093i
\(33\) 26951.2 46680.9i 0.130551 0.226121i
\(34\) 88903.0 0.387918
\(35\) 0 0
\(36\) −112073. −0.400351
\(37\) −245856. + 425834.i −0.797947 + 1.38208i 0.123004 + 0.992406i \(0.460747\pi\)
−0.920951 + 0.389678i \(0.872586\pi\)
\(38\) −34587.2 59906.7i −0.102252 0.177106i
\(39\) 93133.8 + 161312.i 0.251409 + 0.435453i
\(40\) −55489.2 + 96110.2i −0.137088 + 0.237443i
\(41\) 623293. 1.41237 0.706185 0.708027i \(-0.250415\pi\)
0.706185 + 0.708027i \(0.250415\pi\)
\(42\) 0 0
\(43\) 422919. 0.811181 0.405591 0.914055i \(-0.367066\pi\)
0.405591 + 0.914055i \(0.367066\pi\)
\(44\) −82619.5 + 143101.i −0.146217 + 0.253255i
\(45\) 189783. + 328714.i 0.310466 + 0.537743i
\(46\) 264229. + 457657.i 0.400246 + 0.693247i
\(47\) −602714. + 1.04393e6i −0.846777 + 1.46666i 0.0372922 + 0.999304i \(0.488127\pi\)
−0.884069 + 0.467356i \(0.845207\pi\)
\(48\) −85513.8 −0.111607
\(49\) 0 0
\(50\) −249139. −0.281868
\(51\) 116004. 200925.i 0.122455 0.212099i
\(52\) −285503. 494506.i −0.281578 0.487708i
\(53\) 636483. + 1.10242e6i 0.587247 + 1.01714i 0.994591 + 0.103867i \(0.0331217\pi\)
−0.407344 + 0.913275i \(0.633545\pi\)
\(54\) −328872. + 569623.i −0.284216 + 0.492277i
\(55\) 559630. 0.453557
\(56\) 0 0
\(57\) −180523. −0.129113
\(58\) −515342. + 892599.i −0.346815 + 0.600701i
\(59\) 840430. + 1.45567e6i 0.532745 + 0.922741i 0.999269 + 0.0382328i \(0.0121729\pi\)
−0.466524 + 0.884509i \(0.654494\pi\)
\(60\) 144809. + 250816.i 0.0865497 + 0.149909i
\(61\) 1.06128e6 1.83818e6i 0.598651 1.03689i −0.394370 0.918952i \(-0.629037\pi\)
0.993021 0.117942i \(-0.0376296\pi\)
\(62\) 1.63276e6 0.870065
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −966940. + 1.67479e6i −0.436720 + 0.756421i
\(66\) 215610. + 373447.i 0.0923134 + 0.159892i
\(67\) 1.67466e6 + 2.90060e6i 0.680245 + 1.17822i 0.974906 + 0.222618i \(0.0714602\pi\)
−0.294660 + 0.955602i \(0.595207\pi\)
\(68\) −355612. + 615938.i −0.137150 + 0.237550i
\(69\) 1.37910e6 0.505387
\(70\) 0 0
\(71\) 2.49257e6 0.826502 0.413251 0.910617i \(-0.364393\pi\)
0.413251 + 0.910617i \(0.364393\pi\)
\(72\) 448290. 776462.i 0.141545 0.245164i
\(73\) −1.63676e6 2.83496e6i −0.492443 0.852936i 0.507519 0.861641i \(-0.330563\pi\)
−0.999962 + 0.00870409i \(0.997229\pi\)
\(74\) −1.96684e6 3.40667e6i −0.564234 0.977281i
\(75\) −325086. + 563065.i −0.0889782 + 0.154115i
\(76\) 553395. 0.144606
\(77\) 0 0
\(78\) −1.49014e6 −0.355546
\(79\) 2.09920e6 3.63591e6i 0.479025 0.829695i −0.520686 0.853748i \(-0.674324\pi\)
0.999711 + 0.0240529i \(0.00765703\pi\)
\(80\) −443914. 768881.i −0.0969357 0.167898i
\(81\) −1.05662e6 1.83011e6i −0.220912 0.382631i
\(82\) −2.49317e6 + 4.31830e6i −0.499348 + 0.864897i
\(83\) −3.35527e6 −0.644102 −0.322051 0.946722i \(-0.604372\pi\)
−0.322051 + 0.946722i \(0.604372\pi\)
\(84\) 0 0
\(85\) 2.40877e6 0.425431
\(86\) −1.69168e6 + 2.93007e6i −0.286796 + 0.496745i
\(87\) 1.34488e6 + 2.32939e6i 0.218960 + 0.379250i
\(88\) −660956. 1.14481e6i −0.103391 0.179079i
\(89\) 1.19979e6 2.07810e6i 0.180402 0.312466i −0.761615 0.648029i \(-0.775593\pi\)
0.942018 + 0.335564i \(0.108927\pi\)
\(90\) −3.03653e6 −0.439066
\(91\) 0 0
\(92\) −4.22766e6 −0.566034
\(93\) 2.13049e6 3.69011e6i 0.274656 0.475718i
\(94\) −4.82171e6 8.35145e6i −0.598762 1.03709i
\(95\) −937117. 1.62313e6i −0.112140 0.194232i
\(96\) 342055. 592457.i 0.0394591 0.0683451i
\(97\) −4.51506e6 −0.502299 −0.251150 0.967948i \(-0.580809\pi\)
−0.251150 + 0.967948i \(0.580809\pi\)
\(98\) 0 0
\(99\) −4.52118e6 −0.468305
\(100\) 996555. 1.72608e6i 0.0996555 0.172608i
\(101\) 3.69997e6 + 6.40853e6i 0.357333 + 0.618919i 0.987514 0.157529i \(-0.0503527\pi\)
−0.630181 + 0.776448i \(0.717019\pi\)
\(102\) 928032. + 1.60740e6i 0.0865889 + 0.149976i
\(103\) 9.22855e6 1.59843e7i 0.832153 1.44133i −0.0641744 0.997939i \(-0.520441\pi\)
0.896327 0.443393i \(-0.146225\pi\)
\(104\) 4.56805e6 0.398212
\(105\) 0 0
\(106\) −1.01837e7 −0.830493
\(107\) 2.49697e6 4.32488e6i 0.197047 0.341296i −0.750523 0.660845i \(-0.770198\pi\)
0.947570 + 0.319549i \(0.103531\pi\)
\(108\) −2.63098e6 4.55698e6i −0.200971 0.348092i
\(109\) −9.34351e6 1.61834e7i −0.691062 1.19695i −0.971490 0.237080i \(-0.923810\pi\)
0.280428 0.959875i \(-0.409524\pi\)
\(110\) −2.23852e6 + 3.87723e6i −0.160357 + 0.277746i
\(111\) −1.02656e7 −0.712452
\(112\) 0 0
\(113\) 2.49534e7 1.62688 0.813438 0.581651i \(-0.197593\pi\)
0.813438 + 0.581651i \(0.197593\pi\)
\(114\) 722090. 1.25070e6i 0.0456483 0.0790651i
\(115\) 7.15910e6 + 1.23999e7i 0.438951 + 0.760286i
\(116\) −4.12274e6 7.14079e6i −0.245235 0.424760i
\(117\) 7.81178e6 1.35304e7i 0.450920 0.781017i
\(118\) −1.34469e7 −0.753415
\(119\) 0 0
\(120\) −2.31694e6 −0.122400
\(121\) 6.41059e6 1.11035e7i 0.328965 0.569783i
\(122\) 8.49020e6 + 1.47055e7i 0.423310 + 0.733194i
\(123\) 6.50636e6 + 1.12694e7i 0.315261 + 0.546048i
\(124\) −6.53105e6 + 1.13121e7i −0.307614 + 0.532804i
\(125\) −2.36842e7 −1.08461
\(126\) 0 0
\(127\) −1.72080e7 −0.745449 −0.372724 0.927942i \(-0.621576\pi\)
−0.372724 + 0.927942i \(0.621576\pi\)
\(128\) −1.04858e6 + 1.81619e6i −0.0441942 + 0.0765466i
\(129\) 4.41473e6 + 7.64653e6i 0.181067 + 0.313618i
\(130\) −7.73552e6 1.33983e7i −0.308807 0.534870i
\(131\) 1.34633e7 2.33191e7i 0.523242 0.906281i −0.476392 0.879233i \(-0.658056\pi\)
0.999634 0.0270484i \(-0.00861082\pi\)
\(132\) −3.44976e6 −0.130551
\(133\) 0 0
\(134\) −2.67946e7 −0.962012
\(135\) −8.91057e6 + 1.54336e7i −0.311700 + 0.539881i
\(136\) −2.84490e6 4.92751e6i −0.0969796 0.167974i
\(137\) 1.36301e7 + 2.36080e7i 0.452873 + 0.784399i 0.998563 0.0535877i \(-0.0170657\pi\)
−0.545690 + 0.837987i \(0.683732\pi\)
\(138\) −5.51641e6 + 9.55470e6i −0.178681 + 0.309485i
\(139\) 1.36813e7 0.432092 0.216046 0.976383i \(-0.430684\pi\)
0.216046 + 0.976383i \(0.430684\pi\)
\(140\) 0 0
\(141\) −2.51662e7 −0.756051
\(142\) −9.97030e6 + 1.72691e7i −0.292213 + 0.506127i
\(143\) −1.15176e7 1.99491e7i −0.329372 0.570489i
\(144\) 3.58632e6 + 6.21169e6i 0.100088 + 0.173357i
\(145\) −1.39629e7 + 2.41844e7i −0.380353 + 0.658790i
\(146\) 2.61882e7 0.696420
\(147\) 0 0
\(148\) 3.14695e7 0.797947
\(149\) −1.21944e7 + 2.11214e7i −0.302002 + 0.523083i −0.976589 0.215112i \(-0.930988\pi\)
0.674587 + 0.738195i \(0.264322\pi\)
\(150\) −2.60069e6 4.50452e6i −0.0629171 0.108976i
\(151\) −1.69013e7 2.92740e7i −0.399486 0.691930i 0.594177 0.804335i \(-0.297478\pi\)
−0.993663 + 0.112405i \(0.964145\pi\)
\(152\) −2.21358e6 + 3.83403e6i −0.0511261 + 0.0885530i
\(153\) −1.94601e7 −0.439264
\(154\) 0 0
\(155\) 4.42386e7 0.954202
\(156\) 5.96056e6 1.03240e7i 0.125705 0.217727i
\(157\) 3.97833e6 + 6.89067e6i 0.0820450 + 0.142106i 0.904128 0.427261i \(-0.140522\pi\)
−0.822083 + 0.569367i \(0.807188\pi\)
\(158\) 1.67936e7 + 2.90873e7i 0.338722 + 0.586683i
\(159\) −1.32881e7 + 2.30157e7i −0.262164 + 0.454081i
\(160\) 7.10262e6 0.137088
\(161\) 0 0
\(162\) 1.69059e7 0.312417
\(163\) 2.68214e7 4.64560e7i 0.485093 0.840205i −0.514761 0.857334i \(-0.672119\pi\)
0.999853 + 0.0171289i \(0.00545257\pi\)
\(164\) −1.99454e7 3.45464e7i −0.353093 0.611574i
\(165\) 5.84181e6 + 1.01183e7i 0.101240 + 0.175353i
\(166\) 1.34211e7 2.32460e7i 0.227724 0.394430i
\(167\) 8.20253e7 1.36283 0.681413 0.731899i \(-0.261366\pi\)
0.681413 + 0.731899i \(0.261366\pi\)
\(168\) 0 0
\(169\) 1.68530e7 0.268581
\(170\) −9.63508e6 + 1.66884e7i −0.150413 + 0.260522i
\(171\) 7.57085e6 + 1.31131e7i 0.115787 + 0.200548i
\(172\) −1.35334e7 2.34406e7i −0.202795 0.351252i
\(173\) −3.39592e7 + 5.88190e7i −0.498650 + 0.863687i −0.999999 0.00155811i \(-0.999504\pi\)
0.501349 + 0.865245i \(0.332837\pi\)
\(174\) −2.15180e7 −0.309656
\(175\) 0 0
\(176\) 1.05753e7 0.146217
\(177\) −1.75460e7 + 3.03905e7i −0.237833 + 0.411938i
\(178\) 9.59835e6 + 1.66248e7i 0.127564 + 0.220947i
\(179\) 3.04898e7 + 5.28098e7i 0.397346 + 0.688223i 0.993398 0.114723i \(-0.0365980\pi\)
−0.596052 + 0.802946i \(0.703265\pi\)
\(180\) 1.21461e7 2.10377e7i 0.155233 0.268872i
\(181\) 1.53894e8 1.92907 0.964533 0.263963i \(-0.0850295\pi\)
0.964533 + 0.263963i \(0.0850295\pi\)
\(182\) 0 0
\(183\) 4.43133e7 0.534510
\(184\) 1.69106e7 2.92901e7i 0.200123 0.346624i
\(185\) −5.32904e7 9.23016e7i −0.618796 1.07179i
\(186\) 1.70439e7 + 2.95209e7i 0.194211 + 0.336383i
\(187\) −1.43459e7 + 2.48479e7i −0.160429 + 0.277871i
\(188\) 7.71474e7 0.846777
\(189\) 0 0
\(190\) 1.49939e7 0.158590
\(191\) −1.12603e7 + 1.95034e7i −0.116932 + 0.202532i −0.918550 0.395304i \(-0.870639\pi\)
0.801618 + 0.597836i \(0.203973\pi\)
\(192\) 2.73644e6 + 4.73966e6i 0.0279018 + 0.0483273i
\(193\) 6.76381e7 + 1.17153e8i 0.677237 + 1.17301i 0.975810 + 0.218622i \(0.0701563\pi\)
−0.298572 + 0.954387i \(0.596510\pi\)
\(194\) 1.80602e7 3.12813e7i 0.177590 0.307594i
\(195\) −4.03744e7 −0.389928
\(196\) 0 0
\(197\) −8.96233e7 −0.835197 −0.417598 0.908632i \(-0.637128\pi\)
−0.417598 + 0.908632i \(0.637128\pi\)
\(198\) 1.80847e7 3.13237e7i 0.165571 0.286777i
\(199\) −2.74707e7 4.75806e7i −0.247106 0.428000i 0.715616 0.698494i \(-0.246146\pi\)
−0.962722 + 0.270494i \(0.912813\pi\)
\(200\) 7.97244e6 + 1.38087e7i 0.0704671 + 0.122053i
\(201\) −3.49626e7 + 6.05570e7i −0.303681 + 0.525991i
\(202\) −5.91995e7 −0.505345
\(203\) 0 0
\(204\) −1.48485e7 −0.122455
\(205\) −6.75508e7 + 1.17001e8i −0.547636 + 0.948534i
\(206\) 7.38284e7 + 1.27875e8i 0.588421 + 1.01918i
\(207\) −5.78375e7 1.00177e8i −0.453224 0.785007i
\(208\) −1.82722e7 + 3.16484e7i −0.140789 + 0.243854i
\(209\) 2.23248e7 0.169151
\(210\) 0 0
\(211\) −1.24539e8 −0.912677 −0.456338 0.889806i \(-0.650839\pi\)
−0.456338 + 0.889806i \(0.650839\pi\)
\(212\) 4.07349e7 7.05549e7i 0.293624 0.508571i
\(213\) 2.60192e7 + 4.50666e7i 0.184487 + 0.319541i
\(214\) 1.99758e7 + 3.45990e7i 0.139333 + 0.241332i
\(215\) −4.58349e7 + 7.93884e7i −0.314530 + 0.544781i
\(216\) 4.20956e7 0.284216
\(217\) 0 0
\(218\) 1.49496e8 0.977310
\(219\) 3.41714e7 5.91866e7i 0.219841 0.380775i
\(220\) −1.79082e7 3.10179e7i −0.113389 0.196396i
\(221\) −4.95744e7 8.58653e7i −0.308947 0.535112i
\(222\) 4.10626e7 7.11225e7i 0.251890 0.436286i
\(223\) −2.85464e8 −1.72379 −0.861895 0.507087i \(-0.830722\pi\)
−0.861895 + 0.507087i \(0.830722\pi\)
\(224\) 0 0
\(225\) 5.45345e7 0.319177
\(226\) −9.98135e7 + 1.72882e8i −0.575188 + 0.996254i
\(227\) 3.37141e7 + 5.83946e7i 0.191303 + 0.331346i 0.945682 0.325092i \(-0.105395\pi\)
−0.754379 + 0.656439i \(0.772062\pi\)
\(228\) 5.77672e6 + 1.00056e7i 0.0322782 + 0.0559075i
\(229\) 3.58459e7 6.20869e7i 0.197249 0.341646i −0.750386 0.660999i \(-0.770133\pi\)
0.947636 + 0.319354i \(0.103466\pi\)
\(230\) −1.14546e8 −0.620771
\(231\) 0 0
\(232\) 6.59638e7 0.346815
\(233\) −1.08990e6 + 1.88777e6i −0.00564472 + 0.00977693i −0.868834 0.495104i \(-0.835130\pi\)
0.863189 + 0.504881i \(0.168463\pi\)
\(234\) 6.24943e7 + 1.08243e8i 0.318849 + 0.552262i
\(235\) −1.30641e8 2.26277e8i −0.656663 1.13737i
\(236\) 5.37875e7 9.31627e7i 0.266373 0.461371i
\(237\) 8.76515e7 0.427701
\(238\) 0 0
\(239\) −1.87131e8 −0.886654 −0.443327 0.896360i \(-0.646202\pi\)
−0.443327 + 0.896360i \(0.646202\pi\)
\(240\) 9.26777e6 1.60522e7i 0.0432749 0.0749543i
\(241\) −6.26650e7 1.08539e8i −0.288380 0.499489i 0.685043 0.728502i \(-0.259783\pi\)
−0.973423 + 0.229014i \(0.926450\pi\)
\(242\) 5.12847e7 + 8.88277e7i 0.232613 + 0.402898i
\(243\) 1.11965e8 1.93929e8i 0.500564 0.867002i
\(244\) −1.35843e8 −0.598651
\(245\) 0 0
\(246\) −1.04102e8 −0.445847
\(247\) −3.85732e7 + 6.68108e7i −0.162872 + 0.282103i
\(248\) −5.22484e7 9.04968e7i −0.217516 0.376749i
\(249\) −3.50247e7 6.06645e7i −0.143773 0.249022i
\(250\) 9.47369e7 1.64089e8i 0.383468 0.664186i
\(251\) −3.48978e7 −0.139296 −0.0696482 0.997572i \(-0.522188\pi\)
−0.0696482 + 0.997572i \(0.522188\pi\)
\(252\) 0 0
\(253\) −1.70550e8 −0.662110
\(254\) 6.88321e7 1.19221e8i 0.263556 0.456492i
\(255\) 2.51444e7 + 4.35514e7i 0.0949622 + 0.164479i
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) −2.96784e7 + 5.14046e7i −0.109062 + 0.188902i −0.915391 0.402567i \(-0.868118\pi\)
0.806328 + 0.591468i \(0.201452\pi\)
\(258\) −7.06356e7 −0.256068
\(259\) 0 0
\(260\) 1.23768e8 0.436720
\(261\) 1.12804e8 1.95383e8i 0.392720 0.680212i
\(262\) 1.07706e8 + 1.86553e8i 0.369988 + 0.640838i
\(263\) 1.06373e7 + 1.84243e7i 0.0360567 + 0.0624521i 0.883491 0.468449i \(-0.155187\pi\)
−0.847434 + 0.530901i \(0.821854\pi\)
\(264\) 1.37990e7 2.39006e7i 0.0461567 0.0799458i
\(265\) −2.75921e8 −0.910804
\(266\) 0 0
\(267\) 5.00972e7 0.161073
\(268\) 1.07178e8 1.85639e8i 0.340123 0.589110i
\(269\) 5.85529e7 + 1.01417e8i 0.183407 + 0.317670i 0.943038 0.332684i \(-0.107954\pi\)
−0.759632 + 0.650353i \(0.774621\pi\)
\(270\) −7.12846e7 1.23469e8i −0.220405 0.381754i
\(271\) −1.01385e8 + 1.75603e8i −0.309442 + 0.535970i −0.978240 0.207474i \(-0.933476\pi\)
0.668798 + 0.743444i \(0.266809\pi\)
\(272\) 4.55183e7 0.137150
\(273\) 0 0
\(274\) −2.18081e8 −0.640459
\(275\) 4.02026e7 6.96329e7i 0.116571 0.201906i
\(276\) −4.41312e7 7.64376e7i −0.126347 0.218839i
\(277\) −5.05757e7 8.75996e7i −0.142976 0.247641i 0.785640 0.618684i \(-0.212334\pi\)
−0.928616 + 0.371042i \(0.879000\pi\)
\(278\) −5.47253e7 + 9.47869e7i −0.152768 + 0.264601i
\(279\) −3.57398e8 −0.985230
\(280\) 0 0
\(281\) 3.69631e8 0.993793 0.496897 0.867810i \(-0.334473\pi\)
0.496897 + 0.867810i \(0.334473\pi\)
\(282\) 1.00665e8 1.74357e8i 0.267304 0.462985i
\(283\) −1.09831e8 1.90232e8i −0.288052 0.498921i 0.685293 0.728268i \(-0.259674\pi\)
−0.973345 + 0.229347i \(0.926341\pi\)
\(284\) −7.97624e7 1.38153e8i −0.206626 0.357886i
\(285\) 1.95646e7 3.38868e7i 0.0500626 0.0867109i
\(286\) 1.84282e8 0.465803
\(287\) 0 0
\(288\) −5.73812e7 −0.141545
\(289\) 1.43421e8 2.48413e8i 0.349519 0.605385i
\(290\) −1.11703e8 1.93475e8i −0.268950 0.465835i
\(291\) −4.71314e7 8.16339e7i −0.112120 0.194198i
\(292\) −1.04753e8 + 1.81437e8i −0.246222 + 0.426468i
\(293\) 7.22230e8 1.67741 0.838704 0.544587i \(-0.183314\pi\)
0.838704 + 0.544587i \(0.183314\pi\)
\(294\) 0 0
\(295\) −3.64334e8 −0.826272
\(296\) −1.25878e8 + 2.18027e8i −0.282117 + 0.488641i
\(297\) −1.06138e8 1.83836e8i −0.235083 0.407176i
\(298\) −9.75555e7 1.68971e8i −0.213548 0.369875i
\(299\) 2.94680e8 5.10401e8i 0.637531 1.10424i
\(300\) 4.16110e7 0.0889782
\(301\) 0 0
\(302\) 2.70421e8 0.564959
\(303\) −7.72457e7 + 1.33794e8i −0.159524 + 0.276303i
\(304\) −1.77086e7 3.06722e7i −0.0361516 0.0626164i
\(305\) 2.30036e8 + 3.98435e8i 0.464245 + 0.804096i
\(306\) 7.78406e7 1.34824e8i 0.155303 0.268993i
\(307\) 6.39545e7 0.126150 0.0630750 0.998009i \(-0.479909\pi\)
0.0630750 + 0.998009i \(0.479909\pi\)
\(308\) 0 0
\(309\) 3.85336e8 0.742994
\(310\) −1.76954e8 + 3.06494e8i −0.337361 + 0.584327i
\(311\) 7.73216e7 + 1.33925e8i 0.145760 + 0.252464i 0.929656 0.368428i \(-0.120104\pi\)
−0.783896 + 0.620892i \(0.786771\pi\)
\(312\) 4.76845e7 + 8.25919e7i 0.0888865 + 0.153956i
\(313\) −2.46992e8 + 4.27803e8i −0.455279 + 0.788567i −0.998704 0.0508911i \(-0.983794\pi\)
0.543425 + 0.839458i \(0.317127\pi\)
\(314\) −6.36533e7 −0.116029
\(315\) 0 0
\(316\) −2.68697e8 −0.479025
\(317\) −2.14969e8 + 3.72338e8i −0.379026 + 0.656492i −0.990921 0.134447i \(-0.957074\pi\)
0.611895 + 0.790939i \(0.290408\pi\)
\(318\) −1.06305e8 1.84125e8i −0.185378 0.321084i
\(319\) −1.66318e8 2.88071e8i −0.286861 0.496857i
\(320\) −2.84105e7 + 4.92084e7i −0.0484678 + 0.0839488i
\(321\) 1.04260e8 0.175935
\(322\) 0 0
\(323\) 9.60907e7 0.158662
\(324\) −6.76235e7 + 1.17127e8i −0.110456 + 0.191316i
\(325\) 1.38926e8 + 2.40626e8i 0.224487 + 0.388822i
\(326\) 2.14571e8 + 3.71648e8i 0.343012 + 0.594115i
\(327\) 1.95068e8 3.37868e8i 0.308510 0.534355i
\(328\) 3.19126e8 0.499348
\(329\) 0 0
\(330\) −9.34690e7 −0.143175
\(331\) 1.64085e8 2.84203e8i 0.248697 0.430755i −0.714468 0.699668i \(-0.753331\pi\)
0.963164 + 0.268913i \(0.0866645\pi\)
\(332\) 1.07369e8 + 1.85968e8i 0.161025 + 0.278904i
\(333\) 4.30526e8 + 7.45693e8i 0.638917 + 1.10664i
\(334\) −3.28101e8 + 5.68288e8i −0.481832 + 0.834557i
\(335\) −7.25983e8 −1.05504
\(336\) 0 0
\(337\) −1.14409e8 −0.162838 −0.0814189 0.996680i \(-0.525945\pi\)
−0.0814189 + 0.996680i \(0.525945\pi\)
\(338\) −6.74121e7 + 1.16761e8i −0.0949576 + 0.164471i
\(339\) 2.60481e8 + 4.51166e8i 0.363142 + 0.628981i
\(340\) −7.70806e7 1.33508e8i −0.106358 0.184217i
\(341\) −2.63472e8 + 4.56348e8i −0.359828 + 0.623240i
\(342\) −1.21134e8 −0.163747
\(343\) 0 0
\(344\) 2.16535e8 0.286796
\(345\) −1.49463e8 + 2.58878e8i −0.195960 + 0.339413i
\(346\) −2.71673e8 4.70552e8i −0.352599 0.610719i
\(347\) 3.28339e8 + 5.68699e8i 0.421860 + 0.730684i 0.996121 0.0879887i \(-0.0280439\pi\)
−0.574261 + 0.818672i \(0.694711\pi\)
\(348\) 8.60721e7 1.49081e8i 0.109480 0.189625i
\(349\) 8.85994e8 1.11569 0.557843 0.829947i \(-0.311629\pi\)
0.557843 + 0.829947i \(0.311629\pi\)
\(350\) 0 0
\(351\) 7.33546e8 0.905426
\(352\) −4.23012e7 + 7.32678e7i −0.0516955 + 0.0895393i
\(353\) 3.43700e8 + 5.95305e8i 0.415880 + 0.720324i 0.995520 0.0945476i \(-0.0301405\pi\)
−0.579641 + 0.814872i \(0.696807\pi\)
\(354\) −1.40368e8 2.43124e8i −0.168173 0.291284i
\(355\) −2.70139e8 + 4.67894e8i −0.320470 + 0.555071i
\(356\) −1.53574e8 −0.180402
\(357\) 0 0
\(358\) −4.87836e8 −0.561932
\(359\) −1.61222e7 + 2.79244e7i −0.0183905 + 0.0318533i −0.875074 0.483989i \(-0.839188\pi\)
0.856684 + 0.515842i \(0.172521\pi\)
\(360\) 9.71691e7 + 1.68302e8i 0.109766 + 0.190121i
\(361\) 4.09552e8 + 7.09365e8i 0.458178 + 0.793588i
\(362\) −6.15577e8 + 1.06621e9i −0.682028 + 1.18131i
\(363\) 2.67673e8 0.293718
\(364\) 0 0
\(365\) 7.09553e8 0.763765
\(366\) −1.77253e8 + 3.07012e8i −0.188978 + 0.327319i
\(367\) −3.58275e8 6.20551e8i −0.378343 0.655309i 0.612479 0.790487i \(-0.290173\pi\)
−0.990821 + 0.135178i \(0.956839\pi\)
\(368\) 1.35285e8 + 2.34321e8i 0.141508 + 0.245100i
\(369\) 5.45735e8 9.45240e8i 0.565444 0.979377i
\(370\) 8.52646e8 0.875110
\(371\) 0 0
\(372\) −2.72702e8 −0.274656
\(373\) −6.11134e8 + 1.05852e9i −0.609755 + 1.05613i 0.381525 + 0.924358i \(0.375399\pi\)
−0.991281 + 0.131769i \(0.957934\pi\)
\(374\) −1.14767e8 1.98783e8i −0.113441 0.196485i
\(375\) −2.47232e8 4.28219e8i −0.242101 0.419331i
\(376\) −3.08590e8 + 5.34493e8i −0.299381 + 0.518543i
\(377\) 1.14947e9 1.10485
\(378\) 0 0
\(379\) −6.83298e8 −0.644723 −0.322361 0.946617i \(-0.604477\pi\)
−0.322361 + 0.946617i \(0.604477\pi\)
\(380\) −5.99755e7 + 1.03881e8i −0.0560701 + 0.0971162i
\(381\) −1.79629e8 3.11127e8i −0.166395 0.288204i
\(382\) −9.00823e7 1.56027e8i −0.0826833 0.143212i
\(383\) 1.01294e9 1.75447e9i 0.921273 1.59569i 0.123826 0.992304i \(-0.460484\pi\)
0.797447 0.603388i \(-0.206183\pi\)
\(384\) −4.37831e7 −0.0394591
\(385\) 0 0
\(386\) −1.08221e9 −0.957758
\(387\) 3.70294e8 6.41368e8i 0.324757 0.562496i
\(388\) 1.44482e8 + 2.50250e8i 0.125575 + 0.217502i
\(389\) 3.64506e8 + 6.31342e8i 0.313965 + 0.543803i 0.979217 0.202816i \(-0.0650093\pi\)
−0.665252 + 0.746619i \(0.731676\pi\)
\(390\) 1.61498e8 2.79722e8i 0.137860 0.238781i
\(391\) −7.34085e8 −0.621052
\(392\) 0 0
\(393\) 5.62158e8 0.467180
\(394\) 3.58493e8 6.20928e8i 0.295287 0.511452i
\(395\) 4.55011e8 + 7.88102e8i 0.371477 + 0.643417i
\(396\) 1.44678e8 + 2.50589e8i 0.117076 + 0.202782i
\(397\) −6.63836e8 + 1.14980e9i −0.532469 + 0.922263i 0.466812 + 0.884356i \(0.345402\pi\)
−0.999281 + 0.0379069i \(0.987931\pi\)
\(398\) 4.39531e8 0.349461
\(399\) 0 0
\(400\) −1.27559e8 −0.0996555
\(401\) 4.28975e8 7.43007e8i 0.332221 0.575423i −0.650726 0.759312i \(-0.725535\pi\)
0.982947 + 0.183889i \(0.0588688\pi\)
\(402\) −2.79701e8 4.84456e8i −0.214735 0.371932i
\(403\) −9.10465e8 1.57697e9i −0.692940 1.20021i
\(404\) 2.36798e8 4.10146e8i 0.178667 0.309460i
\(405\) 4.58053e8 0.342629
\(406\) 0 0
\(407\) 1.26953e9 0.933387
\(408\) 5.93940e7 1.02873e8i 0.0432945 0.0749882i
\(409\) −1.05133e9 1.82096e9i −0.759814 1.31604i −0.942945 0.332948i \(-0.891956\pi\)
0.183131 0.983089i \(-0.441377\pi\)
\(410\) −5.40407e8 9.36012e8i −0.387237 0.670715i
\(411\) −2.84561e8 + 4.92874e8i −0.202176 + 0.350178i
\(412\) −1.18125e9 −0.832153
\(413\) 0 0
\(414\) 9.25400e8 0.640956
\(415\) 3.63636e8 6.29835e8i 0.249746 0.432572i
\(416\) −1.46178e8 2.53187e8i −0.0995529 0.172431i
\(417\) 1.42815e8 + 2.47363e8i 0.0964490 + 0.167055i
\(418\) −8.92992e7 + 1.54671e8i −0.0598040 + 0.103584i
\(419\) −2.47991e9 −1.64697 −0.823486 0.567336i \(-0.807974\pi\)
−0.823486 + 0.567336i \(0.807974\pi\)
\(420\) 0 0
\(421\) −5.51855e7 −0.0360444 −0.0180222 0.999838i \(-0.505737\pi\)
−0.0180222 + 0.999838i \(0.505737\pi\)
\(422\) 4.98156e8 8.62832e8i 0.322680 0.558898i
\(423\) 1.05543e9 + 1.82806e9i 0.678016 + 1.17436i
\(424\) 3.25879e8 + 5.64439e8i 0.207623 + 0.359614i
\(425\) 1.73041e8 2.99715e8i 0.109342 0.189386i
\(426\) −4.16308e8 −0.260904
\(427\) 0 0
\(428\) −3.19612e8 −0.197047
\(429\) 2.40458e8 4.16486e8i 0.147041 0.254683i
\(430\) −3.66679e8 6.35107e8i −0.222406 0.385219i
\(431\) −8.42361e8 1.45901e9i −0.506790 0.877786i −0.999969 0.00785824i \(-0.997499\pi\)
0.493179 0.869928i \(-0.335835\pi\)
\(432\) −1.68382e8 + 2.91647e8i −0.100486 + 0.174046i
\(433\) 1.29692e9 0.767724 0.383862 0.923390i \(-0.374594\pi\)
0.383862 + 0.923390i \(0.374594\pi\)
\(434\) 0 0
\(435\) −5.83017e8 −0.339601
\(436\) −5.97984e8 + 1.03574e9i −0.345531 + 0.598477i
\(437\) 2.85591e8 + 4.94659e8i 0.163704 + 0.283544i
\(438\) 2.73371e8 + 4.73492e8i 0.155451 + 0.269249i
\(439\) −7.03191e7 + 1.21796e8i −0.0396686 + 0.0687081i −0.885178 0.465252i \(-0.845964\pi\)
0.845509 + 0.533960i \(0.179297\pi\)
\(440\) 2.86531e8 0.160357
\(441\) 0 0
\(442\) 7.93190e8 0.436917
\(443\) 9.24666e8 1.60157e9i 0.505326 0.875251i −0.494655 0.869090i \(-0.664705\pi\)
0.999981 0.00616141i \(-0.00196125\pi\)
\(444\) 3.28501e8 + 5.68980e8i 0.178113 + 0.308501i
\(445\) 2.60061e8 + 4.50439e8i 0.139899 + 0.242313i
\(446\) 1.14186e9 1.97775e9i 0.609452 1.05560i
\(447\) −5.09176e8 −0.269645
\(448\) 0 0
\(449\) −2.91794e9 −1.52130 −0.760648 0.649165i \(-0.775118\pi\)
−0.760648 + 0.649165i \(0.775118\pi\)
\(450\) −2.18138e8 + 3.77826e8i −0.112846 + 0.195455i
\(451\) −8.04627e8 1.39365e9i −0.413025 0.715381i
\(452\) −7.98508e8 1.38306e9i −0.406719 0.704458i
\(453\) 3.52856e8 6.11164e8i 0.178342 0.308897i
\(454\) −5.39426e8 −0.270543
\(455\) 0 0
\(456\) −9.24275e7 −0.0456483
\(457\) −1.42040e9 + 2.46021e9i −0.696153 + 1.20577i 0.273638 + 0.961833i \(0.411773\pi\)
−0.969791 + 0.243939i \(0.921560\pi\)
\(458\) 2.86767e8 + 4.96695e8i 0.139476 + 0.241580i
\(459\) −4.56839e8 7.91269e8i −0.220505 0.381926i
\(460\) 4.58183e8 7.93595e8i 0.219476 0.380143i
\(461\) −3.96057e9 −1.88280 −0.941400 0.337291i \(-0.890489\pi\)
−0.941400 + 0.337291i \(0.890489\pi\)
\(462\) 0 0
\(463\) −2.19815e9 −1.02926 −0.514629 0.857413i \(-0.672070\pi\)
−0.514629 + 0.857413i \(0.672070\pi\)
\(464\) −2.63855e8 + 4.57011e8i −0.122618 + 0.212380i
\(465\) 4.61793e8 + 7.99850e8i 0.212992 + 0.368912i
\(466\) −8.71922e6 1.51021e7i −0.00399142 0.00691334i
\(467\) 1.56120e9 2.70408e9i 0.709332 1.22860i −0.255773 0.966737i \(-0.582330\pi\)
0.965105 0.261862i \(-0.0843366\pi\)
\(468\) −9.99908e8 −0.450920
\(469\) 0 0
\(470\) 2.09026e9 0.928662
\(471\) −8.30572e7 + 1.43859e8i −0.0366272 + 0.0634403i
\(472\) 4.30300e8 + 7.45302e8i 0.188354 + 0.326238i
\(473\) −5.45959e8 9.45629e8i −0.237217 0.410872i
\(474\) −3.50606e8 + 6.07267e8i −0.151215 + 0.261912i
\(475\) −2.69282e8 −0.115287
\(476\) 0 0
\(477\) 2.22913e9 0.940420
\(478\) 7.48526e8 1.29648e9i 0.313479 0.542962i
\(479\) −6.79522e8 1.17697e9i −0.282507 0.489317i 0.689494 0.724291i \(-0.257833\pi\)
−0.972002 + 0.234974i \(0.924499\pi\)
\(480\) 7.41421e7 + 1.28418e8i 0.0305999 + 0.0530007i
\(481\) −2.19352e9 + 3.79928e9i −0.898738 + 1.55666i
\(482\) 1.00264e9 0.407831
\(483\) 0 0
\(484\) −8.20555e8 −0.328965
\(485\) 4.89330e8 8.47545e8i 0.194763 0.337339i
\(486\) 8.95718e8 + 1.55143e9i 0.353952 + 0.613063i
\(487\) −1.19733e9 2.07383e9i −0.469745 0.813622i 0.529657 0.848212i \(-0.322321\pi\)
−0.999402 + 0.0345902i \(0.988987\pi\)
\(488\) 5.43373e8 9.41149e8i 0.211655 0.366597i
\(489\) 1.11992e9 0.433118
\(490\) 0 0
\(491\) −1.95738e9 −0.746261 −0.373130 0.927779i \(-0.621716\pi\)
−0.373130 + 0.927779i \(0.621716\pi\)
\(492\) 4.16407e8 7.21239e8i 0.157631 0.273024i
\(493\) −7.15867e8 1.23992e9i −0.269072 0.466046i
\(494\) −3.08586e8 5.34486e8i −0.115168 0.199477i
\(495\) 4.89994e8 8.48694e8i 0.181582 0.314509i
\(496\) 8.35974e8 0.307614
\(497\) 0 0
\(498\) 5.60395e8 0.203325
\(499\) −1.47577e8 + 2.55611e8i −0.0531699 + 0.0920931i −0.891385 0.453246i \(-0.850266\pi\)
0.838215 + 0.545339i \(0.183599\pi\)
\(500\) 7.57895e8 + 1.31271e9i 0.271153 + 0.469650i
\(501\) 8.56238e8 + 1.48305e9i 0.304202 + 0.526893i
\(502\) 1.39591e8 2.41779e8i 0.0492487 0.0853013i
\(503\) −2.51431e9 −0.880909 −0.440454 0.897775i \(-0.645183\pi\)
−0.440454 + 0.897775i \(0.645183\pi\)
\(504\) 0 0
\(505\) −1.60397e9 −0.554213
\(506\) 6.82201e8 1.18161e9i 0.234091 0.405458i
\(507\) 1.75924e8 + 3.04709e8i 0.0599510 + 0.103838i
\(508\) 5.50657e8 + 9.53765e8i 0.186362 + 0.322789i
\(509\) −1.11783e9 + 1.93615e9i −0.375721 + 0.650767i −0.990435 0.137983i \(-0.955938\pi\)
0.614714 + 0.788750i \(0.289271\pi\)
\(510\) −4.02311e8 −0.134297
\(511\) 0 0
\(512\) 1.34218e8 0.0441942
\(513\) −3.55461e8 + 6.15676e8i −0.116247 + 0.201345i
\(514\) −2.37427e8 4.11236e8i −0.0771188 0.133574i
\(515\) 2.00033e9 + 3.46468e9i 0.645323 + 1.11773i
\(516\) 2.82543e8 4.89378e8i 0.0905336 0.156809i
\(517\) 3.11225e9 0.990506
\(518\) 0 0
\(519\) −1.41796e9 −0.445223
\(520\) −4.95073e8 + 8.57492e8i −0.154404 + 0.267435i
\(521\) 1.59740e9 + 2.76677e9i 0.494858 + 0.857120i 0.999982 0.00592705i \(-0.00188665\pi\)
−0.505124 + 0.863047i \(0.668553\pi\)
\(522\) 9.02434e8 + 1.56306e9i 0.277695 + 0.480982i
\(523\) −4.70741e8 + 8.15348e8i −0.143889 + 0.249222i −0.928958 0.370186i \(-0.879294\pi\)
0.785069 + 0.619408i \(0.212627\pi\)
\(524\) −1.72330e9 −0.523242
\(525\) 0 0
\(526\) −1.70197e8 −0.0509919
\(527\) −1.13404e9 + 1.96422e9i −0.337514 + 0.584592i
\(528\) 1.10392e8 + 1.91205e8i 0.0326377 + 0.0565302i
\(529\) −4.79361e8 8.30278e8i −0.140789 0.243853i
\(530\) 1.10369e9 1.91164e9i 0.322018 0.557751i
\(531\) 2.94341e9 0.853140
\(532\) 0 0
\(533\) 5.56100e9 1.59077
\(534\) −2.00389e8 + 3.47083e8i −0.0569480 + 0.0986369i
\(535\) 5.41230e8 + 9.37438e8i 0.152807 + 0.264670i
\(536\) 8.57428e8 + 1.48511e9i 0.240503 + 0.416564i
\(537\) −6.36547e8 + 1.10253e9i −0.177387 + 0.307242i
\(538\) −9.36846e8 −0.259376
\(539\) 0 0
\(540\) 1.14055e9 0.311700
\(541\) −1.93667e9 + 3.35441e9i −0.525854 + 0.910806i 0.473692 + 0.880691i \(0.342921\pi\)
−0.999546 + 0.0301159i \(0.990412\pi\)
\(542\) −8.11077e8 1.40483e9i −0.218809 0.378988i
\(543\) 1.60645e9 + 2.78246e9i 0.430595 + 0.745813i
\(544\) −1.82073e8 + 3.15360e8i −0.0484898 + 0.0839868i
\(545\) 4.05050e9 1.07182
\(546\) 0 0
\(547\) −1.92865e9 −0.503845 −0.251922 0.967747i \(-0.581063\pi\)
−0.251922 + 0.967747i \(0.581063\pi\)
\(548\) 8.72326e8 1.51091e9i 0.226437 0.392200i
\(549\) −1.85844e9 3.21890e9i −0.479341 0.830242i
\(550\) 3.21621e8 + 5.57063e8i 0.0824279 + 0.142769i
\(551\) −5.57007e8 + 9.64765e8i −0.141850 + 0.245692i
\(552\) 7.06100e8 0.178681
\(553\) 0 0
\(554\) 8.09210e8 0.202198
\(555\) 1.11256e9 1.92702e9i 0.276248 0.478476i
\(556\) −4.37802e8 7.58295e8i −0.108023 0.187101i
\(557\) −1.65798e9 2.87170e9i −0.406524 0.704120i 0.587974 0.808880i \(-0.299926\pi\)
−0.994498 + 0.104760i \(0.966593\pi\)
\(558\) 1.42959e9 2.47613e9i 0.348331 0.603327i
\(559\) 3.77327e9 0.913644
\(560\) 0 0
\(561\) −5.99012e8 −0.143240
\(562\) −1.47852e9 + 2.56088e9i −0.351359 + 0.608572i
\(563\) −9.36100e8 1.62137e9i −0.221077 0.382916i 0.734059 0.679086i \(-0.237624\pi\)
−0.955135 + 0.296170i \(0.904290\pi\)
\(564\) 8.05319e8 + 1.39485e9i 0.189013 + 0.327380i
\(565\) −2.70438e9 + 4.68413e9i −0.630810 + 1.09259i
\(566\) 1.75729e9 0.407367
\(567\) 0 0
\(568\) 1.27620e9 0.292213
\(569\) 3.17886e8 5.50595e8i 0.0723400 0.125297i −0.827586 0.561338i \(-0.810287\pi\)
0.899926 + 0.436042i \(0.143620\pi\)
\(570\) 1.56516e8 + 2.71095e8i 0.0353996 + 0.0613139i
\(571\) −2.85689e9 4.94828e9i −0.642196 1.11232i −0.984942 0.172887i \(-0.944690\pi\)
0.342746 0.939428i \(-0.388643\pi\)
\(572\) −7.37128e8 + 1.27674e9i −0.164686 + 0.285245i
\(573\) −4.70171e8 −0.104403
\(574\) 0 0
\(575\) 2.05718e9 0.451267
\(576\) 2.29525e8 3.97548e8i 0.0500438 0.0866785i
\(577\) −3.17926e9 5.50664e9i −0.688986 1.19336i −0.972166 0.234292i \(-0.924723\pi\)
0.283180 0.959067i \(-0.408611\pi\)
\(578\) 1.14737e9 + 1.98730e9i 0.247148 + 0.428072i
\(579\) −1.41211e9 + 2.44584e9i −0.302338 + 0.523665i
\(580\) 1.78725e9 0.380353
\(581\) 0 0
\(582\) 7.54102e8 0.158562
\(583\) 1.64331e9 2.84629e9i 0.343462 0.594894i
\(584\) −8.38023e8 1.45150e9i −0.174105 0.301559i
\(585\) 1.69324e9 + 2.93278e9i 0.349682 + 0.605667i
\(586\) −2.88892e9 + 5.00376e9i −0.593054 + 1.02720i
\(587\) −7.71077e8 −0.157349 −0.0786745 0.996900i \(-0.525069\pi\)
−0.0786745 + 0.996900i \(0.525069\pi\)
\(588\) 0 0
\(589\) 1.76477e9 0.355864
\(590\) 1.45734e9 2.52418e9i 0.292131 0.505986i
\(591\) −9.35550e8 1.62042e9i −0.186428 0.322903i
\(592\) −1.00702e9 1.74422e9i −0.199487 0.345521i
\(593\) 3.20093e9 5.54417e9i 0.630354 1.09181i −0.357125 0.934057i \(-0.616243\pi\)
0.987479 0.157749i \(-0.0504238\pi\)
\(594\) 1.69820e9 0.332458
\(595\) 0 0
\(596\) 1.56089e9 0.302002
\(597\) 5.73516e8 9.93359e8i 0.110315 0.191072i
\(598\) 2.35744e9 + 4.08321e9i 0.450803 + 0.780813i
\(599\) 6.60575e8 + 1.14415e9i 0.125582 + 0.217515i 0.921960 0.387284i \(-0.126587\pi\)
−0.796378 + 0.604799i \(0.793253\pi\)
\(600\) −1.66444e8 + 2.88289e8i −0.0314585 + 0.0544878i
\(601\) 2.93204e9 0.550947 0.275474 0.961309i \(-0.411165\pi\)
0.275474 + 0.961309i \(0.411165\pi\)
\(602\) 0 0
\(603\) 5.86512e9 1.08935
\(604\) −1.08169e9 + 1.87353e9i −0.199743 + 0.345965i
\(605\) 1.38953e9 + 2.40673e9i 0.255107 + 0.441859i
\(606\) −6.17966e8 1.07035e9i −0.112800 0.195376i
\(607\) −2.76216e9 + 4.78420e9i −0.501289 + 0.868258i 0.498710 + 0.866769i \(0.333807\pi\)
−0.999999 + 0.00148902i \(0.999526\pi\)
\(608\) 2.83338e8 0.0511261
\(609\) 0 0
\(610\) −3.68058e9 −0.656542
\(611\) −5.37740e9 + 9.31393e9i −0.953736 + 1.65192i
\(612\) 6.22724e8 + 1.07859e9i 0.109816 + 0.190207i
\(613\) 3.14956e9 + 5.45520e9i 0.552253 + 0.956530i 0.998112 + 0.0614270i \(0.0195651\pi\)
−0.445858 + 0.895103i \(0.647102\pi\)
\(614\) −2.55818e8 + 4.43090e8i −0.0446007 + 0.0772507i
\(615\) −2.82057e9 −0.488961
\(616\) 0 0
\(617\) −4.76835e9 −0.817278 −0.408639 0.912696i \(-0.633996\pi\)
−0.408639 + 0.912696i \(0.633996\pi\)
\(618\) −1.54134e9 + 2.66969e9i −0.262688 + 0.454989i
\(619\) 3.93891e8 + 6.82239e8i 0.0667511 + 0.115616i 0.897469 0.441077i \(-0.145403\pi\)
−0.830718 + 0.556693i \(0.812070\pi\)
\(620\) −1.41564e9 2.45195e9i −0.238551 0.413182i
\(621\) 2.71554e9 4.70346e9i 0.455026 0.788128i
\(622\) −1.23715e9 −0.206136
\(623\) 0 0
\(624\) −7.62952e8 −0.125705
\(625\) 1.35034e9 2.33885e9i 0.221239 0.383197i
\(626\) −1.97594e9 3.42242e9i −0.321931 0.557601i
\(627\) 2.33042e8 + 4.03640e8i 0.0377570 + 0.0653970i
\(628\) 2.54613e8 4.41003e8i 0.0410225 0.0710531i
\(629\) 5.46432e9 0.875506
\(630\) 0 0
\(631\) −9.52407e9 −1.50911 −0.754553 0.656239i \(-0.772146\pi\)
−0.754553 + 0.656239i \(0.772146\pi\)
\(632\) 1.07479e9 1.86159e9i 0.169361 0.293342i
\(633\) −1.30003e9 2.25171e9i −0.203723 0.352858i
\(634\) −1.71975e9 2.97870e9i −0.268012 0.464210i
\(635\) 1.86496e9 3.23021e9i 0.289042 0.500636i
\(636\) 1.70088e9 0.262164
\(637\) 0 0
\(638\) 2.66108e9 0.405682
\(639\) 2.18242e9 3.78006e9i 0.330891 0.573120i
\(640\) −2.27284e8 3.93667e8i −0.0342719 0.0593607i
\(641\) 1.32160e9 + 2.28909e9i 0.198198 + 0.343288i 0.947944 0.318437i \(-0.103158\pi\)
−0.749746 + 0.661725i \(0.769825\pi\)
\(642\) −4.17042e8 + 7.22338e8i −0.0622024 + 0.107738i
\(643\) −7.78643e9 −1.15505 −0.577524 0.816374i \(-0.695981\pi\)
−0.577524 + 0.816374i \(0.695981\pi\)
\(644\) 0 0
\(645\) −1.91383e9 −0.280830
\(646\) −3.84363e8 + 6.65736e8i −0.0560955 + 0.0971602i
\(647\) 4.77250e9 + 8.26622e9i 0.692757 + 1.19989i 0.970931 + 0.239360i \(0.0769377\pi\)
−0.278173 + 0.960531i \(0.589729\pi\)
\(648\) −5.40988e8 9.37018e8i −0.0781043 0.135281i
\(649\) 2.16987e9 3.75833e9i 0.311586 0.539682i
\(650\) −2.22281e9 −0.317472
\(651\) 0 0
\(652\) −3.43314e9 −0.485093
\(653\) 5.15813e8 8.93414e8i 0.0724930 0.125562i −0.827500 0.561465i \(-0.810238\pi\)
0.899993 + 0.435904i \(0.143571\pi\)
\(654\) 1.56054e9 + 2.70294e9i 0.218149 + 0.377846i
\(655\) 2.91824e9 + 5.05453e9i 0.405766 + 0.702808i
\(656\) −1.27650e9 + 2.21097e9i −0.176546 + 0.305787i
\(657\) −5.73239e9 −0.788600
\(658\) 0 0
\(659\) 9.97213e9 1.35734 0.678671 0.734443i \(-0.262556\pi\)
0.678671 + 0.734443i \(0.262556\pi\)
\(660\) 3.73876e8 6.47572e8i 0.0506202 0.0876767i
\(661\) 4.39852e9 + 7.61845e9i 0.592381 + 1.02603i 0.993911 + 0.110188i \(0.0351453\pi\)
−0.401530 + 0.915846i \(0.631521\pi\)
\(662\) 1.31268e9 + 2.27362e9i 0.175855 + 0.304590i
\(663\) 1.03498e9 1.79264e9i 0.137923 0.238889i
\(664\) −1.71790e9 −0.227724
\(665\) 0 0
\(666\) −6.88842e9 −0.903565
\(667\) 4.25526e9 7.37032e9i 0.555246 0.961714i
\(668\) −2.62481e9 4.54630e9i −0.340706 0.590121i
\(669\) −2.97987e9 5.16129e9i −0.384774 0.666449i
\(670\) 2.90393e9 5.02975e9i 0.373013 0.646078i
\(671\) −5.48012e9 −0.700264
\(672\) 0 0
\(673\) 7.42386e9 0.938808 0.469404 0.882983i \(-0.344469\pi\)
0.469404 + 0.882983i \(0.344469\pi\)
\(674\) 4.57636e8 7.92648e8i 0.0575719 0.0997174i
\(675\) 1.28023e9 + 2.21743e9i 0.160223 + 0.277515i
\(676\) −5.39297e8 9.34090e8i −0.0671451 0.116299i
\(677\) −5.72981e8 + 9.92432e8i −0.0709708 + 0.122925i −0.899327 0.437277i \(-0.855943\pi\)
0.828356 + 0.560202i \(0.189276\pi\)
\(678\) −4.16769e9 −0.513561
\(679\) 0 0
\(680\) 1.23329e9 0.150413
\(681\) −7.03863e8 + 1.21913e9i −0.0854030 + 0.147922i
\(682\) −2.10778e9 3.65078e9i −0.254437 0.440697i
\(683\) −5.29365e9 9.16887e9i −0.635745 1.10114i −0.986357 0.164621i \(-0.947360\pi\)
0.350612 0.936521i \(-0.385974\pi\)
\(684\) 4.84534e8 8.39238e8i 0.0578933 0.100274i
\(685\) −5.90877e9 −0.702393
\(686\) 0 0
\(687\) 1.49674e9 0.176115
\(688\) −8.66139e8 + 1.50020e9i −0.101398 + 0.175626i
\(689\) 5.67868e9 + 9.83576e9i 0.661424 + 1.14562i
\(690\) −1.19571e9 2.07103e9i −0.138565 0.240001i
\(691\) 3.78065e9 6.54827e9i 0.435906 0.755011i −0.561463 0.827502i \(-0.689761\pi\)
0.997369 + 0.0724904i \(0.0230947\pi\)
\(692\) 4.34678e9 0.498650
\(693\) 0 0
\(694\) −5.25342e9 −0.596601
\(695\) −1.48275e9 + 2.56819e9i −0.167540 + 0.290189i
\(696\) 6.88576e8 + 1.19265e9i 0.0774141 + 0.134085i
\(697\) −3.46329e9 5.99859e9i −0.387413 0.671018i
\(698\) −3.54398e9 + 6.13835e9i −0.394454 + 0.683215i
\(699\) −4.55087e7 −0.00503992
\(700\) 0 0
\(701\) −1.31100e10 −1.43744 −0.718719 0.695301i \(-0.755271\pi\)
−0.718719 + 0.695301i \(0.755271\pi\)
\(702\) −2.93419e9 + 5.08216e9i −0.320116 + 0.554458i
\(703\) −2.12586e9 3.68210e9i −0.230776 0.399716i
\(704\) −3.38409e8 5.86142e8i −0.0365543 0.0633138i
\(705\) 2.72745e9 4.72408e9i 0.293153 0.507756i
\(706\) −5.49919e9 −0.588142
\(707\) 0 0
\(708\) 2.24589e9 0.237833
\(709\) −1.55398e8 + 2.69157e8i −0.0163750 + 0.0283624i −0.874097 0.485752i \(-0.838546\pi\)
0.857722 + 0.514114i \(0.171879\pi\)
\(710\) −2.16111e9 3.74315e9i −0.226607 0.392494i
\(711\) −3.67597e9 6.36697e9i −0.383556 0.664338i
\(712\) 6.14295e8 1.06399e9i 0.0637818 0.110473i
\(713\) −1.34819e10 −1.39296
\(714\) 0 0
\(715\) 4.99300e9 0.510847
\(716\) 1.95135e9 3.37983e9i 0.198673 0.344112i
\(717\) −1.95341e9 3.38340e9i −0.197914 0.342797i
\(718\) −1.28977e8 2.23395e8i −0.0130040 0.0225237i
\(719\) 2.09243e9 3.62420e9i 0.209943 0.363631i −0.741754 0.670673i \(-0.766006\pi\)
0.951696 + 0.307041i \(0.0993389\pi\)
\(720\) −1.55471e9 −0.155233
\(721\) 0 0
\(722\) −6.55284e9 −0.647962
\(723\) 1.30828e9 2.26601e9i 0.128741 0.222986i
\(724\) −4.92461e9 8.52968e9i −0.482266 0.835310i
\(725\) 2.00612e9 + 3.47471e9i 0.195512 + 0.338637i
\(726\) −1.07069e9 + 1.85449e9i −0.103845 + 0.179865i
\(727\) 9.54370e9 0.921184 0.460592 0.887612i \(-0.347637\pi\)
0.460592 + 0.887612i \(0.347637\pi\)
\(728\) 0 0
\(729\) 5.34261e7 0.00510749
\(730\) −2.83821e9 + 4.91593e9i −0.270032 + 0.467709i
\(731\) −2.34993e9 4.07019e9i −0.222507 0.385393i
\(732\) −1.41803e9 2.45609e9i −0.133627 0.231449i
\(733\) 5.03140e9 8.71464e9i 0.471873 0.817307i −0.527609 0.849487i \(-0.676912\pi\)
0.999482 + 0.0321796i \(0.0102449\pi\)
\(734\) 5.73240e9 0.535057
\(735\) 0 0
\(736\) −2.16456e9 −0.200123
\(737\) 4.32374e9 7.48894e9i 0.397854 0.689103i
\(738\) 4.36588e9 + 7.56192e9i 0.399829 + 0.692524i
\(739\) 3.54880e9 + 6.14670e9i 0.323464 + 0.560256i 0.981200 0.192992i \(-0.0618193\pi\)
−0.657736 + 0.753248i \(0.728486\pi\)
\(740\) −3.41058e9 + 5.90730e9i −0.309398 + 0.535893i
\(741\) −1.61062e9 −0.145421
\(742\) 0 0
\(743\) 3.16400e8 0.0282993 0.0141497 0.999900i \(-0.495496\pi\)
0.0141497 + 0.999900i \(0.495496\pi\)
\(744\) 1.09081e9 1.88934e9i 0.0971055 0.168192i
\(745\) −2.64320e9 4.57816e9i −0.234198 0.405643i
\(746\) −4.88907e9 8.46812e9i −0.431162 0.746794i
\(747\) −2.93777e9 + 5.08836e9i −0.257867 + 0.446638i
\(748\) 1.83628e9 0.160429
\(749\) 0 0
\(750\) 3.95572e9 0.342382
\(751\) −3.22967e9 + 5.59396e9i −0.278240 + 0.481925i −0.970947 0.239293i \(-0.923084\pi\)
0.692708 + 0.721218i \(0.256418\pi\)
\(752\) −2.46872e9 4.27594e9i −0.211694 0.366665i
\(753\) −3.64287e8 6.30964e8i −0.0310929 0.0538545i
\(754\) −4.59787e9 + 7.96374e9i −0.390622 + 0.676577i
\(755\) 7.32689e9 0.619591
\(756\) 0 0
\(757\) 1.07167e10 0.897892 0.448946 0.893559i \(-0.351800\pi\)
0.448946 + 0.893559i \(0.351800\pi\)
\(758\) 2.73319e9 4.73403e9i 0.227944 0.394810i
\(759\) −1.78032e9 3.08361e9i −0.147793 0.255984i
\(760\) −4.79804e8 8.31045e8i −0.0396475 0.0686715i
\(761\) −4.51415e9 + 7.81874e9i −0.371304 + 0.643117i −0.989766 0.142697i \(-0.954423\pi\)
0.618462 + 0.785814i \(0.287756\pi\)
\(762\) 2.87407e9 0.235318
\(763\) 0 0
\(764\) 1.44132e9 0.116932
\(765\) 2.10904e9 3.65296e9i 0.170322 0.295006i
\(766\) 8.10353e9 + 1.40357e10i 0.651439 + 1.12832i
\(767\) 7.49829e9 + 1.29874e10i 0.600038 + 1.03930i
\(768\) 1.75132e8 3.03338e8i 0.0139509 0.0241637i
\(769\) −8.30919e9 −0.658895 −0.329448 0.944174i \(-0.606863\pi\)
−0.329448 + 0.944174i \(0.606863\pi\)
\(770\) 0 0
\(771\) −1.23922e9 −0.0973771
\(772\) 4.32884e9 7.49777e9i 0.338619 0.586505i
\(773\) 5.63091e9 + 9.75302e9i 0.438480 + 0.759470i 0.997573 0.0696352i \(-0.0221835\pi\)
−0.559092 + 0.829106i \(0.688850\pi\)
\(774\) 2.96235e9 + 5.13095e9i 0.229638 + 0.397745i
\(775\) 3.17800e9 5.50446e9i 0.245244 0.424775i
\(776\) −2.31171e9 −0.177590
\(777\) 0 0
\(778\) −5.83209e9 −0.444013
\(779\) −2.69474e9 + 4.66743e9i −0.204238 + 0.353750i
\(780\) 1.29198e9 + 2.23778e9i 0.0974821 + 0.168844i
\(781\) −3.21774e9 5.57328e9i −0.241697 0.418632i
\(782\) 2.93634e9 5.08589e9i 0.219575 0.380315i
\(783\) 1.05926e10 0.788563
\(784\) 0 0
\(785\) −1.72465e9 −0.127249
\(786\) −2.24863e9 + 3.89474e9i −0.165173 + 0.286088i
\(787\) −1.11102e10 1.92434e10i −0.812475 1.40725i −0.911127 0.412127i \(-0.864786\pi\)
0.0986511 0.995122i \(-0.468547\pi\)
\(788\) 2.86794e9 + 4.96743e9i 0.208799 + 0.361651i
\(789\) −2.22079e8 + 3.84652e8i −0.0160968 + 0.0278804i
\(790\) −7.28017e9 −0.525348
\(791\) 0 0
\(792\) −2.31484e9 −0.165571
\(793\) 9.46866e9 1.64002e10i 0.674268 1.16787i
\(794\) −5.31069e9 9.19839e9i −0.376512 0.652139i
\(795\) −2.88026e9 4.98876e9i −0.203304 0.352133i
\(796\) −1.75812e9 + 3.04516e9i −0.123553 + 0.214000i
\(797\) 6.49195e9 0.454225 0.227113 0.973868i \(-0.427071\pi\)
0.227113 + 0.973868i \(0.427071\pi\)
\(798\) 0 0
\(799\) 1.33958e10 0.929082
\(800\) 5.10236e8 8.83755e8i 0.0352336 0.0610263i
\(801\) −2.10100e9 3.63904e9i −0.144448 0.250192i
\(802\) 3.43180e9 + 5.94405e9i 0.234916 + 0.406886i
\(803\) −4.22589e9 + 7.31946e9i −0.288014 + 0.498855i
\(804\) 4.47521e9 0.303681
\(805\) 0 0
\(806\) 1.45674e10 0.979966
\(807\) −1.22243e9 + 2.11731e9i −0.0818780 + 0.141817i
\(808\) 1.89438e9 + 3.28117e9i 0.126336 + 0.218821i
\(809\) 5.80562e9 + 1.00556e10i 0.385504 + 0.667712i 0.991839 0.127497i \(-0.0406944\pi\)
−0.606335 + 0.795209i \(0.707361\pi\)
\(810\) −1.83221e9 + 3.17349e9i −0.121137 + 0.209816i
\(811\) 1.72427e10 1.13510 0.567548 0.823340i \(-0.307892\pi\)
0.567548 + 0.823340i \(0.307892\pi\)
\(812\) 0 0
\(813\) −4.23329e9 −0.276288
\(814\) −5.07811e9 + 8.79555e9i −0.330002 + 0.571581i
\(815\) 5.81366e9 + 1.00696e10i 0.376182 + 0.651567i
\(816\) 4.75152e8 + 8.22988e8i 0.0306138 + 0.0530247i
\(817\) −1.82845e9 + 3.16696e9i −0.117302 + 0.203173i
\(818\) 1.68213e10 1.07454
\(819\) 0 0
\(820\) 8.64651e9 0.547636
\(821\) −7.15770e9 + 1.23975e10i −0.451412 + 0.781868i −0.998474 0.0552240i \(-0.982413\pi\)
0.547062 + 0.837092i \(0.315746\pi\)
\(822\) −2.27649e9 3.94299e9i −0.142960 0.247613i
\(823\) 2.33905e9 + 4.05135e9i 0.146265 + 0.253338i 0.929844 0.367954i \(-0.119941\pi\)
−0.783579 + 0.621292i \(0.786608\pi\)
\(824\) 4.72502e9 8.18397e9i 0.294211 0.509588i
\(825\) 1.67865e9 0.104081
\(826\) 0 0
\(827\) −1.01540e10 −0.624264 −0.312132 0.950039i \(-0.601043\pi\)
−0.312132 + 0.950039i \(0.601043\pi\)
\(828\) −3.70160e9 + 6.41136e9i −0.226612 + 0.392504i
\(829\) 5.51455e9 + 9.55148e9i 0.336178 + 0.582278i 0.983710 0.179760i \(-0.0575323\pi\)
−0.647532 + 0.762038i \(0.724199\pi\)
\(830\) 2.90909e9 + 5.03868e9i 0.176597 + 0.305875i
\(831\) 1.05589e9 1.82885e9i 0.0638284 0.110554i
\(832\) 2.33884e9 0.140789
\(833\) 0 0
\(834\) −2.28504e9 −0.136400
\(835\) −8.88969e9 + 1.53974e10i −0.528426 + 0.915260i
\(836\) −7.14393e8 1.23737e9i −0.0422878 0.0732447i
\(837\) −8.39015e9 1.45322e10i −0.494573 0.856626i
\(838\) 9.91963e9 1.71813e10i 0.582293 1.00856i
\(839\) 1.71068e10 1.00001 0.500003 0.866023i \(-0.333332\pi\)
0.500003 + 0.866023i \(0.333332\pi\)
\(840\) 0 0
\(841\) −6.51269e8 −0.0377550
\(842\) 2.20742e8 3.82337e8i 0.0127436 0.0220726i
\(843\) 3.85847e9 + 6.68306e9i 0.221829 + 0.384219i
\(844\) 3.98525e9 + 6.90266e9i 0.228169 + 0.395201i
\(845\) −1.82649e9 + 3.16357e9i −0.104140 + 0.180376i
\(846\) −1.68869e10 −0.958859
\(847\) 0 0
\(848\) −5.21407e9 −0.293624
\(849\) 2.29298e9 3.97156e9i 0.128595 0.222733i
\(850\) 1.38432e9 + 2.39772e9i 0.0773164 + 0.133916i
\(851\) 1.62405e10 + 2.81294e10i 0.903330 + 1.56461i
\(852\) 1.66523e9 2.88427e9i 0.0922435 0.159771i
\(853\) 2.88309e9 0.159051 0.0795256 0.996833i \(-0.474659\pi\)
0.0795256 + 0.996833i \(0.474659\pi\)
\(854\) 0 0
\(855\) −3.28203e9 −0.179582
\(856\) 1.27845e9 2.21434e9i 0.0696667 0.120666i
\(857\) −1.20159e10 2.08122e10i −0.652116 1.12950i −0.982608 0.185690i \(-0.940548\pi\)
0.330492 0.943809i \(-0.392785\pi\)
\(858\) 1.92367e9 + 3.33189e9i 0.103974 + 0.180088i
\(859\) −1.70872e10 + 2.95958e10i −0.919801 + 1.59314i −0.120084 + 0.992764i \(0.538317\pi\)
−0.799716 + 0.600378i \(0.795017\pi\)
\(860\) 5.86687e9 0.314530
\(861\) 0 0
\(862\) 1.34778e10 0.716709
\(863\) −1.48357e10 + 2.56962e10i −0.785724 + 1.36091i 0.142841 + 0.989746i \(0.454376\pi\)
−0.928566 + 0.371168i \(0.878957\pi\)
\(864\) −1.34706e9 2.33318e9i −0.0710540 0.123069i
\(865\) −7.36082e9 1.27493e10i −0.386696 0.669777i
\(866\) −5.18768e9 + 8.98532e9i −0.271432 + 0.470133i
\(867\) 5.98853e9 0.312071
\(868\) 0 0
\(869\) −1.08397e10 −0.560333
\(870\) 2.33207e9 4.03926e9i 0.120067 0.207962i
\(871\) 1.49413e10 + 2.58791e10i 0.766169 + 1.32704i
\(872\) −4.78388e9 8.28592e9i −0.244327 0.423187i
\(873\) −3.95324e9 + 6.84721e9i −0.201096 + 0.348308i
\(874\) −4.56946e9 −0.231513
\(875\) 0 0
\(876\) −4.37394e9 −0.219841
\(877\) 3.70786e9 6.42220e9i 0.185620 0.321503i −0.758165 0.652062i \(-0.773904\pi\)
0.943785 + 0.330559i \(0.107237\pi\)
\(878\) −5.62552e8 9.74369e8i −0.0280500 0.0485840i
\(879\) 7.53914e9 + 1.30582e10i 0.374422 + 0.648517i
\(880\) −1.14612e9 + 1.98514e9i −0.0566946 + 0.0981979i
\(881\) −3.89699e10 −1.92005 −0.960027 0.279907i \(-0.909696\pi\)
−0.960027 + 0.279907i \(0.909696\pi\)
\(882\) 0 0
\(883\) −6.37811e9 −0.311767 −0.155883 0.987775i \(-0.549822\pi\)
−0.155883 + 0.987775i \(0.549822\pi\)
\(884\) −3.17276e9 + 5.49538e9i −0.154474 + 0.267556i
\(885\) −3.80318e9 6.58730e9i −0.184436 0.319452i
\(886\) 7.39733e9 + 1.28126e10i 0.357320 + 0.618896i
\(887\) −1.84996e10 + 3.20422e10i −0.890079 + 1.54166i −0.0503004 + 0.998734i \(0.516018\pi\)
−0.839779 + 0.542928i \(0.817315\pi\)
\(888\) −5.25601e9 −0.251890
\(889\) 0 0
\(890\) −4.16098e9 −0.197847
\(891\) −2.72803e9 + 4.72509e9i −0.129205 + 0.223789i
\(892\) 9.13484e9 + 1.58220e10i 0.430947 + 0.746423i
\(893\) −5.21155e9 9.02666e9i −0.244899 0.424177i
\(894\) 2.03670e9 3.52768e9i 0.0953337 0.165123i
\(895\) −1.32176e10 −0.616272
\(896\) 0 0
\(897\) 1.23043e10 0.569224
\(898\) 1.16717e10 2.02161e10i 0.537859 0.931599i
\(899\) −1.31474e10 2.27719e10i −0.603503 1.04530i
\(900\) −1.74510e9 3.02261e9i −0.0797944 0.138208i
\(901\) 7.07315e9 1.22511e10i 0.322163 0.558003i
\(902\) 1.28740e10 0.584106
\(903\) 0 0
\(904\) 1.27761e10 0.575188
\(905\) −1.66786e10 + 2.88883e10i −0.747981 + 1.29554i
\(906\) 2.82285e9 + 4.88931e9i 0.126107 + 0.218423i
\(907\) 3.20212e9 + 5.54623e9i 0.142499 + 0.246816i 0.928437 0.371490i \(-0.121153\pi\)
−0.785938 + 0.618305i \(0.787820\pi\)
\(908\) 2.15770e9 3.73725e9i 0.0956514 0.165673i
\(909\) 1.29583e10 0.572234
\(910\) 0 0
\(911\) −2.59678e9 −0.113794 −0.0568971 0.998380i \(-0.518121\pi\)
−0.0568971 + 0.998380i \(0.518121\pi\)
\(912\) 3.69710e8 6.40357e8i 0.0161391 0.0279537i
\(913\) 4.33142e9 + 7.50224e9i 0.188357 + 0.326244i
\(914\) −1.13632e10 1.96817e10i −0.492254 0.852609i
\(915\) −4.80256e9 + 8.31828e9i −0.207252 + 0.358971i
\(916\) −4.58827e9 −0.197249
\(917\) 0 0
\(918\) 7.30943e9 0.311842
\(919\) 1.87721e10 3.25142e10i 0.797825 1.38187i −0.123205 0.992381i \(-0.539317\pi\)
0.921030 0.389492i \(-0.127349\pi\)
\(920\) 3.66546e9 + 6.34876e9i 0.155193 + 0.268802i
\(921\) 6.67602e8 + 1.15632e9i 0.0281585 + 0.0487719i
\(922\) 1.58423e10 2.74396e10i 0.665671 1.15298i
\(923\) 2.22387e10 0.930900
\(924\) 0 0
\(925\) −1.53130e10 −0.636159
\(926\) 8.79260e9 1.52292e10i 0.363897 0.630289i
\(927\) −1.61604e10 2.79907e10i −0.666306 1.15408i
\(928\) −2.11084e9 3.65609e9i −0.0867037 0.150175i
\(929\) 1.26185e10 2.18559e10i 0.516361 0.894363i −0.483459 0.875367i \(-0.660620\pi\)
0.999820 0.0189960i \(-0.00604698\pi\)
\(930\) −7.38870e9 −0.301216
\(931\) 0 0
\(932\) 1.39508e8 0.00564472
\(933\) −1.61427e9 + 2.79600e9i −0.0650716 + 0.112707i
\(934\) 1.24896e10 + 2.16326e10i 0.501573 + 0.868751i
\(935\) −3.10955e9 5.38590e9i −0.124410 0.215485i
\(936\) 3.99963e9 6.92757e9i 0.159424 0.276131i
\(937\) 6.75432e9 0.268221 0.134111 0.990966i \(-0.457182\pi\)
0.134111 + 0.990966i \(0.457182\pi\)
\(938\) 0 0
\(939\) −1.03131e10 −0.406499
\(940\) −8.36104e9 + 1.44817e10i −0.328332 + 0.568687i
\(941\) −4.73345e9 8.19857e9i −0.185188 0.320756i 0.758452 0.651729i \(-0.225956\pi\)
−0.943640 + 0.330974i \(0.892623\pi\)
\(942\) −6.64458e8 1.15087e9i −0.0258994 0.0448590i
\(943\) 2.05865e10 3.56568e10i 0.799449 1.38469i
\(944\) −6.88480e9 −0.266373
\(945\) 0 0
\(946\) 8.73534e9 0.335476
\(947\) 2.51579e10 4.35748e10i 0.962608 1.66729i 0.246701 0.969092i \(-0.420654\pi\)
0.715908 0.698195i \(-0.246013\pi\)
\(948\) −2.80485e9 4.85814e9i −0.106925 0.185200i
\(949\) −1.46032e10 2.52934e10i −0.554645 0.960673i
\(950\) 1.07713e9 1.86564e9i 0.0407600 0.0705983i
\(951\) −8.97599e9 −0.338416
\(952\) 0 0
\(953\) −2.56329e9 −0.0959342 −0.0479671 0.998849i \(-0.515274\pi\)
−0.0479671 + 0.998849i \(0.515274\pi\)
\(954\) −8.91653e9 + 1.54439e10i −0.332489 + 0.575887i
\(955\) −2.44072e9 4.22745e9i −0.0906790 0.157061i
\(956\) 5.98820e9 + 1.03719e10i 0.221663 + 0.383932i
\(957\) 3.47228e9 6.01416e9i 0.128063 0.221811i
\(958\) 1.08724e10 0.399525
\(959\) 0 0
\(960\) −1.18627e9 −0.0432749
\(961\) −7.07111e9 + 1.22475e10i −0.257013 + 0.445160i
\(962\) −1.75481e10 3.03942e10i −0.635504 1.10072i
\(963\) −4.37253e9 7.57344e9i −0.157776 0.273276i
\(964\) −4.01056e9 + 6.94649e9i −0.144190 + 0.249744i
\(965\) −2.93218e10 −1.05038
\(966\) 0 0
\(967\) 1.17322e10 0.417241 0.208621 0.977997i \(-0.433103\pi\)
0.208621 + 0.977997i \(0.433103\pi\)
\(968\) 3.28222e9 5.68498e9i 0.116307 0.201449i
\(969\) 1.00306e9 + 1.73735e9i 0.0354156 + 0.0613416i
\(970\) 3.91464e9 + 6.78036e9i 0.137718 + 0.238535i
\(971\) −8.01185e9 + 1.38769e10i −0.280844 + 0.486437i −0.971593 0.236658i \(-0.923948\pi\)
0.690749 + 0.723095i \(0.257281\pi\)
\(972\) −1.43315e10 −0.500564
\(973\) 0 0
\(974\) 1.91573e10 0.664319
\(975\) −2.90040e9 + 5.02365e9i −0.100217 + 0.173581i
\(976\) 4.34698e9 + 7.52919e9i 0.149663 + 0.259223i
\(977\) −2.08302e10 3.60790e10i −0.714601 1.23772i −0.963113 0.269096i \(-0.913275\pi\)
0.248513 0.968629i \(-0.420058\pi\)
\(978\) −4.47969e9 + 7.75904e9i −0.153130 + 0.265230i
\(979\) −6.19540e9 −0.211023
\(980\) 0 0
\(981\) −3.27235e10 −1.10667
\(982\) 7.82953e9 1.35611e10i 0.263843 0.456989i
\(983\) 2.36038e10 + 4.08830e10i 0.792584 + 1.37280i 0.924362 + 0.381516i \(0.124598\pi\)
−0.131778 + 0.991279i \(0.542069\pi\)
\(984\) 3.33126e9 + 5.76991e9i 0.111462 + 0.193057i
\(985\) 9.71314e9 1.68236e10i 0.323842 0.560910i
\(986\) 1.14539e10 0.380525
\(987\) 0 0
\(988\) 4.93737e9 0.162872
\(989\) 1.39684e10 2.41940e10i 0.459156 0.795282i
\(990\) 3.91995e9 + 6.78955e9i 0.128398 + 0.222391i
\(991\) 3.20329e9 + 5.54826e9i 0.104553 + 0.181092i 0.913556 0.406714i \(-0.133325\pi\)
−0.809002 + 0.587806i \(0.799992\pi\)
\(992\) −3.34390e9 + 5.79180e9i −0.108758 + 0.188375i
\(993\) 6.85132e9 0.222051
\(994\) 0 0
\(995\) 1.19088e10 0.383254
\(996\) −2.24158e9 + 3.88253e9i −0.0718863 + 0.124511i
\(997\) −6.01597e9 1.04200e10i −0.192253 0.332991i 0.753744 0.657168i \(-0.228246\pi\)
−0.945996 + 0.324177i \(0.894913\pi\)
\(998\) −1.18061e9 2.04488e9i −0.0375968 0.0651196i
\(999\) −2.02137e10 + 3.50112e10i −0.641457 + 1.11104i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.8.c.h.79.2 4
7.2 even 3 98.8.a.k.1.1 2
7.3 odd 6 14.8.c.a.11.1 yes 4
7.4 even 3 inner 98.8.c.h.67.2 4
7.5 odd 6 98.8.a.h.1.2 2
7.6 odd 2 14.8.c.a.9.1 4
21.17 even 6 126.8.g.e.109.1 4
21.20 even 2 126.8.g.e.37.1 4
28.3 even 6 112.8.i.a.81.2 4
28.27 even 2 112.8.i.a.65.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.8.c.a.9.1 4 7.6 odd 2
14.8.c.a.11.1 yes 4 7.3 odd 6
98.8.a.h.1.2 2 7.5 odd 6
98.8.a.k.1.1 2 7.2 even 3
98.8.c.h.67.2 4 7.4 even 3 inner
98.8.c.h.79.2 4 1.1 even 1 trivial
112.8.i.a.65.2 4 28.27 even 2
112.8.i.a.81.2 4 28.3 even 6
126.8.g.e.37.1 4 21.20 even 2
126.8.g.e.109.1 4 21.17 even 6