Properties

Label 98.8.c.d.79.1
Level $98$
Weight $8$
Character 98.79
Analytic conductor $30.614$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [98,8,Mod(67,98)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("98.67");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6137324974\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 98.79
Dual form 98.8.c.d.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.00000 - 6.92820i) q^{2} +(-6.00000 - 10.3923i) q^{3} +(-32.0000 - 55.4256i) q^{4} +(105.000 - 181.865i) q^{5} -96.0000 q^{6} -512.000 q^{8} +(1021.50 - 1769.29i) q^{9} +(-840.000 - 1454.92i) q^{10} +(-546.000 - 945.700i) q^{11} +(-384.000 + 665.108i) q^{12} +1382.00 q^{13} -2520.00 q^{15} +(-2048.00 + 3547.24i) q^{16} +(-7353.00 - 12735.8i) q^{17} +(-8172.00 - 14154.3i) q^{18} +(19970.0 - 34589.1i) q^{19} -13440.0 q^{20} -8736.00 q^{22} +(-34356.0 + 59506.3i) q^{23} +(3072.00 + 5320.86i) q^{24} +(17012.5 + 29466.5i) q^{25} +(5528.00 - 9574.78i) q^{26} -50760.0 q^{27} -102570. q^{29} +(-10080.0 + 17459.1i) q^{30} +(-113776. - 197066. i) q^{31} +(16384.0 + 28377.9i) q^{32} +(-6552.00 + 11348.4i) q^{33} -117648. q^{34} -130752. q^{36} +(-80263.0 + 139020. i) q^{37} +(-159760. - 276712. i) q^{38} +(-8292.00 - 14362.2i) q^{39} +(-53760.0 + 93115.1i) q^{40} +10842.0 q^{41} -630748. q^{43} +(-34944.0 + 60524.8i) q^{44} +(-214515. - 371551. i) q^{45} +(274848. + 476051. i) q^{46} +(-236328. + 409332. i) q^{47} +49152.0 q^{48} +272200. q^{50} +(-88236.0 + 152829. i) q^{51} +(-44224.0 - 76598.2i) q^{52} +(747009. + 1.29386e6i) q^{53} +(-203040. + 351676. i) q^{54} -229320. q^{55} -479280. q^{57} +(-410280. + 710626. i) q^{58} +(-1.32033e6 - 2.28688e6i) q^{59} +(80640.0 + 139673. i) q^{60} +(-413851. + 716811. i) q^{61} -1.82042e6 q^{62} +262144. q^{64} +(145110. - 251338. i) q^{65} +(52416.0 + 90787.2i) q^{66} +(63002.0 + 109123. i) q^{67} +(-470592. + 815089. i) q^{68} +824544. q^{69} -1.41473e6 q^{71} +(-523008. + 905876. i) q^{72} +(-490141. - 848949. i) q^{73} +(642104. + 1.11216e6i) q^{74} +(204150. - 353598. i) q^{75} -2.55616e6 q^{76} -132672. q^{78} +(1.78340e6 - 3.08894e6i) q^{79} +(430080. + 744920. i) q^{80} +(-1.92946e6 - 3.34192e6i) q^{81} +(43368.0 - 75115.6i) q^{82} +5.67289e6 q^{83} -3.08826e6 q^{85} +(-2.52299e6 + 4.36995e6i) q^{86} +(615420. + 1.06594e6i) q^{87} +(279552. + 484198. i) q^{88} +(5.97560e6 - 1.03500e7i) q^{89} -3.43224e6 q^{90} +4.39757e6 q^{92} +(-1.36531e6 + 2.36479e6i) q^{93} +(1.89062e6 + 3.27466e6i) q^{94} +(-4.19370e6 - 7.26370e6i) q^{95} +(196608. - 340535. i) q^{96} +8.68215e6 q^{97} -2.23096e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 12 q^{3} - 64 q^{4} + 210 q^{5} - 192 q^{6} - 1024 q^{8} + 2043 q^{9} - 1680 q^{10} - 1092 q^{11} - 768 q^{12} + 2764 q^{13} - 5040 q^{15} - 4096 q^{16} - 14706 q^{17} - 16344 q^{18} + 39940 q^{19}+ \cdots - 4461912 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 6.92820i 0.353553 0.612372i
\(3\) −6.00000 10.3923i −0.128300 0.222222i 0.794718 0.606979i \(-0.207619\pi\)
−0.923018 + 0.384757i \(0.874285\pi\)
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) 105.000 181.865i 0.375659 0.650661i −0.614766 0.788709i \(-0.710750\pi\)
0.990425 + 0.138048i \(0.0440829\pi\)
\(6\) −96.0000 −0.181444
\(7\) 0 0
\(8\) −512.000 −0.353553
\(9\) 1021.50 1769.29i 0.467078 0.809003i
\(10\) −840.000 1454.92i −0.265631 0.460087i
\(11\) −546.000 945.700i −0.123685 0.214229i 0.797533 0.603275i \(-0.206138\pi\)
−0.921218 + 0.389046i \(0.872805\pi\)
\(12\) −384.000 + 665.108i −0.0641500 + 0.111111i
\(13\) 1382.00 0.174464 0.0872321 0.996188i \(-0.472198\pi\)
0.0872321 + 0.996188i \(0.472198\pi\)
\(14\) 0 0
\(15\) −2520.00 −0.192789
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) −7353.00 12735.8i −0.362989 0.628715i 0.625462 0.780254i \(-0.284910\pi\)
−0.988451 + 0.151539i \(0.951577\pi\)
\(18\) −8172.00 14154.3i −0.330274 0.572052i
\(19\) 19970.0 34589.1i 0.667945 1.15691i −0.310533 0.950563i \(-0.600508\pi\)
0.978478 0.206352i \(-0.0661590\pi\)
\(20\) −13440.0 −0.375659
\(21\) 0 0
\(22\) −8736.00 −0.174917
\(23\) −34356.0 + 59506.3i −0.588783 + 1.01980i 0.405609 + 0.914047i \(0.367059\pi\)
−0.994392 + 0.105755i \(0.966274\pi\)
\(24\) 3072.00 + 5320.86i 0.0453609 + 0.0785674i
\(25\) 17012.5 + 29466.5i 0.217760 + 0.377171i
\(26\) 5528.00 9574.78i 0.0616824 0.106837i
\(27\) −50760.0 −0.496305
\(28\) 0 0
\(29\) −102570. −0.780957 −0.390479 0.920612i \(-0.627690\pi\)
−0.390479 + 0.920612i \(0.627690\pi\)
\(30\) −10080.0 + 17459.1i −0.0681610 + 0.118058i
\(31\) −113776. 197066.i −0.685938 1.18808i −0.973141 0.230209i \(-0.926059\pi\)
0.287203 0.957870i \(-0.407274\pi\)
\(32\) 16384.0 + 28377.9i 0.0883883 + 0.153093i
\(33\) −6552.00 + 11348.4i −0.0317377 + 0.0549713i
\(34\) −117648. −0.513344
\(35\) 0 0
\(36\) −130752. −0.467078
\(37\) −80263.0 + 139020.i −0.260501 + 0.451201i −0.966375 0.257136i \(-0.917221\pi\)
0.705874 + 0.708337i \(0.250554\pi\)
\(38\) −159760. 276712.i −0.472308 0.818062i
\(39\) −8292.00 14362.2i −0.0223838 0.0387698i
\(40\) −53760.0 + 93115.1i −0.132816 + 0.230043i
\(41\) 10842.0 0.0245678 0.0122839 0.999925i \(-0.496090\pi\)
0.0122839 + 0.999925i \(0.496090\pi\)
\(42\) 0 0
\(43\) −630748. −1.20981 −0.604904 0.796299i \(-0.706788\pi\)
−0.604904 + 0.796299i \(0.706788\pi\)
\(44\) −34944.0 + 60524.8i −0.0618427 + 0.107115i
\(45\) −214515. 371551.i −0.350925 0.607819i
\(46\) 274848. + 476051.i 0.416332 + 0.721109i
\(47\) −236328. + 409332.i −0.332026 + 0.575087i −0.982909 0.184092i \(-0.941066\pi\)
0.650883 + 0.759178i \(0.274399\pi\)
\(48\) 49152.0 0.0641500
\(49\) 0 0
\(50\) 272200. 0.307959
\(51\) −88236.0 + 152829.i −0.0931430 + 0.161328i
\(52\) −44224.0 76598.2i −0.0436160 0.0755452i
\(53\) 747009. + 1.29386e6i 0.689224 + 1.19377i 0.972089 + 0.234611i \(0.0753817\pi\)
−0.282865 + 0.959160i \(0.591285\pi\)
\(54\) −203040. + 351676.i −0.175470 + 0.303923i
\(55\) −229320. −0.185854
\(56\) 0 0
\(57\) −479280. −0.342789
\(58\) −410280. + 710626.i −0.276110 + 0.478237i
\(59\) −1.32033e6 2.28688e6i −0.836952 1.44964i −0.892431 0.451183i \(-0.851002\pi\)
0.0554795 0.998460i \(-0.482331\pi\)
\(60\) 80640.0 + 139673.i 0.0481971 + 0.0834799i
\(61\) −413851. + 716811.i −0.233448 + 0.404343i −0.958820 0.284013i \(-0.908334\pi\)
0.725373 + 0.688356i \(0.241667\pi\)
\(62\) −1.82042e6 −0.970063
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 145110. 251338.i 0.0655391 0.113517i
\(66\) 52416.0 + 90787.2i 0.0224419 + 0.0388706i
\(67\) 63002.0 + 109123.i 0.0255913 + 0.0443255i 0.878537 0.477674i \(-0.158520\pi\)
−0.852946 + 0.521999i \(0.825186\pi\)
\(68\) −470592. + 815089.i −0.181494 + 0.314358i
\(69\) 824544. 0.302164
\(70\) 0 0
\(71\) −1.41473e6 −0.469104 −0.234552 0.972104i \(-0.575362\pi\)
−0.234552 + 0.972104i \(0.575362\pi\)
\(72\) −523008. + 905876.i −0.165137 + 0.286026i
\(73\) −490141. 848949.i −0.147466 0.255418i 0.782824 0.622243i \(-0.213778\pi\)
−0.930290 + 0.366825i \(0.880445\pi\)
\(74\) 642104. + 1.11216e6i 0.184202 + 0.319047i
\(75\) 204150. 353598.i 0.0558772 0.0967822i
\(76\) −2.55616e6 −0.667945
\(77\) 0 0
\(78\) −132672. −0.0316554
\(79\) 1.78340e6 3.08894e6i 0.406962 0.704879i −0.587586 0.809162i \(-0.699921\pi\)
0.994548 + 0.104283i \(0.0332548\pi\)
\(80\) 430080. + 744920.i 0.0939149 + 0.162665i
\(81\) −1.92946e6 3.34192e6i −0.403402 0.698713i
\(82\) 43368.0 75115.6i 0.00868602 0.0150446i
\(83\) 5.67289e6 1.08901 0.544504 0.838758i \(-0.316718\pi\)
0.544504 + 0.838758i \(0.316718\pi\)
\(84\) 0 0
\(85\) −3.08826e6 −0.545441
\(86\) −2.52299e6 + 4.36995e6i −0.427732 + 0.740853i
\(87\) 615420. + 1.06594e6i 0.100197 + 0.173546i
\(88\) 279552. + 484198.i 0.0437294 + 0.0757415i
\(89\) 5.97560e6 1.03500e7i 0.898496 1.55624i 0.0690786 0.997611i \(-0.477994\pi\)
0.829417 0.558629i \(-0.188673\pi\)
\(90\) −3.43224e6 −0.496282
\(91\) 0 0
\(92\) 4.39757e6 0.588783
\(93\) −1.36531e6 + 2.36479e6i −0.176012 + 0.304861i
\(94\) 1.89062e6 + 3.27466e6i 0.234778 + 0.406648i
\(95\) −4.19370e6 7.26370e6i −0.501839 0.869211i
\(96\) 196608. 340535.i 0.0226805 0.0392837i
\(97\) 8.68215e6 0.965886 0.482943 0.875652i \(-0.339568\pi\)
0.482943 + 0.875652i \(0.339568\pi\)
\(98\) 0 0
\(99\) −2.23096e6 −0.231083
\(100\) 1.08880e6 1.88586e6i 0.108880 0.188586i
\(101\) 5.03977e6 + 8.72914e6i 0.486727 + 0.843037i 0.999884 0.0152586i \(-0.00485716\pi\)
−0.513156 + 0.858295i \(0.671524\pi\)
\(102\) 705888. + 1.22263e6i 0.0658620 + 0.114076i
\(103\) −1.87400e6 + 3.24586e6i −0.168981 + 0.292684i −0.938062 0.346468i \(-0.887381\pi\)
0.769081 + 0.639152i \(0.220714\pi\)
\(104\) −707584. −0.0616824
\(105\) 0 0
\(106\) 1.19521e7 0.974710
\(107\) 8.99278e6 1.55760e7i 0.709661 1.22917i −0.255322 0.966856i \(-0.582182\pi\)
0.964983 0.262313i \(-0.0844852\pi\)
\(108\) 1.62432e6 + 2.81340e6i 0.124076 + 0.214906i
\(109\) −6.12851e6 1.06149e7i −0.453276 0.785097i 0.545311 0.838234i \(-0.316411\pi\)
−0.998587 + 0.0531368i \(0.983078\pi\)
\(110\) −917280. + 1.58878e6i −0.0657094 + 0.113812i
\(111\) 1.92631e6 0.133689
\(112\) 0 0
\(113\) 1.65950e7 1.08194 0.540968 0.841043i \(-0.318058\pi\)
0.540968 + 0.841043i \(0.318058\pi\)
\(114\) −1.91712e6 + 3.32055e6i −0.121194 + 0.209915i
\(115\) 7.21476e6 + 1.24963e7i 0.442364 + 0.766196i
\(116\) 3.28224e6 + 5.68501e6i 0.195239 + 0.338164i
\(117\) 1.41171e6 2.44516e6i 0.0814884 0.141142i
\(118\) −2.11253e7 −1.18363
\(119\) 0 0
\(120\) 1.29024e6 0.0681610
\(121\) 9.14735e6 1.58437e7i 0.469404 0.813031i
\(122\) 3.31081e6 + 5.73449e6i 0.165072 + 0.285914i
\(123\) −65052.0 112673.i −0.00315205 0.00545951i
\(124\) −7.28166e6 + 1.26122e7i −0.342969 + 0.594040i
\(125\) 2.35515e7 1.07853
\(126\) 0 0
\(127\) 1.16826e6 0.0506087 0.0253043 0.999680i \(-0.491945\pi\)
0.0253043 + 0.999680i \(0.491945\pi\)
\(128\) 1.04858e6 1.81619e6i 0.0441942 0.0765466i
\(129\) 3.78449e6 + 6.55493e6i 0.155218 + 0.268846i
\(130\) −1.16088e6 2.01070e6i −0.0463432 0.0802687i
\(131\) 3.96191e6 6.86224e6i 0.153977 0.266696i −0.778709 0.627385i \(-0.784125\pi\)
0.932686 + 0.360689i \(0.117459\pi\)
\(132\) 838656. 0.0317377
\(133\) 0 0
\(134\) 1.00803e6 0.0361916
\(135\) −5.32980e6 + 9.23148e6i −0.186442 + 0.322926i
\(136\) 3.76474e6 + 6.52071e6i 0.128336 + 0.222284i
\(137\) 157827. + 273364.i 0.00524396 + 0.00908280i 0.868635 0.495452i \(-0.164997\pi\)
−0.863392 + 0.504535i \(0.831664\pi\)
\(138\) 3.29818e6 5.71261e6i 0.106831 0.185037i
\(139\) 3.92038e7 1.23816 0.619079 0.785329i \(-0.287506\pi\)
0.619079 + 0.785329i \(0.287506\pi\)
\(140\) 0 0
\(141\) 5.67187e6 0.170396
\(142\) −5.65891e6 + 9.80152e6i −0.165853 + 0.287266i
\(143\) −754572. 1.30696e6i −0.0215787 0.0373753i
\(144\) 4.18406e6 + 7.24701e6i 0.116770 + 0.202251i
\(145\) −1.07698e7 + 1.86539e7i −0.293374 + 0.508139i
\(146\) −7.84226e6 −0.208548
\(147\) 0 0
\(148\) 1.02737e7 0.260501
\(149\) 1.09430e7 1.89539e7i 0.271010 0.469403i −0.698111 0.715990i \(-0.745976\pi\)
0.969121 + 0.246587i \(0.0793090\pi\)
\(150\) −1.63320e6 2.82879e6i −0.0395112 0.0684354i
\(151\) 1.47077e7 + 2.54745e7i 0.347637 + 0.602125i 0.985829 0.167752i \(-0.0536508\pi\)
−0.638192 + 0.769877i \(0.720317\pi\)
\(152\) −1.02246e7 + 1.77096e7i −0.236154 + 0.409031i
\(153\) −3.00444e7 −0.678177
\(154\) 0 0
\(155\) −4.77859e7 −1.03072
\(156\) −530688. + 919179.i −0.0111919 + 0.0193849i
\(157\) −3.02775e7 5.24421e7i −0.624412 1.08151i −0.988654 0.150209i \(-0.952005\pi\)
0.364243 0.931304i \(-0.381328\pi\)
\(158\) −1.42672e7 2.47115e7i −0.287766 0.498425i
\(159\) 8.96411e6 1.55263e7i 0.176855 0.306322i
\(160\) 6.88128e6 0.132816
\(161\) 0 0
\(162\) −3.08714e7 −0.570497
\(163\) −2.85426e7 + 4.94373e7i −0.516223 + 0.894125i 0.483599 + 0.875290i \(0.339329\pi\)
−0.999823 + 0.0188355i \(0.994004\pi\)
\(164\) −346944. 600925.i −0.00614194 0.0106382i
\(165\) 1.37592e6 + 2.38316e6i 0.0238451 + 0.0413009i
\(166\) 2.26916e7 3.93029e7i 0.385023 0.666879i
\(167\) −8.77265e7 −1.45755 −0.728775 0.684754i \(-0.759910\pi\)
−0.728775 + 0.684754i \(0.759910\pi\)
\(168\) 0 0
\(169\) −6.08386e7 −0.969562
\(170\) −1.23530e7 + 2.13961e7i −0.192842 + 0.334013i
\(171\) −4.07987e7 7.06654e7i −0.623965 1.08074i
\(172\) 2.01839e7 + 3.49596e7i 0.302452 + 0.523862i
\(173\) −4.28477e6 + 7.42144e6i −0.0629167 + 0.108975i −0.895768 0.444522i \(-0.853374\pi\)
0.832851 + 0.553497i \(0.186707\pi\)
\(174\) 9.84672e6 0.141700
\(175\) 0 0
\(176\) 4.47283e6 0.0618427
\(177\) −1.58440e7 + 2.74425e7i −0.214762 + 0.371979i
\(178\) −4.78048e7 8.28003e7i −0.635333 1.10043i
\(179\) −9.40203e6 1.62848e7i −0.122528 0.212225i 0.798236 0.602345i \(-0.205767\pi\)
−0.920764 + 0.390120i \(0.872434\pi\)
\(180\) −1.37290e7 + 2.37793e7i −0.175462 + 0.303910i
\(181\) −5.99625e7 −0.751631 −0.375816 0.926694i \(-0.622637\pi\)
−0.375816 + 0.926694i \(0.622637\pi\)
\(182\) 0 0
\(183\) 9.93242e6 0.119805
\(184\) 1.75903e7 3.04672e7i 0.208166 0.360554i
\(185\) 1.68552e7 + 2.91941e7i 0.195719 + 0.338996i
\(186\) 1.09225e7 + 1.89183e7i 0.124459 + 0.215569i
\(187\) −8.02948e6 + 1.39075e7i −0.0897928 + 0.155526i
\(188\) 3.02500e7 0.332026
\(189\) 0 0
\(190\) −6.70992e7 −0.709708
\(191\) −4.69931e7 + 8.13944e7i −0.487997 + 0.845235i −0.999905 0.0138052i \(-0.995606\pi\)
0.511908 + 0.859040i \(0.328939\pi\)
\(192\) −1.57286e6 2.72428e6i −0.0160375 0.0277778i
\(193\) 1.75973e7 + 3.04794e7i 0.176196 + 0.305180i 0.940574 0.339588i \(-0.110288\pi\)
−0.764379 + 0.644767i \(0.776954\pi\)
\(194\) 3.47286e7 6.01517e7i 0.341492 0.591482i
\(195\) −3.48264e6 −0.0336347
\(196\) 0 0
\(197\) 1.02985e8 0.959718 0.479859 0.877346i \(-0.340688\pi\)
0.479859 + 0.877346i \(0.340688\pi\)
\(198\) −8.92382e6 + 1.54565e7i −0.0817001 + 0.141509i
\(199\) −4.18188e7 7.24323e7i −0.376171 0.651548i 0.614330 0.789049i \(-0.289426\pi\)
−0.990502 + 0.137501i \(0.956093\pi\)
\(200\) −8.71040e6 1.50869e7i −0.0769898 0.133350i
\(201\) 756024. 1.30947e6i 0.00656673 0.0113739i
\(202\) 8.06363e7 0.688337
\(203\) 0 0
\(204\) 1.12942e7 0.0931430
\(205\) 1.13841e6 1.97178e6i 0.00922912 0.0159853i
\(206\) 1.49920e7 + 2.59669e7i 0.119488 + 0.206959i
\(207\) 7.01893e7 + 1.21571e8i 0.550015 + 0.952654i
\(208\) −2.83034e6 + 4.90229e6i −0.0218080 + 0.0377726i
\(209\) −4.36145e7 −0.330460
\(210\) 0 0
\(211\) −9.74010e7 −0.713797 −0.356899 0.934143i \(-0.616166\pi\)
−0.356899 + 0.934143i \(0.616166\pi\)
\(212\) 4.78086e7 8.28069e7i 0.344612 0.596885i
\(213\) 8.48837e6 + 1.47023e7i 0.0601860 + 0.104245i
\(214\) −7.19423e7 1.24608e8i −0.501806 0.869153i
\(215\) −6.62285e7 + 1.14711e8i −0.454476 + 0.787175i
\(216\) 2.59891e7 0.175470
\(217\) 0 0
\(218\) −9.80562e7 −0.641029
\(219\) −5.88169e6 + 1.01874e7i −0.0378397 + 0.0655403i
\(220\) 7.33824e6 + 1.27102e7i 0.0464636 + 0.0804773i
\(221\) −1.01618e7 1.76008e7i −0.0633286 0.109688i
\(222\) 7.70525e6 1.33459e7i 0.0472663 0.0818676i
\(223\) −1.46457e7 −0.0884390 −0.0442195 0.999022i \(-0.514080\pi\)
−0.0442195 + 0.999022i \(0.514080\pi\)
\(224\) 0 0
\(225\) 6.95131e7 0.406844
\(226\) 6.63798e7 1.14973e8i 0.382522 0.662548i
\(227\) 9.22704e7 + 1.59817e8i 0.523567 + 0.906844i 0.999624 + 0.0274298i \(0.00873228\pi\)
−0.476057 + 0.879414i \(0.657934\pi\)
\(228\) 1.53370e7 + 2.65644e7i 0.0856973 + 0.148432i
\(229\) 4.37730e6 7.58171e6i 0.0240870 0.0417199i −0.853731 0.520715i \(-0.825665\pi\)
0.877818 + 0.478995i \(0.158999\pi\)
\(230\) 1.15436e8 0.625597
\(231\) 0 0
\(232\) 5.25158e7 0.276110
\(233\) 5.97781e7 1.03539e8i 0.309597 0.536237i −0.668677 0.743553i \(-0.733139\pi\)
0.978274 + 0.207315i \(0.0664726\pi\)
\(234\) −1.12937e7 1.95613e7i −0.0576210 0.0998025i
\(235\) 4.96289e7 + 8.59597e7i 0.249458 + 0.432073i
\(236\) −8.45011e7 + 1.46360e8i −0.418476 + 0.724822i
\(237\) −4.28016e7 −0.208853
\(238\) 0 0
\(239\) 3.96209e8 1.87729 0.938646 0.344883i \(-0.112081\pi\)
0.938646 + 0.344883i \(0.112081\pi\)
\(240\) 5.16096e6 8.93904e6i 0.0240986 0.0417399i
\(241\) 1.28303e8 + 2.22228e8i 0.590443 + 1.02268i 0.994173 + 0.107799i \(0.0343801\pi\)
−0.403730 + 0.914878i \(0.632287\pi\)
\(242\) −7.31788e7 1.26749e8i −0.331919 0.574900i
\(243\) −7.86596e7 + 1.36242e8i −0.351665 + 0.609102i
\(244\) 5.29729e7 0.233448
\(245\) 0 0
\(246\) −1.04083e6 −0.00445767
\(247\) 2.75985e7 4.78021e7i 0.116532 0.201840i
\(248\) 5.82533e7 + 1.00898e8i 0.242516 + 0.420049i
\(249\) −3.40374e7 5.89544e7i −0.139720 0.242002i
\(250\) 9.42060e7 1.63170e8i 0.381319 0.660464i
\(251\) −7.34775e7 −0.293290 −0.146645 0.989189i \(-0.546847\pi\)
−0.146645 + 0.989189i \(0.546847\pi\)
\(252\) 0 0
\(253\) 7.50335e7 0.291295
\(254\) 4.67302e6 8.09391e6i 0.0178929 0.0309914i
\(255\) 1.85296e7 + 3.20941e7i 0.0699801 + 0.121209i
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) 1.01351e8 1.75544e8i 0.372443 0.645091i −0.617498 0.786573i \(-0.711853\pi\)
0.989941 + 0.141482i \(0.0451868\pi\)
\(258\) 6.05518e7 0.219512
\(259\) 0 0
\(260\) −1.85741e7 −0.0655391
\(261\) −1.04775e8 + 1.81476e8i −0.364768 + 0.631797i
\(262\) −3.16953e7 5.48979e7i −0.108878 0.188582i
\(263\) −7.71270e7 1.33588e8i −0.261434 0.452816i 0.705189 0.709019i \(-0.250862\pi\)
−0.966623 + 0.256203i \(0.917529\pi\)
\(264\) 3.35462e6 5.81038e6i 0.0112210 0.0194353i
\(265\) 3.13744e8 1.03565
\(266\) 0 0
\(267\) −1.43414e8 −0.461108
\(268\) 4.03213e6 6.98385e6i 0.0127957 0.0221627i
\(269\) 3.12009e8 + 5.40416e8i 0.977315 + 1.69276i 0.672075 + 0.740483i \(0.265403\pi\)
0.305239 + 0.952276i \(0.401264\pi\)
\(270\) 4.26384e7 + 7.38519e7i 0.131834 + 0.228343i
\(271\) 1.93992e8 3.36003e8i 0.592094 1.02554i −0.401856 0.915703i \(-0.631635\pi\)
0.993950 0.109834i \(-0.0350318\pi\)
\(272\) 6.02358e7 0.181494
\(273\) 0 0
\(274\) 2.52523e6 0.00741608
\(275\) 1.85776e7 3.21774e7i 0.0538674 0.0933011i
\(276\) −2.63854e7 4.57009e7i −0.0755409 0.130841i
\(277\) −2.26976e8 3.93134e8i −0.641654 1.11138i −0.985063 0.172192i \(-0.944915\pi\)
0.343409 0.939186i \(-0.388418\pi\)
\(278\) 1.56815e8 2.71612e8i 0.437755 0.758214i
\(279\) −4.64889e8 −1.28155
\(280\) 0 0
\(281\) 3.33770e8 0.897377 0.448689 0.893688i \(-0.351891\pi\)
0.448689 + 0.893688i \(0.351891\pi\)
\(282\) 2.26875e7 3.92959e7i 0.0602441 0.104346i
\(283\) −2.68847e8 4.65657e8i −0.705104 1.22128i −0.966654 0.256086i \(-0.917567\pi\)
0.261550 0.965190i \(-0.415766\pi\)
\(284\) 4.52713e7 + 7.84122e7i 0.117276 + 0.203128i
\(285\) −5.03244e7 + 8.71644e7i −0.128772 + 0.223040i
\(286\) −1.20732e7 −0.0305168
\(287\) 0 0
\(288\) 6.69450e7 0.165137
\(289\) 9.70361e7 1.68071e8i 0.236478 0.409592i
\(290\) 8.61588e7 + 1.49231e8i 0.207447 + 0.359308i
\(291\) −5.20929e7 9.02275e7i −0.123923 0.214641i
\(292\) −3.13690e7 + 5.43327e7i −0.0737329 + 0.127709i
\(293\) 3.35600e8 0.779445 0.389722 0.920932i \(-0.372571\pi\)
0.389722 + 0.920932i \(0.372571\pi\)
\(294\) 0 0
\(295\) −5.54539e8 −1.25764
\(296\) 4.10947e7 7.11780e7i 0.0921010 0.159524i
\(297\) 2.77150e7 + 4.80037e7i 0.0613856 + 0.106323i
\(298\) −8.75442e7 1.51631e8i −0.191633 0.331918i
\(299\) −4.74800e7 + 8.22378e7i −0.102722 + 0.177919i
\(300\) −2.61312e7 −0.0558772
\(301\) 0 0
\(302\) 2.35324e8 0.491633
\(303\) 6.04772e7 1.04750e8i 0.124894 0.216323i
\(304\) 8.17971e7 + 1.41677e8i 0.166986 + 0.289229i
\(305\) 8.69087e7 + 1.50530e8i 0.175394 + 0.303791i
\(306\) −1.20177e8 + 2.08153e8i −0.239772 + 0.415297i
\(307\) 2.15029e8 0.424143 0.212072 0.977254i \(-0.431979\pi\)
0.212072 + 0.977254i \(0.431979\pi\)
\(308\) 0 0
\(309\) 4.49759e7 0.0867212
\(310\) −1.91144e8 + 3.31071e8i −0.364413 + 0.631182i
\(311\) −3.96031e8 6.85945e8i −0.746565 1.29309i −0.949460 0.313888i \(-0.898368\pi\)
0.202895 0.979200i \(-0.434965\pi\)
\(312\) 4.24550e6 + 7.35343e6i 0.00791386 + 0.0137072i
\(313\) 5.92287e7 1.02587e8i 0.109176 0.189098i −0.806261 0.591560i \(-0.798512\pi\)
0.915437 + 0.402462i \(0.131845\pi\)
\(314\) −4.84440e8 −0.883051
\(315\) 0 0
\(316\) −2.28275e8 −0.406962
\(317\) 2.53655e7 4.39343e7i 0.0447235 0.0774633i −0.842797 0.538231i \(-0.819093\pi\)
0.887521 + 0.460768i \(0.152426\pi\)
\(318\) −7.17129e7 1.24210e8i −0.125055 0.216602i
\(319\) 5.60032e7 + 9.70004e7i 0.0965930 + 0.167304i
\(320\) 2.75251e7 4.76749e7i 0.0469574 0.0813327i
\(321\) −2.15827e8 −0.364198
\(322\) 0 0
\(323\) −5.87358e8 −0.969826
\(324\) −1.23485e8 + 2.13883e8i −0.201701 + 0.349357i
\(325\) 2.35113e7 + 4.07227e7i 0.0379913 + 0.0658029i
\(326\) 2.28341e8 + 3.95499e8i 0.365025 + 0.632242i
\(327\) −7.35422e7 + 1.27379e8i −0.116311 + 0.201456i
\(328\) −5.55110e6 −0.00868602
\(329\) 0 0
\(330\) 2.20147e7 0.0337221
\(331\) −1.36878e8 + 2.37080e8i −0.207461 + 0.359334i −0.950914 0.309455i \(-0.899853\pi\)
0.743453 + 0.668788i \(0.233187\pi\)
\(332\) −1.81533e8 3.14424e8i −0.272252 0.471554i
\(333\) 1.63977e8 + 2.84017e8i 0.243349 + 0.421492i
\(334\) −3.50906e8 + 6.07787e8i −0.515321 + 0.892563i
\(335\) 2.64608e7 0.0384545
\(336\) 0 0
\(337\) −9.18512e7 −0.130732 −0.0653658 0.997861i \(-0.520821\pi\)
−0.0653658 + 0.997861i \(0.520821\pi\)
\(338\) −2.43354e8 + 4.21502e8i −0.342792 + 0.593733i
\(339\) −9.95698e7 1.72460e8i −0.138812 0.240430i
\(340\) 9.88243e7 + 1.71169e8i 0.136360 + 0.236183i
\(341\) −1.24243e8 + 2.15196e8i −0.169681 + 0.293896i
\(342\) −6.52779e8 −0.882419
\(343\) 0 0
\(344\) 3.22943e8 0.427732
\(345\) 8.65771e7 1.49956e8i 0.113511 0.196606i
\(346\) 3.42782e7 + 5.93715e7i 0.0444889 + 0.0770570i
\(347\) 6.83502e8 + 1.18386e9i 0.878187 + 1.52106i 0.853329 + 0.521373i \(0.174580\pi\)
0.0248578 + 0.999691i \(0.492087\pi\)
\(348\) 3.93869e7 6.82201e7i 0.0500984 0.0867730i
\(349\) 1.13143e9 1.42475 0.712377 0.701797i \(-0.247619\pi\)
0.712377 + 0.701797i \(0.247619\pi\)
\(350\) 0 0
\(351\) −7.01503e7 −0.0865874
\(352\) 1.78913e7 3.09887e7i 0.0218647 0.0378707i
\(353\) 2.24198e7 + 3.88322e7i 0.0271281 + 0.0469873i 0.879271 0.476322i \(-0.158030\pi\)
−0.852143 + 0.523310i \(0.824697\pi\)
\(354\) 1.26752e8 + 2.19540e8i 0.151860 + 0.263029i
\(355\) −1.48546e8 + 2.57290e8i −0.176223 + 0.305227i
\(356\) −7.64876e8 −0.898496
\(357\) 0 0
\(358\) −1.50432e8 −0.173281
\(359\) −1.99140e8 + 3.44921e8i −0.227158 + 0.393450i −0.956965 0.290204i \(-0.906277\pi\)
0.729806 + 0.683654i \(0.239610\pi\)
\(360\) 1.09832e8 + 1.90234e8i 0.124071 + 0.214897i
\(361\) −3.50666e8 6.07371e8i −0.392300 0.679484i
\(362\) −2.39850e8 + 4.15432e8i −0.265742 + 0.460278i
\(363\) −2.19536e8 −0.240898
\(364\) 0 0
\(365\) −2.05859e8 −0.221588
\(366\) 3.97297e7 6.88139e7i 0.0423576 0.0733655i
\(367\) −8.17359e8 1.41571e9i −0.863140 1.49500i −0.868882 0.495020i \(-0.835161\pi\)
0.00574132 0.999984i \(-0.498172\pi\)
\(368\) −1.40722e8 2.43738e8i −0.147196 0.254950i
\(369\) 1.10751e7 1.91826e7i 0.0114751 0.0198754i
\(370\) 2.69684e8 0.276789
\(371\) 0 0
\(372\) 1.74760e8 0.176012
\(373\) 7.73166e8 1.33916e9i 0.771421 1.33614i −0.165363 0.986233i \(-0.552879\pi\)
0.936784 0.349908i \(-0.113787\pi\)
\(374\) 6.42358e7 + 1.11260e8i 0.0634931 + 0.109973i
\(375\) −1.41309e8 2.44754e8i −0.138376 0.239674i
\(376\) 1.21000e8 2.09578e8i 0.117389 0.203324i
\(377\) −1.41752e8 −0.136249
\(378\) 0 0
\(379\) −1.05688e9 −0.997216 −0.498608 0.866828i \(-0.666155\pi\)
−0.498608 + 0.866828i \(0.666155\pi\)
\(380\) −2.68397e8 + 4.64877e8i −0.250920 + 0.434606i
\(381\) −7.00954e6 1.21409e7i −0.00649310 0.0112464i
\(382\) 3.75944e8 + 6.51155e8i 0.345066 + 0.597671i
\(383\) −1.12455e8 + 1.94778e8i −0.102278 + 0.177151i −0.912623 0.408802i \(-0.865947\pi\)
0.810345 + 0.585953i \(0.199280\pi\)
\(384\) −2.51658e7 −0.0226805
\(385\) 0 0
\(386\) 2.81556e8 0.249178
\(387\) −6.44309e8 + 1.11598e9i −0.565075 + 0.978738i
\(388\) −2.77829e8 4.81213e8i −0.241472 0.418241i
\(389\) −5.08941e8 8.81512e8i −0.438373 0.759284i 0.559191 0.829039i \(-0.311112\pi\)
−0.997564 + 0.0697544i \(0.977778\pi\)
\(390\) −1.39306e7 + 2.41284e7i −0.0118917 + 0.0205970i
\(391\) 1.01048e9 0.854887
\(392\) 0 0
\(393\) −9.50859e7 −0.0790210
\(394\) 4.11941e8 7.13503e8i 0.339311 0.587705i
\(395\) −3.74514e8 6.48677e8i −0.305758 0.529589i
\(396\) 7.13906e7 + 1.23652e8i 0.0577707 + 0.100062i
\(397\) 7.37826e8 1.27795e9i 0.591817 1.02506i −0.402171 0.915565i \(-0.631744\pi\)
0.993988 0.109492i \(-0.0349225\pi\)
\(398\) −6.69100e8 −0.531986
\(399\) 0 0
\(400\) −1.39366e8 −0.108880
\(401\) −1.37456e8 + 2.38081e8i −0.106453 + 0.184382i −0.914331 0.404968i \(-0.867283\pi\)
0.807878 + 0.589350i \(0.200616\pi\)
\(402\) −6.04819e6 1.04758e7i −0.00464338 0.00804257i
\(403\) −1.57238e8 2.72345e8i −0.119672 0.207277i
\(404\) 3.22545e8 5.58665e8i 0.243364 0.421518i
\(405\) −8.10373e8 −0.606167
\(406\) 0 0
\(407\) 1.75294e8 0.128881
\(408\) 4.51768e7 7.82486e7i 0.0329310 0.0570382i
\(409\) 8.17136e8 + 1.41532e9i 0.590558 + 1.02288i 0.994157 + 0.107941i \(0.0344258\pi\)
−0.403599 + 0.914936i \(0.632241\pi\)
\(410\) −9.10728e6 1.57743e7i −0.00652597 0.0113033i
\(411\) 1.89392e6 3.28037e6i 0.00134560 0.00233065i
\(412\) 2.39871e8 0.168981
\(413\) 0 0
\(414\) 1.12303e9 0.777839
\(415\) 5.95654e8 1.03170e9i 0.409096 0.708575i
\(416\) 2.26427e7 + 3.92183e7i 0.0154206 + 0.0267093i
\(417\) −2.35223e8 4.07418e8i −0.158856 0.275146i
\(418\) −1.74458e8 + 3.02170e8i −0.116835 + 0.202365i
\(419\) −1.11280e9 −0.739039 −0.369519 0.929223i \(-0.620478\pi\)
−0.369519 + 0.929223i \(0.620478\pi\)
\(420\) 0 0
\(421\) 9.22528e8 0.602549 0.301274 0.953537i \(-0.402588\pi\)
0.301274 + 0.953537i \(0.402588\pi\)
\(422\) −3.89604e8 + 6.74814e8i −0.252365 + 0.437110i
\(423\) 4.82818e8 + 8.36265e8i 0.310165 + 0.537221i
\(424\) −3.82469e8 6.62455e8i −0.243677 0.422062i
\(425\) 2.50186e8 4.33335e8i 0.158089 0.273818i
\(426\) 1.35814e8 0.0851159
\(427\) 0 0
\(428\) −1.15108e9 −0.709661
\(429\) −9.05486e6 + 1.56835e7i −0.00553709 + 0.00959052i
\(430\) 5.29828e8 + 9.17690e8i 0.321363 + 0.556617i
\(431\) 4.90754e8 + 8.50011e8i 0.295252 + 0.511392i 0.975044 0.222014i \(-0.0712629\pi\)
−0.679791 + 0.733406i \(0.737930\pi\)
\(432\) 1.03956e8 1.80058e8i 0.0620381 0.107453i
\(433\) 2.84998e9 1.68707 0.843537 0.537071i \(-0.180469\pi\)
0.843537 + 0.537071i \(0.180469\pi\)
\(434\) 0 0
\(435\) 2.58476e8 0.150560
\(436\) −3.92225e8 + 6.79354e8i −0.226638 + 0.392548i
\(437\) 1.37218e9 + 2.37668e9i 0.786549 + 1.36234i
\(438\) 4.70535e7 + 8.14991e7i 0.0267567 + 0.0463440i
\(439\) 5.28109e8 9.14712e8i 0.297919 0.516011i −0.677741 0.735301i \(-0.737041\pi\)
0.975660 + 0.219290i \(0.0703742\pi\)
\(440\) 1.17412e8 0.0657094
\(441\) 0 0
\(442\) −1.62590e8 −0.0895601
\(443\) −9.11627e8 + 1.57899e9i −0.498201 + 0.862909i −0.999998 0.00207637i \(-0.999339\pi\)
0.501797 + 0.864985i \(0.332672\pi\)
\(444\) −6.16420e7 1.06767e8i −0.0334223 0.0578891i
\(445\) −1.25487e9 2.17351e9i −0.675057 1.16923i
\(446\) −5.85829e7 + 1.01469e8i −0.0312679 + 0.0541576i
\(447\) −2.62633e8 −0.139082
\(448\) 0 0
\(449\) 1.84846e9 0.963713 0.481856 0.876250i \(-0.339963\pi\)
0.481856 + 0.876250i \(0.339963\pi\)
\(450\) 2.78052e8 4.81601e8i 0.143841 0.249140i
\(451\) −5.91973e6 1.02533e7i −0.00303867 0.00526314i
\(452\) −5.31039e8 9.19786e8i −0.270484 0.468492i
\(453\) 1.76493e8 3.05694e8i 0.0892037 0.154505i
\(454\) 1.47633e9 0.740435
\(455\) 0 0
\(456\) 2.45391e8 0.121194
\(457\) 1.49033e9 2.58133e9i 0.730425 1.26513i −0.226276 0.974063i \(-0.572655\pi\)
0.956702 0.291071i \(-0.0940114\pi\)
\(458\) −3.50184e7 6.06537e7i −0.0170321 0.0295004i
\(459\) 3.73238e8 + 6.46468e8i 0.180153 + 0.312034i
\(460\) 4.61745e8 7.99765e8i 0.221182 0.383098i
\(461\) −2.52781e9 −1.20169 −0.600843 0.799367i \(-0.705168\pi\)
−0.600843 + 0.799367i \(0.705168\pi\)
\(462\) 0 0
\(463\) −8.90291e8 −0.416868 −0.208434 0.978036i \(-0.566837\pi\)
−0.208434 + 0.978036i \(0.566837\pi\)
\(464\) 2.10063e8 3.63840e8i 0.0976197 0.169082i
\(465\) 2.86716e8 + 4.96606e8i 0.132241 + 0.229048i
\(466\) −4.78225e8 8.28310e8i −0.218918 0.379177i
\(467\) −1.32833e9 + 2.30074e9i −0.603529 + 1.04534i 0.388753 + 0.921342i \(0.372906\pi\)
−0.992282 + 0.124001i \(0.960427\pi\)
\(468\) −1.80699e8 −0.0814884
\(469\) 0 0
\(470\) 7.94062e8 0.352786
\(471\) −3.63330e8 + 6.29306e8i −0.160224 + 0.277516i
\(472\) 6.76009e8 + 1.17088e9i 0.295907 + 0.512526i
\(473\) 3.44388e8 + 5.96498e8i 0.149635 + 0.259176i
\(474\) −1.71206e8 + 2.96538e8i −0.0738407 + 0.127896i
\(475\) 1.35896e9 0.581806
\(476\) 0 0
\(477\) 3.05228e9 1.28769
\(478\) 1.58484e9 2.74502e9i 0.663723 1.14960i
\(479\) −6.50467e8 1.12664e9i −0.270428 0.468394i 0.698544 0.715567i \(-0.253832\pi\)
−0.968971 + 0.247173i \(0.920498\pi\)
\(480\) −4.12877e7 7.15124e7i −0.0170403 0.0295146i
\(481\) −1.10923e8 + 1.92125e8i −0.0454481 + 0.0787184i
\(482\) 2.05285e9 0.835012
\(483\) 0 0
\(484\) −1.17086e9 −0.469404
\(485\) 9.11625e8 1.57898e9i 0.362844 0.628465i
\(486\) 6.29277e8 + 1.08994e9i 0.248665 + 0.430700i
\(487\) 5.37233e8 + 9.30515e8i 0.210771 + 0.365066i 0.951956 0.306234i \(-0.0990692\pi\)
−0.741185 + 0.671301i \(0.765736\pi\)
\(488\) 2.11892e8 3.67007e8i 0.0825362 0.142957i
\(489\) 6.85024e8 0.264926
\(490\) 0 0
\(491\) −7.83344e8 −0.298653 −0.149327 0.988788i \(-0.547711\pi\)
−0.149327 + 0.988788i \(0.547711\pi\)
\(492\) −4.16333e6 + 7.21110e6i −0.00157602 + 0.00272975i
\(493\) 7.54197e8 + 1.30631e9i 0.283479 + 0.491000i
\(494\) −2.20788e8 3.82417e8i −0.0824009 0.142722i
\(495\) −2.34250e8 + 4.05734e8i −0.0868085 + 0.150357i
\(496\) 9.32053e8 0.342969
\(497\) 0 0
\(498\) −5.44598e8 −0.197594
\(499\) 3.11594e8 5.39697e8i 0.112263 0.194445i −0.804419 0.594062i \(-0.797523\pi\)
0.916682 + 0.399617i \(0.130857\pi\)
\(500\) −7.53648e8 1.30536e9i −0.269633 0.467019i
\(501\) 5.26359e8 + 9.11681e8i 0.187004 + 0.323900i
\(502\) −2.93910e8 + 5.09067e8i −0.103694 + 0.179602i
\(503\) −2.70927e9 −0.949215 −0.474607 0.880198i \(-0.657410\pi\)
−0.474607 + 0.880198i \(0.657410\pi\)
\(504\) 0 0
\(505\) 2.11670e9 0.731375
\(506\) 3.00134e8 5.19847e8i 0.102988 0.178381i
\(507\) 3.65032e8 + 6.32253e8i 0.124395 + 0.215458i
\(508\) −3.73842e7 6.47513e7i −0.0126522 0.0219142i
\(509\) −1.74972e9 + 3.03060e9i −0.588106 + 1.01863i 0.406374 + 0.913707i \(0.366793\pi\)
−0.994480 + 0.104923i \(0.966540\pi\)
\(510\) 2.96473e8 0.0989668
\(511\) 0 0
\(512\) −1.34218e8 −0.0441942
\(513\) −1.01368e9 + 1.75574e9i −0.331504 + 0.574182i
\(514\) −8.10804e8 1.40435e9i −0.263357 0.456148i
\(515\) 3.93539e8 + 6.81630e8i 0.126959 + 0.219899i
\(516\) 2.42207e8 4.19515e8i 0.0776092 0.134423i
\(517\) 5.16140e8 0.164267
\(518\) 0 0
\(519\) 1.02835e8 0.0322889
\(520\) −7.42963e7 + 1.28685e8i −0.0231716 + 0.0401343i
\(521\) 6.88417e8 + 1.19237e9i 0.213265 + 0.369386i 0.952734 0.303804i \(-0.0982569\pi\)
−0.739470 + 0.673190i \(0.764924\pi\)
\(522\) 8.38202e8 + 1.45181e9i 0.257930 + 0.446748i
\(523\) 1.43077e9 2.47817e9i 0.437334 0.757486i −0.560148 0.828392i \(-0.689256\pi\)
0.997483 + 0.0709067i \(0.0225893\pi\)
\(524\) −5.07125e8 −0.153977
\(525\) 0 0
\(526\) −1.23403e9 −0.369723
\(527\) −1.67319e9 + 2.89805e9i −0.497976 + 0.862519i
\(528\) −2.68370e7 4.64830e7i −0.00793442 0.0137428i
\(529\) −6.58257e8 1.14013e9i −0.193331 0.334858i
\(530\) 1.25498e9 2.17368e9i 0.366159 0.634206i
\(531\) −5.39487e9 −1.56369
\(532\) 0 0
\(533\) 1.49836e7 0.00428620
\(534\) −5.73657e8 + 9.93603e8i −0.163026 + 0.282370i
\(535\) −1.88848e9 3.27095e9i −0.533182 0.923498i
\(536\) −3.22570e7 5.58708e7i −0.00904789 0.0156714i
\(537\) −1.12824e8 + 1.95418e8i −0.0314407 + 0.0544570i
\(538\) 4.99215e9 1.38213
\(539\) 0 0
\(540\) 6.82214e8 0.186442
\(541\) −2.67234e9 + 4.62862e9i −0.725605 + 1.25679i 0.233119 + 0.972448i \(0.425107\pi\)
−0.958724 + 0.284337i \(0.908226\pi\)
\(542\) −1.55193e9 2.68803e9i −0.418673 0.725164i
\(543\) 3.59775e8 + 6.23149e8i 0.0964343 + 0.167029i
\(544\) 2.40943e8 4.17326e8i 0.0641680 0.111142i
\(545\) −2.57398e9 −0.681109
\(546\) 0 0
\(547\) −3.37135e9 −0.880740 −0.440370 0.897816i \(-0.645153\pi\)
−0.440370 + 0.897816i \(0.645153\pi\)
\(548\) 1.01009e7 1.74953e7i 0.00262198 0.00454140i
\(549\) 8.45498e8 + 1.46444e9i 0.218077 + 0.377720i
\(550\) −1.48621e8 2.57419e8i −0.0380900 0.0659739i
\(551\) −2.04832e9 + 3.54780e9i −0.521636 + 0.903501i
\(552\) −4.22167e8 −0.106831
\(553\) 0 0
\(554\) −3.63162e9 −0.907436
\(555\) 2.02263e8 3.50329e8i 0.0502216 0.0869864i
\(556\) −1.25452e9 2.17289e9i −0.309540 0.536138i
\(557\) 2.80553e9 + 4.85932e9i 0.687894 + 1.19147i 0.972518 + 0.232828i \(0.0747980\pi\)
−0.284624 + 0.958639i \(0.591869\pi\)
\(558\) −1.85955e9 + 3.22084e9i −0.453095 + 0.784784i
\(559\) −8.71694e8 −0.211068
\(560\) 0 0
\(561\) 1.92707e8 0.0460817
\(562\) 1.33508e9 2.31243e9i 0.317271 0.549529i
\(563\) −3.34845e9 5.79968e9i −0.790795 1.36970i −0.925475 0.378809i \(-0.876334\pi\)
0.134680 0.990889i \(-0.456999\pi\)
\(564\) −1.81500e8 3.14367e8i −0.0425990 0.0737837i
\(565\) 1.74247e9 3.01805e9i 0.406440 0.703974i
\(566\) −4.30156e9 −0.997168
\(567\) 0 0
\(568\) 7.24341e8 0.165853
\(569\) −9.84251e8 + 1.70477e9i −0.223982 + 0.387948i −0.956013 0.293323i \(-0.905239\pi\)
0.732032 + 0.681271i \(0.238572\pi\)
\(570\) 4.02595e8 + 6.97315e8i 0.0910556 + 0.157713i
\(571\) −5.14629e8 8.91363e8i −0.115682 0.200368i 0.802370 0.596827i \(-0.203572\pi\)
−0.918052 + 0.396459i \(0.870239\pi\)
\(572\) −4.82926e7 + 8.36453e7i −0.0107893 + 0.0186877i
\(573\) 1.12783e9 0.250440
\(574\) 0 0
\(575\) −2.33793e9 −0.512853
\(576\) 2.67780e8 4.63809e8i 0.0583848 0.101125i
\(577\) −1.65590e9 2.86810e9i −0.358854 0.621553i 0.628916 0.777473i \(-0.283499\pi\)
−0.987770 + 0.155920i \(0.950166\pi\)
\(578\) −7.76289e8 1.34457e9i −0.167215 0.289625i
\(579\) 2.11167e8 3.65753e8i 0.0452118 0.0783091i
\(580\) 1.37854e9 0.293374
\(581\) 0 0
\(582\) −8.33486e8 −0.175254
\(583\) 8.15734e8 1.41289e9i 0.170494 0.295304i
\(584\) 2.50952e8 + 4.34662e8i 0.0521370 + 0.0903039i
\(585\) −2.96460e8 5.13483e8i −0.0612238 0.106043i
\(586\) 1.34240e9 2.32511e9i 0.275575 0.477311i
\(587\) −5.59411e8 −0.114156 −0.0570778 0.998370i \(-0.518178\pi\)
−0.0570778 + 0.998370i \(0.518178\pi\)
\(588\) 0 0
\(589\) −9.08843e9 −1.83267
\(590\) −2.21815e9 + 3.84196e9i −0.444641 + 0.770141i
\(591\) −6.17912e8 1.07025e9i −0.123132 0.213271i
\(592\) −3.28757e8 5.69424e8i −0.0651252 0.112800i
\(593\) 1.51229e9 2.61937e9i 0.297814 0.515829i −0.677822 0.735226i \(-0.737076\pi\)
0.975636 + 0.219398i \(0.0704092\pi\)
\(594\) 4.43439e8 0.0868124
\(595\) 0 0
\(596\) −1.40071e9 −0.271010
\(597\) −5.01825e8 + 8.69187e8i −0.0965256 + 0.167187i
\(598\) 3.79840e8 + 6.57902e8i 0.0726351 + 0.125808i
\(599\) 2.81623e9 + 4.87785e9i 0.535395 + 0.927331i 0.999144 + 0.0413648i \(0.0131706\pi\)
−0.463749 + 0.885967i \(0.653496\pi\)
\(600\) −1.04525e8 + 1.81042e8i −0.0197556 + 0.0342177i
\(601\) 3.40792e8 0.0640366 0.0320183 0.999487i \(-0.489807\pi\)
0.0320183 + 0.999487i \(0.489807\pi\)
\(602\) 0 0
\(603\) 2.57426e8 0.0478126
\(604\) 9.41294e8 1.63037e9i 0.173819 0.301063i
\(605\) −1.92094e9 3.32717e9i −0.352672 0.610846i
\(606\) −4.83818e8 8.37997e8i −0.0883136 0.152964i
\(607\) −1.92710e9 + 3.33783e9i −0.349739 + 0.605765i −0.986203 0.165541i \(-0.947063\pi\)
0.636464 + 0.771306i \(0.280396\pi\)
\(608\) 1.30875e9 0.236154
\(609\) 0 0
\(610\) 1.39054e9 0.248044
\(611\) −3.26605e8 + 5.65697e8i −0.0579267 + 0.100332i
\(612\) 9.61419e8 + 1.66523e9i 0.169544 + 0.293659i
\(613\) −4.61122e9 7.98687e9i −0.808545 1.40044i −0.913871 0.406004i \(-0.866922\pi\)
0.105326 0.994438i \(-0.466411\pi\)
\(614\) 8.60116e8 1.48976e9i 0.149957 0.259734i
\(615\) −2.73218e7 −0.00473639
\(616\) 0 0
\(617\) 6.53611e9 1.12027 0.560133 0.828402i \(-0.310750\pi\)
0.560133 + 0.828402i \(0.310750\pi\)
\(618\) 1.79904e8 3.11602e8i 0.0306606 0.0531057i
\(619\) −6.82793e8 1.18263e9i −0.115710 0.200416i 0.802353 0.596849i \(-0.203581\pi\)
−0.918063 + 0.396434i \(0.870248\pi\)
\(620\) 1.52915e9 + 2.64856e9i 0.257679 + 0.446313i
\(621\) 1.74391e9 3.02054e9i 0.292216 0.506133i
\(622\) −6.33649e9 −1.05580
\(623\) 0 0
\(624\) 6.79281e7 0.0111919
\(625\) 1.14381e9 1.98113e9i 0.187401 0.324588i
\(626\) −4.73830e8 8.20697e8i −0.0771991 0.133713i
\(627\) 2.61687e8 + 4.53255e8i 0.0423980 + 0.0734355i
\(628\) −1.93776e9 + 3.35630e9i −0.312206 + 0.540756i
\(629\) 2.36070e9 0.378236
\(630\) 0 0
\(631\) 1.54079e9 0.244141 0.122070 0.992521i \(-0.461047\pi\)
0.122070 + 0.992521i \(0.461047\pi\)
\(632\) −9.13101e8 + 1.58154e9i −0.143883 + 0.249212i
\(633\) 5.84406e8 + 1.01222e9i 0.0915802 + 0.158622i
\(634\) −2.02924e8 3.51474e8i −0.0316243 0.0547749i
\(635\) 1.22667e8 2.12465e8i 0.0190116 0.0329291i
\(636\) −1.14741e9 −0.176855
\(637\) 0 0
\(638\) 8.96052e8 0.136603
\(639\) −1.44514e9 + 2.50306e9i −0.219108 + 0.379506i
\(640\) −2.20201e8 3.81399e8i −0.0332039 0.0575109i
\(641\) 2.27009e9 + 3.93191e9i 0.340440 + 0.589659i 0.984514 0.175304i \(-0.0560908\pi\)
−0.644075 + 0.764963i \(0.722757\pi\)
\(642\) −8.63307e8 + 1.49529e9i −0.128763 + 0.223025i
\(643\) 1.14054e10 1.69189 0.845944 0.533272i \(-0.179038\pi\)
0.845944 + 0.533272i \(0.179038\pi\)
\(644\) 0 0
\(645\) 1.58948e9 0.233237
\(646\) −2.34943e9 + 4.06933e9i −0.342885 + 0.593895i
\(647\) 6.31967e9 + 1.09460e10i 0.917338 + 1.58888i 0.803442 + 0.595383i \(0.203000\pi\)
0.113896 + 0.993493i \(0.463667\pi\)
\(648\) 9.87884e8 + 1.71106e9i 0.142624 + 0.247032i
\(649\) −1.44180e9 + 2.49727e9i −0.207037 + 0.358599i
\(650\) 3.76180e8 0.0537278
\(651\) 0 0
\(652\) 3.65346e9 0.516223
\(653\) 5.25022e9 9.09365e9i 0.737873 1.27803i −0.215579 0.976486i \(-0.569164\pi\)
0.953451 0.301547i \(-0.0975029\pi\)
\(654\) 5.88337e8 + 1.01903e9i 0.0822440 + 0.142451i
\(655\) −8.32002e8 1.44107e9i −0.115686 0.200374i
\(656\) −2.22044e7 + 3.84592e7i −0.00307097 + 0.00531908i
\(657\) −2.00272e9 −0.275512
\(658\) 0 0
\(659\) 9.64818e9 1.31325 0.656624 0.754219i \(-0.271984\pi\)
0.656624 + 0.754219i \(0.271984\pi\)
\(660\) 8.80589e7 1.52522e8i 0.0119226 0.0206505i
\(661\) 3.29149e9 + 5.70103e9i 0.443290 + 0.767801i 0.997931 0.0642888i \(-0.0204779\pi\)
−0.554641 + 0.832089i \(0.687145\pi\)
\(662\) 1.09503e9 + 1.89664e9i 0.146697 + 0.254087i
\(663\) −1.21942e8 + 2.11210e8i −0.0162501 + 0.0281460i
\(664\) −2.90452e9 −0.385023
\(665\) 0 0
\(666\) 2.62364e9 0.344147
\(667\) 3.52389e9 6.10357e9i 0.459814 0.796422i
\(668\) 2.80725e9 + 4.86230e9i 0.364387 + 0.631137i
\(669\) 8.78744e7 + 1.52203e8i 0.0113467 + 0.0196531i
\(670\) 1.05843e8 1.83326e8i 0.0135957 0.0235485i
\(671\) 9.03851e8 0.115496
\(672\) 0 0
\(673\) −8.54649e9 −1.08077 −0.540387 0.841416i \(-0.681722\pi\)
−0.540387 + 0.841416i \(0.681722\pi\)
\(674\) −3.67405e8 + 6.36364e8i −0.0462206 + 0.0800564i
\(675\) −8.63554e8 1.49572e9i −0.108075 0.187192i
\(676\) 1.94683e9 + 3.37202e9i 0.242391 + 0.419833i
\(677\) −4.35652e9 + 7.54572e9i −0.539610 + 0.934631i 0.459315 + 0.888273i \(0.348095\pi\)
−0.998925 + 0.0463581i \(0.985238\pi\)
\(678\) −1.59312e9 −0.196311
\(679\) 0 0
\(680\) 1.58119e9 0.192842
\(681\) 1.10725e9 1.91781e9i 0.134347 0.232696i
\(682\) 9.93947e8 + 1.72157e9i 0.119983 + 0.207816i
\(683\) −7.30543e9 1.26534e10i −0.877351 1.51962i −0.854237 0.519884i \(-0.825975\pi\)
−0.0231144 0.999733i \(-0.507358\pi\)
\(684\) −2.61112e9 + 4.52259e9i −0.311982 + 0.540369i
\(685\) 6.62873e7 0.00787977
\(686\) 0 0
\(687\) −1.05055e8 −0.0123615
\(688\) 1.29177e9 2.23741e9i 0.151226 0.261931i
\(689\) 1.03237e9 + 1.78811e9i 0.120245 + 0.208270i
\(690\) −6.92617e8 1.19965e9i −0.0802641 0.139021i
\(691\) 7.36738e9 1.27607e10i 0.849454 1.47130i −0.0322413 0.999480i \(-0.510265\pi\)
0.881696 0.471818i \(-0.156402\pi\)
\(692\) 5.48451e8 0.0629167
\(693\) 0 0
\(694\) 1.09360e10 1.24194
\(695\) 4.11640e9 7.12981e9i 0.465126 0.805622i
\(696\) −3.15095e8 5.45761e8i −0.0354249 0.0613578i
\(697\) −7.97212e7 1.38081e8i −0.00891783 0.0154461i
\(698\) 4.52573e9 7.83879e9i 0.503726 0.872480i
\(699\) −1.43467e9 −0.158885
\(700\) 0 0
\(701\) 1.31502e9 0.144185 0.0720923 0.997398i \(-0.477032\pi\)
0.0720923 + 0.997398i \(0.477032\pi\)
\(702\) −2.80601e8 + 4.86016e8i −0.0306133 + 0.0530237i
\(703\) 3.20570e9 + 5.55244e9i 0.348000 + 0.602754i
\(704\) −1.43131e8 2.47910e8i −0.0154607 0.0267787i
\(705\) 5.95547e8 1.03152e9i 0.0640109 0.110870i
\(706\) 3.58716e8 0.0383649
\(707\) 0 0
\(708\) 2.02803e9 0.214762
\(709\) −3.32014e8 + 5.75065e8i −0.0349860 + 0.0605976i −0.882988 0.469395i \(-0.844472\pi\)
0.848002 + 0.529993i \(0.177805\pi\)
\(710\) 1.18837e9 + 2.05832e9i 0.124609 + 0.215828i
\(711\) −3.64349e9 6.31070e9i −0.380166 0.658467i
\(712\) −3.05950e9 + 5.29922e9i −0.317666 + 0.550214i
\(713\) 1.56356e10 1.61547
\(714\) 0 0
\(715\) −3.16920e8 −0.0324249
\(716\) −6.01730e8 + 1.04223e9i −0.0612641 + 0.106113i
\(717\) −2.37725e9 4.11753e9i −0.240857 0.417176i
\(718\) 1.59312e9 + 2.75937e9i 0.160625 + 0.278211i
\(719\) −2.47517e9 + 4.28712e9i −0.248344 + 0.430145i −0.963067 0.269263i \(-0.913220\pi\)
0.714722 + 0.699408i \(0.246553\pi\)
\(720\) 1.75731e9 0.175462
\(721\) 0 0
\(722\) −5.61065e9 −0.554796
\(723\) 1.53964e9 2.66673e9i 0.151508 0.262419i
\(724\) 1.91880e9 + 3.32346e9i 0.187908 + 0.325466i
\(725\) −1.74497e9 3.02238e9i −0.170061 0.294555i
\(726\) −8.78146e8 + 1.52099e9i −0.0851704 + 0.147519i
\(727\) 8.81101e9 0.850463 0.425231 0.905085i \(-0.360193\pi\)
0.425231 + 0.905085i \(0.360193\pi\)
\(728\) 0 0
\(729\) −6.55163e9 −0.626330
\(730\) −8.23437e8 + 1.42623e9i −0.0783430 + 0.135694i
\(731\) 4.63789e9 + 8.03306e9i 0.439147 + 0.760624i
\(732\) −3.17838e8 5.50511e8i −0.0299514 0.0518773i
\(733\) 7.47069e7 1.29396e8i 0.00700643 0.0121355i −0.862501 0.506055i \(-0.831103\pi\)
0.869507 + 0.493920i \(0.164436\pi\)
\(734\) −1.30777e10 −1.22066
\(735\) 0 0
\(736\) −2.25155e9 −0.208166
\(737\) 6.87982e7 1.19162e8i 0.00633054 0.0109648i
\(738\) −8.86008e7 1.53461e8i −0.00811410 0.0140540i
\(739\) 2.35403e9 + 4.07730e9i 0.214564 + 0.371635i 0.953138 0.302537i \(-0.0978337\pi\)
−0.738574 + 0.674173i \(0.764500\pi\)
\(740\) 1.07873e9 1.86842e9i 0.0978596 0.169498i
\(741\) −6.62365e8 −0.0598045
\(742\) 0 0
\(743\) 1.69676e9 0.151761 0.0758805 0.997117i \(-0.475823\pi\)
0.0758805 + 0.997117i \(0.475823\pi\)
\(744\) 6.99040e8 1.21077e9i 0.0622295 0.107785i
\(745\) −2.29804e9 3.98031e9i −0.203615 0.352671i
\(746\) −6.18533e9 1.07133e10i −0.545477 0.944794i
\(747\) 5.79486e9 1.00370e10i 0.508652 0.881011i
\(748\) 1.02777e9 0.0897928
\(749\) 0 0
\(750\) −2.26094e9 −0.195693
\(751\) −5.33250e9 + 9.23616e9i −0.459400 + 0.795704i −0.998929 0.0462626i \(-0.985269\pi\)
0.539529 + 0.841967i \(0.318602\pi\)
\(752\) −9.67999e8 1.67662e9i −0.0830066 0.143772i
\(753\) 4.40865e8 + 7.63601e8i 0.0376291 + 0.0651755i
\(754\) −5.67007e8 + 9.82085e8i −0.0481713 + 0.0834352i
\(755\) 6.17724e9 0.522373
\(756\) 0 0
\(757\) 6.22876e9 0.521874 0.260937 0.965356i \(-0.415968\pi\)
0.260937 + 0.965356i \(0.415968\pi\)
\(758\) −4.22753e9 + 7.32229e9i −0.352569 + 0.610668i
\(759\) −4.50201e8 7.79771e8i −0.0373732 0.0647323i
\(760\) 2.14717e9 + 3.71902e9i 0.177427 + 0.307313i
\(761\) 4.19167e9 7.26019e9i 0.344779 0.597175i −0.640535 0.767929i \(-0.721287\pi\)
0.985314 + 0.170755i \(0.0546205\pi\)
\(762\) −1.12153e8 −0.00918263
\(763\) 0 0
\(764\) 6.01511e9 0.487997
\(765\) −3.15466e9 + 5.46403e9i −0.254763 + 0.441263i
\(766\) 8.99640e8 + 1.55822e9i 0.0723216 + 0.125265i
\(767\) −1.82470e9 3.16047e9i −0.146018 0.252911i
\(768\) −1.00663e8 + 1.74354e8i −0.00801875 + 0.0138889i
\(769\) −1.18649e10 −0.940852 −0.470426 0.882439i \(-0.655900\pi\)
−0.470426 + 0.882439i \(0.655900\pi\)
\(770\) 0 0
\(771\) −2.43241e9 −0.191138
\(772\) 1.12623e9 1.95068e9i 0.0880978 0.152590i
\(773\) −2.78340e9 4.82099e9i −0.216744 0.375412i 0.737067 0.675820i \(-0.236210\pi\)
−0.953811 + 0.300408i \(0.902877\pi\)
\(774\) 5.15447e9 + 8.92781e9i 0.399568 + 0.692072i
\(775\) 3.87123e9 6.70516e9i 0.298740 0.517432i
\(776\) −4.44526e9 −0.341492
\(777\) 0 0
\(778\) −8.14306e9 −0.619953
\(779\) 2.16515e8 3.75015e8i 0.0164099 0.0284228i
\(780\) 1.11444e8 + 1.93028e8i 0.00840867 + 0.0145642i
\(781\) 7.72441e8 + 1.33791e9i 0.0580212 + 0.100496i
\(782\) 4.04191e9 7.00080e9i 0.302248 0.523509i
\(783\) 5.20645e9 0.387593
\(784\) 0 0
\(785\) −1.27165e10 −0.938264
\(786\) −3.80344e8 + 6.58775e8i −0.0279381 + 0.0483903i
\(787\) −6.73056e7 1.16577e8i −0.00492198 0.00852512i 0.863554 0.504257i \(-0.168233\pi\)
−0.868476 + 0.495731i \(0.834900\pi\)
\(788\) −3.29553e9 5.70803e9i −0.239929 0.415570i
\(789\) −9.25524e8 + 1.60306e9i −0.0670839 + 0.116193i
\(790\) −5.99222e9 −0.432408
\(791\) 0 0
\(792\) 1.14225e9 0.0817001
\(793\) −5.71942e8 + 9.90633e8i −0.0407283 + 0.0705434i
\(794\) −5.90261e9 1.02236e10i −0.418478 0.724825i
\(795\) −1.88246e9 3.26052e9i −0.132874 0.230145i
\(796\) −2.67640e9 + 4.63566e9i −0.188086 + 0.325774i
\(797\) −7.41548e9 −0.518842 −0.259421 0.965764i \(-0.583532\pi\)
−0.259421 + 0.965764i \(0.583532\pi\)
\(798\) 0 0
\(799\) 6.95088e9 0.482088
\(800\) −5.57466e8 + 9.65559e8i −0.0384949 + 0.0666751i
\(801\) −1.22081e10 2.11451e10i −0.839336 1.45377i
\(802\) 1.09965e9 + 1.90465e9i 0.0752738 + 0.130378i
\(803\) −5.35234e8 + 9.27052e8i −0.0364787 + 0.0631829i
\(804\) −9.67711e7 −0.00656673
\(805\) 0 0
\(806\) −2.51581e9 −0.169241
\(807\) 3.74411e9 6.48499e9i 0.250779 0.434362i
\(808\) −2.58036e9 4.46932e9i −0.172084 0.298058i
\(809\) 7.07709e9 + 1.22579e10i 0.469932 + 0.813946i 0.999409 0.0343786i \(-0.0109452\pi\)
−0.529477 + 0.848324i \(0.677612\pi\)
\(810\) −3.24149e9 + 5.61443e9i −0.214313 + 0.371200i
\(811\) −2.63708e10 −1.73600 −0.868001 0.496563i \(-0.834595\pi\)
−0.868001 + 0.496563i \(0.834595\pi\)
\(812\) 0 0
\(813\) −4.65580e9 −0.303863
\(814\) 7.01178e8 1.21448e9i 0.0455662 0.0789229i
\(815\) 5.99396e9 + 1.03818e10i 0.387848 + 0.671773i
\(816\) −3.61415e8 6.25989e8i −0.0232857 0.0403321i
\(817\) −1.25960e10 + 2.18170e10i −0.808084 + 1.39964i
\(818\) 1.30742e10 0.835176
\(819\) 0 0
\(820\) −1.45716e8 −0.00922912
\(821\) −4.03132e9 + 6.98245e9i −0.254241 + 0.440359i −0.964689 0.263391i \(-0.915159\pi\)
0.710448 + 0.703750i \(0.248492\pi\)
\(822\) −1.51514e7 2.62430e7i −0.000951483 0.00164802i
\(823\) 1.17101e10 + 2.02825e10i 0.732253 + 1.26830i 0.955918 + 0.293633i \(0.0948643\pi\)
−0.223666 + 0.974666i \(0.571802\pi\)
\(824\) 9.59486e8 1.66188e9i 0.0597439 0.103479i
\(825\) −4.45864e8 −0.0276448
\(826\) 0 0
\(827\) 5.55722e9 0.341655 0.170828 0.985301i \(-0.445356\pi\)
0.170828 + 0.985301i \(0.445356\pi\)
\(828\) 4.49212e9 7.78057e9i 0.275008 0.476327i
\(829\) −1.42128e10 2.46173e10i −0.866440 1.50072i −0.865610 0.500718i \(-0.833069\pi\)
−0.000829498 1.00000i \(-0.500264\pi\)
\(830\) −4.76523e9 8.25362e9i −0.289275 0.501039i
\(831\) −2.72371e9 + 4.71761e9i −0.164649 + 0.285180i
\(832\) 3.62283e8 0.0218080
\(833\) 0 0
\(834\) −3.76356e9 −0.224656
\(835\) −9.21128e9 + 1.59544e10i −0.547542 + 0.948371i
\(836\) 1.39566e9 + 2.41736e9i 0.0826150 + 0.143093i
\(837\) 5.77527e9 + 1.00031e10i 0.340434 + 0.589649i
\(838\) −4.45119e9 + 7.70969e9i −0.261290 + 0.452567i
\(839\) 1.04036e10 0.608156 0.304078 0.952647i \(-0.401652\pi\)
0.304078 + 0.952647i \(0.401652\pi\)
\(840\) 0 0
\(841\) −6.72927e9 −0.390105
\(842\) 3.69011e9 6.39146e9i 0.213033 0.368984i
\(843\) −2.00262e9 3.46864e9i −0.115134 0.199417i
\(844\) 3.11683e9 + 5.39851e9i 0.178449 + 0.309083i
\(845\) −6.38805e9 + 1.10644e10i −0.364225 + 0.630857i
\(846\) 7.72509e9 0.438639
\(847\) 0 0
\(848\) −6.11950e9 −0.344612
\(849\) −3.22617e9 + 5.58789e9i −0.180930 + 0.313380i
\(850\) −2.00149e9 3.46668e9i −0.111786 0.193619i
\(851\) −5.51503e9 9.55231e9i −0.306757 0.531319i
\(852\) 5.43256e8 9.40946e8i 0.0300930 0.0521226i
\(853\) −1.80580e10 −0.996205 −0.498102 0.867118i \(-0.665970\pi\)
−0.498102 + 0.867118i \(0.665970\pi\)
\(854\) 0 0
\(855\) −1.71355e10 −0.937593
\(856\) −4.60430e9 + 7.97489e9i −0.250903 + 0.434577i
\(857\) 3.17017e9 + 5.49090e9i 0.172048 + 0.297996i 0.939136 0.343546i \(-0.111628\pi\)
−0.767088 + 0.641542i \(0.778295\pi\)
\(858\) 7.24389e7 + 1.25468e8i 0.00391531 + 0.00678152i
\(859\) −6.07444e9 + 1.05212e10i −0.326987 + 0.566358i −0.981912 0.189336i \(-0.939367\pi\)
0.654926 + 0.755693i \(0.272700\pi\)
\(860\) 8.47725e9 0.454476
\(861\) 0 0
\(862\) 7.85206e9 0.417550
\(863\) 1.43556e10 2.48646e10i 0.760295 1.31687i −0.182403 0.983224i \(-0.558388\pi\)
0.942698 0.333646i \(-0.108279\pi\)
\(864\) −8.31652e8 1.44046e9i −0.0438676 0.0759808i
\(865\) 8.99802e8 + 1.55850e9i 0.0472705 + 0.0818750i
\(866\) 1.13999e10 1.97452e10i 0.596471 1.03312i
\(867\) −2.32887e9 −0.121361
\(868\) 0 0
\(869\) −3.89495e9 −0.201341
\(870\) 1.03391e9 1.79078e9i 0.0532309 0.0921986i
\(871\) 8.70688e7 + 1.50808e8i 0.00446477 + 0.00773320i
\(872\) 3.13780e9 + 5.43483e9i 0.160257 + 0.277574i
\(873\) 8.86881e9 1.53612e10i 0.451144 0.781405i
\(874\) 2.19549e10 1.11235
\(875\) 0 0
\(876\) 7.52857e8 0.0378397
\(877\) −1.23011e10 + 2.13061e10i −0.615806 + 1.06661i 0.374437 + 0.927253i \(0.377836\pi\)
−0.990243 + 0.139355i \(0.955497\pi\)
\(878\) −4.22487e9 7.31770e9i −0.210660 0.364875i
\(879\) −2.01360e9 3.48766e9i −0.100003 0.173210i
\(880\) 4.69647e8 8.13453e8i 0.0232318 0.0402386i
\(881\) −1.25378e10 −0.617738 −0.308869 0.951105i \(-0.599951\pi\)
−0.308869 + 0.951105i \(0.599951\pi\)
\(882\) 0 0
\(883\) 1.93097e10 0.943873 0.471937 0.881633i \(-0.343555\pi\)
0.471937 + 0.881633i \(0.343555\pi\)
\(884\) −6.50358e8 + 1.12645e9i −0.0316643 + 0.0548441i
\(885\) 3.32723e9 + 5.76293e9i 0.161355 + 0.279475i
\(886\) 7.29302e9 + 1.26319e10i 0.352281 + 0.610169i
\(887\) −1.60134e10 + 2.77360e10i −0.770462 + 1.33448i 0.166848 + 0.985983i \(0.446641\pi\)
−0.937310 + 0.348496i \(0.886692\pi\)
\(888\) −9.86272e8 −0.0472663
\(889\) 0 0
\(890\) −2.00780e10 −0.954675
\(891\) −2.10697e9 + 3.64938e9i −0.0997899 + 0.172841i
\(892\) 4.68663e8 + 8.11749e8i 0.0221098 + 0.0382952i
\(893\) 9.43894e9 + 1.63487e10i 0.443551 + 0.768252i
\(894\) −1.05053e9 + 1.81957e9i −0.0491731 + 0.0851703i
\(895\) −3.94885e9 −0.184115
\(896\) 0 0
\(897\) 1.13952e9 0.0527167
\(898\) 7.39384e9 1.28065e10i 0.340724 0.590151i
\(899\) 1.16700e10 + 2.02130e10i 0.535688 + 0.927839i
\(900\) −2.22442e9 3.85281e9i −0.101711 0.176169i
\(901\) 1.09855e10 1.90275e10i 0.500361 0.866651i
\(902\) −9.47157e7 −0.00429733
\(903\) 0 0
\(904\) −8.49662e9 −0.382522
\(905\) −6.29606e9 + 1.09051e10i −0.282357 + 0.489057i
\(906\) −1.41194e9 2.44555e9i −0.0630766 0.109252i
\(907\) −1.16852e9 2.02393e9i −0.0520008 0.0900679i 0.838853 0.544357i \(-0.183226\pi\)
−0.890854 + 0.454290i \(0.849893\pi\)
\(908\) 5.90531e9 1.02283e10i 0.261783 0.453422i
\(909\) 2.05925e10 0.909359
\(910\) 0 0
\(911\) 2.20343e10 0.965573 0.482786 0.875738i \(-0.339625\pi\)
0.482786 + 0.875738i \(0.339625\pi\)
\(912\) 9.81565e8 1.70012e9i 0.0428487 0.0742161i
\(913\) −3.09740e9 5.36485e9i −0.134694 0.233297i
\(914\) −1.19226e10 2.06506e10i −0.516489 0.894585i
\(915\) 1.04290e9 1.80636e9i 0.0450060 0.0779527i
\(916\) −5.60295e8 −0.0240870
\(917\) 0 0
\(918\) 5.97181e9 0.254775
\(919\) 7.16387e9 1.24082e10i 0.304469 0.527356i −0.672674 0.739939i \(-0.734854\pi\)
0.977143 + 0.212583i \(0.0681876\pi\)
\(920\) −3.69396e9 6.39812e9i −0.156399 0.270891i
\(921\) −1.29017e9 2.23465e9i −0.0544176 0.0942541i
\(922\) −1.01112e10 + 1.75132e10i −0.424860 + 0.735879i
\(923\) −1.95515e9 −0.0818418
\(924\) 0 0
\(925\) −5.46190e9 −0.226907
\(926\) −3.56116e9 + 6.16812e9i −0.147385 + 0.255278i
\(927\) 3.82857e9 + 6.63128e9i 0.157855 + 0.273413i
\(928\) −1.68051e9 2.91072e9i −0.0690275 0.119559i
\(929\) −6.56399e9 + 1.13692e10i −0.268604 + 0.465236i −0.968502 0.249007i \(-0.919896\pi\)
0.699898 + 0.714243i \(0.253229\pi\)
\(930\) 4.58745e9 0.187017
\(931\) 0 0
\(932\) −7.65160e9 −0.309597
\(933\) −4.75237e9 + 8.23134e9i −0.191569 + 0.331807i
\(934\) 1.06267e10 + 1.84059e10i 0.426759 + 0.739169i
\(935\) 1.68619e9 + 2.92057e9i 0.0674630 + 0.116849i
\(936\) −7.22797e8 + 1.25192e9i −0.0288105 + 0.0499013i
\(937\) −3.87626e10 −1.53930 −0.769652 0.638463i \(-0.779571\pi\)
−0.769652 + 0.638463i \(0.779571\pi\)
\(938\) 0 0
\(939\) −1.42149e9 −0.0560291
\(940\) 3.17625e9 5.50142e9i 0.124729 0.216037i
\(941\) −1.03140e10 1.78643e10i −0.403517 0.698912i 0.590630 0.806942i \(-0.298879\pi\)
−0.994148 + 0.108030i \(0.965546\pi\)
\(942\) 2.90664e9 + 5.03445e9i 0.113296 + 0.196234i
\(943\) −3.72488e8 + 6.45168e8i −0.0144651 + 0.0250543i
\(944\) 1.08161e10 0.418476
\(945\) 0 0
\(946\) 5.51021e9 0.211617
\(947\) 1.05853e10 1.83342e10i 0.405020 0.701516i −0.589304 0.807912i \(-0.700598\pi\)
0.994324 + 0.106396i \(0.0339311\pi\)
\(948\) 1.36965e9 + 2.37231e9i 0.0522133 + 0.0904360i
\(949\) −6.77375e8 1.17325e9i −0.0257275 0.0445613i
\(950\) 5.43583e9 9.41514e9i 0.205700 0.356282i
\(951\) −6.08771e8 −0.0229521
\(952\) 0 0
\(953\) 2.14876e10 0.804196 0.402098 0.915597i \(-0.368281\pi\)
0.402098 + 0.915597i \(0.368281\pi\)
\(954\) 1.22091e10 2.11468e10i 0.455266 0.788543i
\(955\) 9.86854e9 + 1.70928e10i 0.366641 + 0.635041i
\(956\) −1.26787e10 2.19601e10i −0.469323 0.812891i
\(957\) 6.72039e8 1.16401e9i 0.0247858 0.0429302i
\(958\) −1.04075e10 −0.382442
\(959\) 0 0
\(960\) −6.60603e8 −0.0240986
\(961\) −1.21336e10 + 2.10161e10i −0.441021 + 0.763871i
\(962\) 8.87388e8 + 1.53700e9i 0.0321367 + 0.0556623i
\(963\) −1.83723e10 3.18217e10i −0.662934 1.14824i
\(964\) 8.21140e9 1.42226e10i 0.295221 0.511338i
\(965\) 7.39086e9 0.264758
\(966\) 0 0
\(967\) 3.92625e10 1.39632 0.698161 0.715941i \(-0.254002\pi\)
0.698161 + 0.715941i \(0.254002\pi\)
\(968\) −4.68344e9 + 8.11196e9i −0.165959 + 0.287450i
\(969\) 3.52415e9 + 6.10400e9i 0.124429 + 0.215517i
\(970\) −7.29300e9 1.26319e10i −0.256570 0.444392i
\(971\) 2.81323e10 4.87266e10i 0.986140 1.70804i 0.349381 0.936981i \(-0.386392\pi\)
0.636759 0.771063i \(-0.280275\pi\)
\(972\) 1.00684e10 0.351665
\(973\) 0 0
\(974\) 8.59573e9 0.298076
\(975\) 2.82135e8 4.88673e8i 0.00974858 0.0168850i
\(976\) −1.69513e9 2.93606e9i −0.0583619 0.101086i
\(977\) 4.21718e9 + 7.30438e9i 0.144674 + 0.250583i 0.929251 0.369448i \(-0.120453\pi\)
−0.784577 + 0.620031i \(0.787120\pi\)
\(978\) 2.74009e9 4.74598e9i 0.0936655 0.162233i
\(979\) −1.30507e10 −0.444523
\(980\) 0 0
\(981\) −2.50411e10 −0.846861
\(982\) −3.13338e9 + 5.42717e9i −0.105590 + 0.182887i
\(983\) 1.12115e10 + 1.94189e10i 0.376466 + 0.652058i 0.990545 0.137186i \(-0.0438059\pi\)
−0.614079 + 0.789244i \(0.710473\pi\)
\(984\) 3.33066e7 + 5.76888e7i 0.00111442 + 0.00193023i
\(985\) 1.08135e10 1.87295e10i 0.360527 0.624451i
\(986\) 1.20672e10 0.400900
\(987\) 0 0
\(988\) −3.53261e9 −0.116532
\(989\) 2.16700e10 3.75335e10i 0.712314 1.23376i
\(990\) 1.87400e9 + 3.24587e9i 0.0613829 + 0.106318i
\(991\) −1.73364e10 3.00275e10i −0.565849 0.980079i −0.996970 0.0777853i \(-0.975215\pi\)
0.431121 0.902294i \(-0.358118\pi\)
\(992\) 3.72821e9 6.45745e9i 0.121258 0.210025i
\(993\) 3.28508e9 0.106469
\(994\) 0 0
\(995\) −1.75639e10 −0.565249
\(996\) −2.17839e9 + 3.77308e9i −0.0698599 + 0.121001i
\(997\) 1.48237e10 + 2.56754e10i 0.473722 + 0.820511i 0.999547 0.0300818i \(-0.00957679\pi\)
−0.525825 + 0.850593i \(0.676243\pi\)
\(998\) −2.49275e9 4.31757e9i −0.0793820 0.137494i
\(999\) 4.07415e9 7.05663e9i 0.129288 0.223933i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.8.c.d.79.1 2
7.2 even 3 2.8.a.a.1.1 1
7.3 odd 6 98.8.c.e.67.1 2
7.4 even 3 inner 98.8.c.d.67.1 2
7.5 odd 6 98.8.a.a.1.1 1
7.6 odd 2 98.8.c.e.79.1 2
21.2 odd 6 18.8.a.b.1.1 1
28.23 odd 6 16.8.a.b.1.1 1
35.2 odd 12 50.8.b.c.49.1 2
35.9 even 6 50.8.a.g.1.1 1
35.23 odd 12 50.8.b.c.49.2 2
56.37 even 6 64.8.a.c.1.1 1
56.51 odd 6 64.8.a.e.1.1 1
63.2 odd 6 162.8.c.a.109.1 2
63.16 even 3 162.8.c.l.109.1 2
63.23 odd 6 162.8.c.a.55.1 2
63.58 even 3 162.8.c.l.55.1 2
77.65 odd 6 242.8.a.e.1.1 1
84.23 even 6 144.8.a.i.1.1 1
91.44 odd 12 338.8.b.d.337.2 2
91.51 even 6 338.8.a.d.1.1 1
91.86 odd 12 338.8.b.d.337.1 2
105.2 even 12 450.8.c.g.199.2 2
105.23 even 12 450.8.c.g.199.1 2
105.44 odd 6 450.8.a.c.1.1 1
112.37 even 12 256.8.b.b.129.1 2
112.51 odd 12 256.8.b.f.129.1 2
112.93 even 12 256.8.b.b.129.2 2
112.107 odd 12 256.8.b.f.129.2 2
119.16 even 6 578.8.a.b.1.1 1
140.23 even 12 400.8.c.j.49.1 2
140.79 odd 6 400.8.a.l.1.1 1
140.107 even 12 400.8.c.j.49.2 2
168.107 even 6 576.8.a.f.1.1 1
168.149 odd 6 576.8.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.8.a.a.1.1 1 7.2 even 3
16.8.a.b.1.1 1 28.23 odd 6
18.8.a.b.1.1 1 21.2 odd 6
50.8.a.g.1.1 1 35.9 even 6
50.8.b.c.49.1 2 35.2 odd 12
50.8.b.c.49.2 2 35.23 odd 12
64.8.a.c.1.1 1 56.37 even 6
64.8.a.e.1.1 1 56.51 odd 6
98.8.a.a.1.1 1 7.5 odd 6
98.8.c.d.67.1 2 7.4 even 3 inner
98.8.c.d.79.1 2 1.1 even 1 trivial
98.8.c.e.67.1 2 7.3 odd 6
98.8.c.e.79.1 2 7.6 odd 2
144.8.a.i.1.1 1 84.23 even 6
162.8.c.a.55.1 2 63.23 odd 6
162.8.c.a.109.1 2 63.2 odd 6
162.8.c.l.55.1 2 63.58 even 3
162.8.c.l.109.1 2 63.16 even 3
242.8.a.e.1.1 1 77.65 odd 6
256.8.b.b.129.1 2 112.37 even 12
256.8.b.b.129.2 2 112.93 even 12
256.8.b.f.129.1 2 112.51 odd 12
256.8.b.f.129.2 2 112.107 odd 12
338.8.a.d.1.1 1 91.51 even 6
338.8.b.d.337.1 2 91.86 odd 12
338.8.b.d.337.2 2 91.44 odd 12
400.8.a.l.1.1 1 140.79 odd 6
400.8.c.j.49.1 2 140.23 even 12
400.8.c.j.49.2 2 140.107 even 12
450.8.a.c.1.1 1 105.44 odd 6
450.8.c.g.199.1 2 105.23 even 12
450.8.c.g.199.2 2 105.2 even 12
576.8.a.f.1.1 1 168.107 even 6
576.8.a.g.1.1 1 168.149 odd 6
578.8.a.b.1.1 1 119.16 even 6