Properties

Label 98.8.a.k
Level $98$
Weight $8$
Character orbit 98.a
Self dual yes
Analytic conductor $30.614$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [98,8,Mod(1,98)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("98.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.6137324974\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2389}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 597 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2389}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + ( - \beta + 28) q^{3} + 64 q^{4} + (2 \beta + 119) q^{5} + ( - 8 \beta + 224) q^{6} + 512 q^{8} + ( - 56 \beta + 986) q^{9} + (16 \beta + 952) q^{10} + ( - 7 \beta + 2924) q^{11} + ( - 64 \beta + 1792) q^{12}+ \cdots + ( - 170646 \beta + 3819552) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{2} + 56 q^{3} + 128 q^{4} + 238 q^{5} + 448 q^{6} + 1024 q^{8} + 1972 q^{9} + 1904 q^{10} + 5848 q^{11} + 3584 q^{12} - 1316 q^{13} - 2892 q^{15} + 8192 q^{16} + 47642 q^{17} + 15776 q^{18}+ \cdots + 7639104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
24.9387
−23.9387
8.00000 −20.8774 64.0000 216.755 −167.019 0 512.000 −1751.13 1734.04
1.2 8.00000 76.8774 64.0000 21.2452 615.019 0 512.000 3723.13 169.962
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.8.a.k 2
7.b odd 2 1 98.8.a.h 2
7.c even 3 2 98.8.c.h 4
7.d odd 6 2 14.8.c.a 4
21.g even 6 2 126.8.g.e 4
28.f even 6 2 112.8.i.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.8.c.a 4 7.d odd 6 2
98.8.a.h 2 7.b odd 2 1
98.8.a.k 2 1.a even 1 1 trivial
98.8.c.h 4 7.c even 3 2
112.8.i.a 4 28.f even 6 2
126.8.g.e 4 21.g even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 56T_{3} - 1605 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(98))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 56T - 1605 \) Copy content Toggle raw display
$5$ \( T^{2} - 238T + 4605 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 5848 T + 8432715 \) Copy content Toggle raw display
$13$ \( T^{2} + 1316 T - 91342860 \) Copy content Toggle raw display
$17$ \( T^{2} - 47642 T + 405943641 \) Copy content Toggle raw display
$19$ \( T^{2} - 41048 T + 280166515 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 1105873137 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 5666758164 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 27316742385 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 285131934827 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 332194626036 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 154524293360 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 249359041791 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 1385251917669 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 271714932627 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 1792085999859 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 4112458315381 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 2760738723264 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 5364808200775 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 20967658995495 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 11352739197744 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 15686015663961 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 6136617007220 \) Copy content Toggle raw display
show more
show less