Properties

Label 98.8.a.d
Level $98$
Weight $8$
Character orbit 98.a
Self dual yes
Analytic conductor $30.614$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [98,8,Mod(1,98)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("98.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.6137324974\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{949}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 237 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{949}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{2} + ( - \beta - 28) q^{3} + 64 q^{4} + ( - 14 \beta + 7) q^{5} + (8 \beta + 224) q^{6} - 512 q^{8} + (56 \beta - 454) q^{9} + (112 \beta - 56) q^{10} + (217 \beta + 1204) q^{11} + ( - 64 \beta - 1792) q^{12}+ \cdots + ( - 31094 \beta + 10985632) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{2} - 56 q^{3} + 128 q^{4} + 14 q^{5} + 448 q^{6} - 1024 q^{8} - 908 q^{9} - 112 q^{10} + 2408 q^{11} - 3584 q^{12} - 10724 q^{13} + 26180 q^{15} + 8192 q^{16} + 35098 q^{17} + 7264 q^{18} + 2408 q^{19}+ \cdots + 21971264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
15.9029
−14.9029
−8.00000 −58.8058 64.0000 −424.282 470.447 0 −512.000 1271.13 3394.25
1.2 −8.00000 2.80584 64.0000 438.282 −22.4467 0 −512.000 −2179.13 −3506.25
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.8.a.d 2
7.b odd 2 1 98.8.a.f 2
7.c even 3 2 98.8.c.m 4
7.d odd 6 2 14.8.c.b 4
21.g even 6 2 126.8.g.d 4
28.f even 6 2 112.8.i.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.8.c.b 4 7.d odd 6 2
98.8.a.d 2 1.a even 1 1 trivial
98.8.a.f 2 7.b odd 2 1
98.8.c.m 4 7.c even 3 2
112.8.i.b 4 28.f even 6 2
126.8.g.d 4 21.g even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 56T_{3} - 165 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(98))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 56T - 165 \) Copy content Toggle raw display
$5$ \( T^{2} - 14T - 185955 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 2408 T - 43237845 \) Copy content Toggle raw display
$13$ \( T^{2} + 10724 T + 26913780 \) Copy content Toggle raw display
$17$ \( T^{2} - 35098 T + 198263001 \) Copy content Toggle raw display
$19$ \( T^{2} - 2408 T - 625809965 \) Copy content Toggle raw display
$23$ \( T^{2} + 61684 T - 890257137 \) Copy content Toggle raw display
$29$ \( T^{2} + 95660 T - 302210796 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 5628386895 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 46003879093 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 154982022516 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 9474621680 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 776500057791 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 880940835909 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 9792650253 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 1149292144659 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 3517340463061 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 20052968986176 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 4575230600825 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 12232151046375 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 14206197364176 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 61691712832359 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 89006519008780 \) Copy content Toggle raw display
show more
show less