Properties

Label 98.6.c.g
Level $98$
Weight $6$
Character orbit 98.c
Analytic conductor $15.718$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,6,Mod(67,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.67"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,8,0,-32,0,0,0,-256,118] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.7176143417\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{46})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 46x^{2} + 2116 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \beta_{2} q^{2} + \beta_1 q^{3} + ( - 16 \beta_{2} - 16) q^{4} + (7 \beta_{3} + 7 \beta_1) q^{5} - 4 \beta_{3} q^{6} - 64 q^{8} - 59 \beta_{2} q^{9} + 28 \beta_1 q^{10} + ( - 476 \beta_{2} - 476) q^{11}+ \cdots - 28084 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} - 32 q^{4} - 256 q^{8} + 118 q^{9} - 952 q^{11} - 5152 q^{15} - 512 q^{16} - 472 q^{18} - 7616 q^{22} - 7392 q^{23} - 11782 q^{25} + 5576 q^{29} - 10304 q^{30} + 2048 q^{32} - 3776 q^{36}+ \cdots - 112336 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 46x^{2} + 2116 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 46 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 23 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 46\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 23\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
−3.39116 + 5.87367i
3.39116 5.87367i
−3.39116 5.87367i
3.39116 + 5.87367i
2.00000 + 3.46410i −6.78233 + 11.7473i −8.00000 + 13.8564i 47.4763 + 82.2314i −54.2586 0 −64.0000 29.5000 + 51.0955i −189.905 + 328.926i
67.2 2.00000 + 3.46410i 6.78233 11.7473i −8.00000 + 13.8564i −47.4763 82.2314i 54.2586 0 −64.0000 29.5000 + 51.0955i 189.905 328.926i
79.1 2.00000 3.46410i −6.78233 11.7473i −8.00000 13.8564i 47.4763 82.2314i −54.2586 0 −64.0000 29.5000 51.0955i −189.905 328.926i
79.2 2.00000 3.46410i 6.78233 + 11.7473i −8.00000 13.8564i −47.4763 + 82.2314i 54.2586 0 −64.0000 29.5000 51.0955i 189.905 + 328.926i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.6.c.g 4
7.b odd 2 1 inner 98.6.c.g 4
7.c even 3 1 98.6.a.e 2
7.c even 3 1 inner 98.6.c.g 4
7.d odd 6 1 98.6.a.e 2
7.d odd 6 1 inner 98.6.c.g 4
21.g even 6 1 882.6.a.bo 2
21.h odd 6 1 882.6.a.bo 2
28.f even 6 1 784.6.a.y 2
28.g odd 6 1 784.6.a.y 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
98.6.a.e 2 7.c even 3 1
98.6.a.e 2 7.d odd 6 1
98.6.c.g 4 1.a even 1 1 trivial
98.6.c.g 4 7.b odd 2 1 inner
98.6.c.g 4 7.c even 3 1 inner
98.6.c.g 4 7.d odd 6 1 inner
784.6.a.y 2 28.f even 6 1
784.6.a.y 2 28.g odd 6 1
882.6.a.bo 2 21.g even 6 1
882.6.a.bo 2 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 184T_{3}^{2} + 33856 \) acting on \(S_{6}^{\mathrm{new}}(98, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 4 T + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 184 T^{2} + 33856 \) Copy content Toggle raw display
$5$ \( T^{4} + 9016 T^{2} + 81288256 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 476 T + 226576)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 927544)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 642408662016 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 165206479936 \) Copy content Toggle raw display
$23$ \( (T^{2} + 3696 T + 13660416)^{2} \) Copy content Toggle raw display
$29$ \( (T - 1394)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 13765405950976 \) Copy content Toggle raw display
$37$ \( (T^{2} + 12090 T + 146168100)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 231634656)^{2} \) Copy content Toggle raw display
$43$ \( (T - 9724)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 73\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( (T^{2} + 4310 T + 18576100)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 18\!\cdots\!16 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 74\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( (T^{2} + 20236 T + 409495696)^{2} \) Copy content Toggle raw display
$71$ \( (T - 29792)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 16\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( (T^{2} - 33176 T + 1100646976)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 12534264)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 25\!\cdots\!16 \) Copy content Toggle raw display
$97$ \( (T^{2} - 315762400)^{2} \) Copy content Toggle raw display
show more
show less