Properties

Label 98.6.c.f.67.2
Level $98$
Weight $6$
Character 98.67
Analytic conductor $15.718$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,6,Mod(67,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.67"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,8,-14,-32,-42,-112,0,-256,-652] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.7176143417\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{130})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 130x^{2} + 16900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.2
Root \(-5.70088 + 9.87421i\) of defining polynomial
Character \(\chi\) \(=\) 98.67
Dual form 98.6.c.f.79.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 + 3.46410i) q^{2} +(7.90175 - 13.6862i) q^{3} +(-8.00000 + 13.8564i) q^{4} +(-10.5000 - 18.1865i) q^{5} +63.2140 q^{6} -64.0000 q^{8} +(-3.37544 - 5.84643i) q^{9} +(42.0000 - 72.7461i) q^{10} +(312.937 - 542.023i) q^{11} +(126.428 + 218.980i) q^{12} +206.821 q^{13} -331.874 q^{15} +(-128.000 - 221.703i) q^{16} +(530.732 - 919.254i) q^{17} +(13.5018 - 23.3857i) q^{18} +(-941.989 - 1631.57i) q^{19} +336.000 q^{20} +2503.49 q^{22} +(-1858.68 - 3219.34i) q^{23} +(-505.712 + 875.919i) q^{24} +(1342.00 - 2324.41i) q^{25} +(413.642 + 716.449i) q^{26} +3733.56 q^{27} -123.747 q^{29} +(-663.747 - 1149.64i) q^{30} +(-4554.63 + 7888.85i) q^{31} +(512.000 - 886.810i) q^{32} +(-4945.50 - 8565.86i) q^{33} +4245.85 q^{34} +108.014 q^{36} +(3014.36 + 5221.03i) q^{37} +(3767.96 - 6526.29i) q^{38} +(1634.25 - 2830.60i) q^{39} +(672.000 + 1163.94i) q^{40} +17201.9 q^{41} +5401.98 q^{43} +(5006.99 + 8672.36i) q^{44} +(-70.8843 + 122.775i) q^{45} +(7434.74 - 12877.3i) q^{46} +(937.621 + 1624.01i) q^{47} -4045.70 q^{48} +10736.0 q^{50} +(-8387.42 - 14527.4i) q^{51} +(-1654.57 + 2865.80i) q^{52} +(-9353.62 + 16200.9i) q^{53} +(7467.13 + 12933.4i) q^{54} -13143.3 q^{55} -29773.5 q^{57} +(-247.495 - 428.673i) q^{58} +(-1267.39 + 2195.18i) q^{59} +(2654.99 - 4598.58i) q^{60} +(-1047.35 - 1814.07i) q^{61} -36437.1 q^{62} +4096.00 q^{64} +(-2171.62 - 3761.36i) q^{65} +(19782.0 - 34263.4i) q^{66} +(-29310.4 + 50767.1i) q^{67} +(8491.71 + 14708.1i) q^{68} -58747.5 q^{69} -31279.5 q^{71} +(216.028 + 374.172i) q^{72} +(-3575.24 + 6192.49i) q^{73} +(-12057.5 + 20884.1i) q^{74} +(-21208.3 - 36733.9i) q^{75} +30143.7 q^{76} +13074.0 q^{78} +(-1489.91 - 2580.59i) q^{79} +(-2688.00 + 4655.75i) q^{80} +(30321.9 - 52519.1i) q^{81} +(34403.7 + 59589.0i) q^{82} -45954.6 q^{83} -22290.7 q^{85} +(10804.0 + 18713.0i) q^{86} +(-977.821 + 1693.64i) q^{87} +(-20028.0 + 34689.4i) q^{88} +(49520.0 + 85771.1i) q^{89} -567.074 q^{90} +59477.9 q^{92} +(71979.2 + 124672. i) q^{93} +(-3750.48 + 6496.03i) q^{94} +(-19781.8 + 34263.0i) q^{95} +(-8091.40 - 14014.7i) q^{96} +115548. q^{97} -4225.20 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} - 14 q^{3} - 32 q^{4} - 42 q^{5} - 112 q^{6} - 256 q^{8} - 652 q^{9} + 168 q^{10} + 294 q^{11} - 224 q^{12} + 280 q^{13} + 588 q^{15} - 512 q^{16} + 1302 q^{17} + 2608 q^{18} - 1442 q^{19}+ \cdots + 419832 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 + 3.46410i 0.353553 + 0.612372i
\(3\) 7.90175 13.6862i 0.506898 0.877973i −0.493070 0.869989i \(-0.664125\pi\)
0.999968 0.00798326i \(-0.00254118\pi\)
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) −10.5000 18.1865i −0.187830 0.325331i 0.756697 0.653766i \(-0.226812\pi\)
−0.944526 + 0.328436i \(0.893479\pi\)
\(6\) 63.2140 0.716862
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) −3.37544 5.84643i −0.0138907 0.0240594i
\(10\) 42.0000 72.7461i 0.132816 0.230043i
\(11\) 312.937 542.023i 0.779785 1.35063i −0.152280 0.988337i \(-0.548662\pi\)
0.932065 0.362290i \(-0.118005\pi\)
\(12\) 126.428 + 218.980i 0.253449 + 0.438986i
\(13\) 206.821 0.339419 0.169710 0.985494i \(-0.445717\pi\)
0.169710 + 0.985494i \(0.445717\pi\)
\(14\) 0 0
\(15\) −331.874 −0.380842
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) 530.732 919.254i 0.445402 0.771460i −0.552678 0.833395i \(-0.686394\pi\)
0.998080 + 0.0619354i \(0.0197273\pi\)
\(18\) 13.5018 23.3857i 0.00982221 0.0170126i
\(19\) −941.989 1631.57i −0.598635 1.03687i −0.993023 0.117922i \(-0.962377\pi\)
0.394388 0.918944i \(-0.370957\pi\)
\(20\) 336.000 0.187830
\(21\) 0 0
\(22\) 2503.49 1.10278
\(23\) −1858.68 3219.34i −0.732632 1.26896i −0.955754 0.294166i \(-0.904958\pi\)
0.223122 0.974790i \(-0.428375\pi\)
\(24\) −505.712 + 875.919i −0.179215 + 0.310410i
\(25\) 1342.00 2324.41i 0.429440 0.743812i
\(26\) 413.642 + 716.449i 0.120003 + 0.207851i
\(27\) 3733.56 0.985631
\(28\) 0 0
\(29\) −123.747 −0.0273238 −0.0136619 0.999907i \(-0.504349\pi\)
−0.0136619 + 0.999907i \(0.504349\pi\)
\(30\) −663.747 1149.64i −0.134648 0.233217i
\(31\) −4554.63 + 7888.85i −0.851234 + 1.47438i 0.0288611 + 0.999583i \(0.490812\pi\)
−0.880095 + 0.474797i \(0.842521\pi\)
\(32\) 512.000 886.810i 0.0883883 0.153093i
\(33\) −4945.50 8565.86i −0.790543 1.36926i
\(34\) 4245.85 0.629894
\(35\) 0 0
\(36\) 108.014 0.0138907
\(37\) 3014.36 + 5221.03i 0.361986 + 0.626977i 0.988288 0.152603i \(-0.0487656\pi\)
−0.626302 + 0.779581i \(0.715432\pi\)
\(38\) 3767.96 6526.29i 0.423299 0.733175i
\(39\) 1634.25 2830.60i 0.172051 0.298001i
\(40\) 672.000 + 1163.94i 0.0664078 + 0.115022i
\(41\) 17201.9 1.59814 0.799071 0.601236i \(-0.205325\pi\)
0.799071 + 0.601236i \(0.205325\pi\)
\(42\) 0 0
\(43\) 5401.98 0.445535 0.222767 0.974872i \(-0.428491\pi\)
0.222767 + 0.974872i \(0.428491\pi\)
\(44\) 5006.99 + 8672.36i 0.389893 + 0.675314i
\(45\) −70.8843 + 122.775i −0.00521817 + 0.00903814i
\(46\) 7434.74 12877.3i 0.518049 0.897288i
\(47\) 937.621 + 1624.01i 0.0619131 + 0.107237i 0.895321 0.445422i \(-0.146946\pi\)
−0.833407 + 0.552659i \(0.813613\pi\)
\(48\) −4045.70 −0.253449
\(49\) 0 0
\(50\) 10736.0 0.607320
\(51\) −8387.42 14527.4i −0.451547 0.782102i
\(52\) −1654.57 + 2865.80i −0.0848548 + 0.146973i
\(53\) −9353.62 + 16200.9i −0.457393 + 0.792229i −0.998822 0.0485180i \(-0.984550\pi\)
0.541429 + 0.840747i \(0.317884\pi\)
\(54\) 7467.13 + 12933.4i 0.348473 + 0.603573i
\(55\) −13143.3 −0.585867
\(56\) 0 0
\(57\) −29773.5 −1.21379
\(58\) −247.495 428.673i −0.00966042 0.0167323i
\(59\) −1267.39 + 2195.18i −0.0474002 + 0.0820995i −0.888752 0.458388i \(-0.848427\pi\)
0.841352 + 0.540488i \(0.181760\pi\)
\(60\) 2654.99 4598.58i 0.0952105 0.164909i
\(61\) −1047.35 1814.07i −0.0360386 0.0624208i 0.847444 0.530886i \(-0.178141\pi\)
−0.883482 + 0.468465i \(0.844807\pi\)
\(62\) −36437.1 −1.20383
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −2171.62 3761.36i −0.0637530 0.110423i
\(66\) 19782.0 34263.4i 0.558998 0.968213i
\(67\) −29310.4 + 50767.1i −0.797691 + 1.38164i 0.123426 + 0.992354i \(0.460612\pi\)
−0.921117 + 0.389287i \(0.872722\pi\)
\(68\) 8491.71 + 14708.1i 0.222701 + 0.385730i
\(69\) −58747.5 −1.48548
\(70\) 0 0
\(71\) −31279.5 −0.736401 −0.368201 0.929746i \(-0.620026\pi\)
−0.368201 + 0.929746i \(0.620026\pi\)
\(72\) 216.028 + 374.172i 0.00491110 + 0.00850628i
\(73\) −3575.24 + 6192.49i −0.0785231 + 0.136006i −0.902613 0.430453i \(-0.858354\pi\)
0.824090 + 0.566459i \(0.191687\pi\)
\(74\) −12057.5 + 20884.1i −0.255962 + 0.443340i
\(75\) −21208.3 36733.9i −0.435364 0.754073i
\(76\) 30143.7 0.598635
\(77\) 0 0
\(78\) 13074.0 0.243317
\(79\) −1489.91 2580.59i −0.0268591 0.0465213i 0.852283 0.523080i \(-0.175217\pi\)
−0.879143 + 0.476559i \(0.841884\pi\)
\(80\) −2688.00 + 4655.75i −0.0469574 + 0.0813327i
\(81\) 30321.9 52519.1i 0.513505 0.889416i
\(82\) 34403.7 + 59589.0i 0.565029 + 0.978659i
\(83\) −45954.6 −0.732207 −0.366103 0.930574i \(-0.619308\pi\)
−0.366103 + 0.930574i \(0.619308\pi\)
\(84\) 0 0
\(85\) −22290.7 −0.334639
\(86\) 10804.0 + 18713.0i 0.157520 + 0.272833i
\(87\) −977.821 + 1693.64i −0.0138504 + 0.0239895i
\(88\) −20028.0 + 34689.4i −0.275696 + 0.477519i
\(89\) 49520.0 + 85771.1i 0.662682 + 1.14780i 0.979908 + 0.199450i \(0.0639154\pi\)
−0.317226 + 0.948350i \(0.602751\pi\)
\(90\) −567.074 −0.00737961
\(91\) 0 0
\(92\) 59477.9 0.732632
\(93\) 71979.2 + 124672.i 0.862977 + 1.49472i
\(94\) −3750.48 + 6496.03i −0.0437792 + 0.0758278i
\(95\) −19781.8 + 34263.0i −0.224883 + 0.389509i
\(96\) −8091.40 14014.7i −0.0896077 0.155205i
\(97\) 115548. 1.24691 0.623454 0.781860i \(-0.285729\pi\)
0.623454 + 0.781860i \(0.285729\pi\)
\(98\) 0 0
\(99\) −4225.20 −0.0433271
\(100\) 21472.0 + 37190.6i 0.214720 + 0.371906i
\(101\) 5475.73 9484.25i 0.0534120 0.0925123i −0.838083 0.545542i \(-0.816324\pi\)
0.891495 + 0.453030i \(0.149657\pi\)
\(102\) 33549.7 58109.8i 0.319292 0.553030i
\(103\) −68862.2 119273.i −0.639570 1.10777i −0.985527 0.169517i \(-0.945779\pi\)
0.345957 0.938250i \(-0.387554\pi\)
\(104\) −13236.5 −0.120003
\(105\) 0 0
\(106\) −74828.9 −0.646852
\(107\) −37786.5 65448.1i −0.319064 0.552634i 0.661229 0.750184i \(-0.270035\pi\)
−0.980293 + 0.197550i \(0.936702\pi\)
\(108\) −29868.5 + 51733.8i −0.246408 + 0.426791i
\(109\) −22263.1 + 38560.9i −0.179482 + 0.310871i −0.941703 0.336445i \(-0.890775\pi\)
0.762221 + 0.647316i \(0.224109\pi\)
\(110\) −26286.7 45529.9i −0.207135 0.358769i
\(111\) 95275.0 0.733959
\(112\) 0 0
\(113\) 90456.5 0.666413 0.333207 0.942854i \(-0.391869\pi\)
0.333207 + 0.942854i \(0.391869\pi\)
\(114\) −59547.0 103138.i −0.429138 0.743290i
\(115\) −39032.4 + 67606.0i −0.275220 + 0.476695i
\(116\) 989.979 1714.69i 0.00683095 0.0118315i
\(117\) −698.112 1209.17i −0.00471477 0.00816622i
\(118\) −10139.1 −0.0670340
\(119\) 0 0
\(120\) 21239.9 0.134648
\(121\) −115333. 199763.i −0.716130 1.24037i
\(122\) 4189.41 7256.27i 0.0254832 0.0441381i
\(123\) 135925. 235429.i 0.810095 1.40313i
\(124\) −72874.1 126222.i −0.425617 0.737190i
\(125\) −121989. −0.698306
\(126\) 0 0
\(127\) 187707. 1.03269 0.516346 0.856380i \(-0.327292\pi\)
0.516346 + 0.856380i \(0.327292\pi\)
\(128\) 8192.00 + 14189.0i 0.0441942 + 0.0765466i
\(129\) 42685.1 73932.8i 0.225841 0.391167i
\(130\) 8686.48 15045.4i 0.0450802 0.0780812i
\(131\) 77206.1 + 133725.i 0.393073 + 0.680823i 0.992853 0.119342i \(-0.0380785\pi\)
−0.599780 + 0.800165i \(0.704745\pi\)
\(132\) 158256. 0.790543
\(133\) 0 0
\(134\) −234483. −1.12810
\(135\) −39202.4 67900.6i −0.185131 0.320656i
\(136\) −33966.8 + 58832.3i −0.157474 + 0.272752i
\(137\) −54618.9 + 94602.7i −0.248623 + 0.430628i −0.963144 0.268986i \(-0.913311\pi\)
0.714521 + 0.699614i \(0.246645\pi\)
\(138\) −117495. 203507.i −0.525196 0.909666i
\(139\) 204695. 0.898609 0.449305 0.893379i \(-0.351672\pi\)
0.449305 + 0.893379i \(0.351672\pi\)
\(140\) 0 0
\(141\) 29635.4 0.125534
\(142\) −62559.1 108355.i −0.260357 0.450952i
\(143\) 64721.9 112102.i 0.264674 0.458429i
\(144\) −864.113 + 1496.69i −0.00347268 + 0.00601485i
\(145\) 1299.35 + 2250.54i 0.00513222 + 0.00888926i
\(146\) −28601.9 −0.111048
\(147\) 0 0
\(148\) −96459.6 −0.361986
\(149\) 203154. + 351873.i 0.749651 + 1.29843i 0.947990 + 0.318300i \(0.103112\pi\)
−0.198339 + 0.980134i \(0.563555\pi\)
\(150\) 84833.2 146935.i 0.307849 0.533210i
\(151\) 208419. 360992.i 0.743866 1.28841i −0.206856 0.978371i \(-0.566323\pi\)
0.950723 0.310043i \(-0.100343\pi\)
\(152\) 60287.3 + 104421.i 0.211649 + 0.366588i
\(153\) −7165.81 −0.0247478
\(154\) 0 0
\(155\) 191295. 0.639548
\(156\) 26148.0 + 45289.6i 0.0860254 + 0.149000i
\(157\) 59645.3 103309.i 0.193120 0.334493i −0.753163 0.657834i \(-0.771473\pi\)
0.946283 + 0.323341i \(0.104806\pi\)
\(158\) 5959.62 10322.4i 0.0189922 0.0328955i
\(159\) 147820. + 256032.i 0.463703 + 0.803158i
\(160\) −21504.0 −0.0664078
\(161\) 0 0
\(162\) 242576. 0.726205
\(163\) −23686.2 41025.7i −0.0698275 0.120945i 0.828998 0.559252i \(-0.188912\pi\)
−0.898825 + 0.438307i \(0.855578\pi\)
\(164\) −137615. + 238356.i −0.399536 + 0.692016i
\(165\) −103856. + 179883.i −0.296975 + 0.514375i
\(166\) −91909.2 159191.i −0.258874 0.448383i
\(167\) 231669. 0.642802 0.321401 0.946943i \(-0.395846\pi\)
0.321401 + 0.946943i \(0.395846\pi\)
\(168\) 0 0
\(169\) −328518. −0.884795
\(170\) −44581.5 77217.3i −0.118313 0.204924i
\(171\) −6359.26 + 11014.6i −0.0166309 + 0.0288056i
\(172\) −43215.8 + 74852.0i −0.111384 + 0.192922i
\(173\) 67169.6 + 116341.i 0.170631 + 0.295541i 0.938641 0.344897i \(-0.112086\pi\)
−0.768010 + 0.640438i \(0.778753\pi\)
\(174\) −7822.57 −0.0195874
\(175\) 0 0
\(176\) −160224. −0.389893
\(177\) 20029.2 + 34691.6i 0.0480541 + 0.0832321i
\(178\) −198080. + 343085.i −0.468587 + 0.811617i
\(179\) −23292.2 + 40343.2i −0.0543347 + 0.0941105i −0.891913 0.452206i \(-0.850637\pi\)
0.837579 + 0.546317i \(0.183970\pi\)
\(180\) −1134.15 1964.40i −0.00260909 0.00451907i
\(181\) −829210. −1.88134 −0.940672 0.339317i \(-0.889804\pi\)
−0.940672 + 0.339317i \(0.889804\pi\)
\(182\) 0 0
\(183\) −33103.7 −0.0730716
\(184\) 118956. + 206037.i 0.259025 + 0.448644i
\(185\) 63301.6 109642.i 0.135983 0.235530i
\(186\) −287917. + 498686.i −0.610217 + 1.05693i
\(187\) −332171. 575337.i −0.694636 1.20315i
\(188\) −30003.9 −0.0619131
\(189\) 0 0
\(190\) −158254. −0.318032
\(191\) 235958. + 408692.i 0.468006 + 0.810611i 0.999332 0.0365572i \(-0.0116391\pi\)
−0.531325 + 0.847168i \(0.678306\pi\)
\(192\) 32365.6 56058.8i 0.0633622 0.109747i
\(193\) −344177. + 596132.i −0.665103 + 1.15199i 0.314155 + 0.949372i \(0.398279\pi\)
−0.979257 + 0.202620i \(0.935054\pi\)
\(194\) 231097. + 400271.i 0.440849 + 0.763573i
\(195\) −68638.5 −0.129265
\(196\) 0 0
\(197\) 311915. 0.572625 0.286313 0.958136i \(-0.407570\pi\)
0.286313 + 0.958136i \(0.407570\pi\)
\(198\) −8450.40 14636.5i −0.0153184 0.0265323i
\(199\) −143606. + 248733.i −0.257063 + 0.445246i −0.965454 0.260574i \(-0.916088\pi\)
0.708391 + 0.705820i \(0.249421\pi\)
\(200\) −85888.0 + 148762.i −0.151830 + 0.262977i
\(201\) 463207. + 802298.i 0.808695 + 1.40070i
\(202\) 43805.9 0.0755360
\(203\) 0 0
\(204\) 268397. 0.451547
\(205\) −180619. 312842.i −0.300179 0.519925i
\(206\) 275449. 477091.i 0.452244 0.783310i
\(207\) −12547.8 + 21733.4i −0.0203536 + 0.0352534i
\(208\) −26473.1 45852.7i −0.0424274 0.0734864i
\(209\) −1.17913e6 −1.86723
\(210\) 0 0
\(211\) −460493. −0.712061 −0.356031 0.934474i \(-0.615870\pi\)
−0.356031 + 0.934474i \(0.615870\pi\)
\(212\) −149658. 259215.i −0.228697 0.396114i
\(213\) −247163. + 428099.i −0.373280 + 0.646540i
\(214\) 151146. 261793.i 0.225612 0.390771i
\(215\) −56720.8 98243.3i −0.0836847 0.144946i
\(216\) −238948. −0.348473
\(217\) 0 0
\(218\) −178105. −0.253825
\(219\) 56501.3 + 97863.1i 0.0796064 + 0.137882i
\(220\) 105147. 182120.i 0.146467 0.253688i
\(221\) 109766. 190121.i 0.151178 0.261848i
\(222\) 190550. + 330042.i 0.259494 + 0.449456i
\(223\) 1.19776e6 1.61290 0.806449 0.591304i \(-0.201387\pi\)
0.806449 + 0.591304i \(0.201387\pi\)
\(224\) 0 0
\(225\) −18119.4 −0.0238609
\(226\) 180913. + 313350.i 0.235613 + 0.408093i
\(227\) 447281. 774713.i 0.576123 0.997875i −0.419795 0.907619i \(-0.637898\pi\)
0.995919 0.0902559i \(-0.0287685\pi\)
\(228\) 238188. 412553.i 0.303447 0.525585i
\(229\) −129628. 224522.i −0.163347 0.282925i 0.772720 0.634747i \(-0.218896\pi\)
−0.936067 + 0.351822i \(0.885562\pi\)
\(230\) −312259. −0.389220
\(231\) 0 0
\(232\) 7919.83 0.00966042
\(233\) −105657. 183004.i −0.127500 0.220836i 0.795207 0.606337i \(-0.207362\pi\)
−0.922707 + 0.385501i \(0.874029\pi\)
\(234\) 2792.45 4836.66i 0.00333385 0.00577439i
\(235\) 19690.0 34104.2i 0.0232582 0.0402845i
\(236\) −20278.2 35122.9i −0.0237001 0.0410498i
\(237\) −47091.5 −0.0544592
\(238\) 0 0
\(239\) 463.018 0.000524328 0.000262164 1.00000i \(-0.499917\pi\)
0.000262164 1.00000i \(0.499917\pi\)
\(240\) 42479.8 + 73577.2i 0.0476052 + 0.0824547i
\(241\) 143197. 248025.i 0.158815 0.275076i −0.775626 0.631192i \(-0.782566\pi\)
0.934442 + 0.356116i \(0.115899\pi\)
\(242\) 461334. 799053.i 0.506380 0.877076i
\(243\) −25565.0 44279.8i −0.0277734 0.0481050i
\(244\) 33515.3 0.0360386
\(245\) 0 0
\(246\) 1.08740e6 1.14565
\(247\) −194823. 337444.i −0.203188 0.351932i
\(248\) 291496. 504887.i 0.300957 0.521272i
\(249\) −363122. + 628946.i −0.371154 + 0.642858i
\(250\) −243978. 422582.i −0.246888 0.427623i
\(251\) 1.37168e6 1.37426 0.687129 0.726535i \(-0.258870\pi\)
0.687129 + 0.726535i \(0.258870\pi\)
\(252\) 0 0
\(253\) −2.32660e6 −2.28518
\(254\) 375414. + 650236.i 0.365112 + 0.632392i
\(255\) −176136. + 305076.i −0.169628 + 0.293804i
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) −379612. 657507.i −0.358515 0.620965i 0.629198 0.777245i \(-0.283383\pi\)
−0.987713 + 0.156279i \(0.950050\pi\)
\(258\) 341481. 0.319387
\(259\) 0 0
\(260\) 69491.9 0.0637530
\(261\) 417.702 + 723.481i 0.000379547 + 0.000657394i
\(262\) −308825. + 534900.i −0.277945 + 0.481415i
\(263\) 536222. 928764.i 0.478030 0.827973i −0.521652 0.853158i \(-0.674684\pi\)
0.999683 + 0.0251852i \(0.00801754\pi\)
\(264\) 316512. + 548215.i 0.279499 + 0.484107i
\(265\) 392852. 0.343648
\(266\) 0 0
\(267\) 1.56518e6 1.34365
\(268\) −468966. 812273.i −0.398845 0.690820i
\(269\) −883056. + 1.52950e6i −0.744059 + 1.28875i 0.206574 + 0.978431i \(0.433769\pi\)
−0.950633 + 0.310317i \(0.899565\pi\)
\(270\) 156810. 271602.i 0.130907 0.226738i
\(271\) −1.02586e6 1.77684e6i −0.848522 1.46968i −0.882527 0.470262i \(-0.844159\pi\)
0.0340046 0.999422i \(-0.489174\pi\)
\(272\) −271735. −0.222701
\(273\) 0 0
\(274\) −436951. −0.351606
\(275\) −839922. 1.45479e6i −0.669742 1.16003i
\(276\) 469980. 814029.i 0.371370 0.643231i
\(277\) −435341. + 754033.i −0.340903 + 0.590461i −0.984601 0.174819i \(-0.944066\pi\)
0.643698 + 0.765280i \(0.277399\pi\)
\(278\) 409391. + 709085.i 0.317706 + 0.550284i
\(279\) 61495.6 0.0472970
\(280\) 0 0
\(281\) 2.35412e6 1.77854 0.889270 0.457383i \(-0.151213\pi\)
0.889270 + 0.457383i \(0.151213\pi\)
\(282\) 59270.8 + 102660.i 0.0443831 + 0.0768739i
\(283\) −1.09518e6 + 1.89690e6i −0.812863 + 1.40792i 0.0979887 + 0.995188i \(0.468759\pi\)
−0.910852 + 0.412733i \(0.864574\pi\)
\(284\) 250236. 433422.i 0.184100 0.318871i
\(285\) 312622. + 541476.i 0.227985 + 0.394882i
\(286\) 517775. 0.374306
\(287\) 0 0
\(288\) −6912.90 −0.00491110
\(289\) 146576. + 253878.i 0.103233 + 0.178805i
\(290\) −5197.39 + 9002.14i −0.00362903 + 0.00628566i
\(291\) 913035. 1.58142e6i 0.632055 1.09475i
\(292\) −57203.8 99079.9i −0.0392616 0.0680030i
\(293\) 807700. 0.549644 0.274822 0.961495i \(-0.411381\pi\)
0.274822 + 0.961495i \(0.411381\pi\)
\(294\) 0 0
\(295\) 53230.4 0.0356127
\(296\) −192919. 334146.i −0.127981 0.221670i
\(297\) 1.16837e6 2.02368e6i 0.768580 1.33122i
\(298\) −812615. + 1.40749e6i −0.530083 + 0.918131i
\(299\) −384415. 665826.i −0.248669 0.430708i
\(300\) 678666. 0.435364
\(301\) 0 0
\(302\) 1.66735e6 1.05199
\(303\) −86535.8 149884.i −0.0541488 0.0937885i
\(304\) −241149. + 417683.i −0.149659 + 0.259217i
\(305\) −21994.4 + 38095.4i −0.0135383 + 0.0234489i
\(306\) −14331.6 24823.1i −0.00874967 0.0151549i
\(307\) −211516. −0.128085 −0.0640424 0.997947i \(-0.520399\pi\)
−0.0640424 + 0.997947i \(0.520399\pi\)
\(308\) 0 0
\(309\) −2.17653e6 −1.29679
\(310\) 382589. + 662664.i 0.226114 + 0.391642i
\(311\) −145855. + 252627.i −0.0855104 + 0.148108i −0.905609 0.424114i \(-0.860585\pi\)
0.820098 + 0.572223i \(0.193919\pi\)
\(312\) −104592. + 181159.i −0.0608292 + 0.105359i
\(313\) −997988. 1.72857e6i −0.575791 0.997299i −0.995955 0.0898507i \(-0.971361\pi\)
0.420165 0.907448i \(-0.361972\pi\)
\(314\) 477162. 0.273113
\(315\) 0 0
\(316\) 47677.0 0.0268591
\(317\) 1.40479e6 + 2.43316e6i 0.785167 + 1.35995i 0.928899 + 0.370332i \(0.120756\pi\)
−0.143733 + 0.989617i \(0.545911\pi\)
\(318\) −591280. + 1.02413e6i −0.327888 + 0.567918i
\(319\) −38725.1 + 67073.9i −0.0213067 + 0.0369043i
\(320\) −43008.0 74492.0i −0.0234787 0.0406663i
\(321\) −1.19432e6 −0.646930
\(322\) 0 0
\(323\) −1.99977e6 −1.06653
\(324\) 485151. + 840306.i 0.256752 + 0.444708i
\(325\) 277554. 480737.i 0.145760 0.252464i
\(326\) 94744.8 164103.i 0.0493755 0.0855209i
\(327\) 351836. + 609397.i 0.181958 + 0.315160i
\(328\) −1.10092e6 −0.565029
\(329\) 0 0
\(330\) −830844. −0.419986
\(331\) −690248. 1.19554e6i −0.346286 0.599785i 0.639301 0.768957i \(-0.279224\pi\)
−0.985587 + 0.169172i \(0.945891\pi\)
\(332\) 367637. 636766.i 0.183052 0.317055i
\(333\) 20349.6 35246.6i 0.0100565 0.0174183i
\(334\) 463338. + 802526.i 0.227265 + 0.393634i
\(335\) 1.23104e6 0.599320
\(336\) 0 0
\(337\) 566429. 0.271688 0.135844 0.990730i \(-0.456625\pi\)
0.135844 + 0.990730i \(0.456625\pi\)
\(338\) −657036. 1.13802e6i −0.312822 0.541824i
\(339\) 714765. 1.23801e6i 0.337803 0.585092i
\(340\) 178326. 308869.i 0.0836598 0.144903i
\(341\) 2.85062e6 + 4.93743e6i 1.32756 + 2.29940i
\(342\) −50874.1 −0.0235197
\(343\) 0 0
\(344\) −345727. −0.157520
\(345\) 616848. + 1.06841e6i 0.279017 + 0.483272i
\(346\) −268678. + 465365.i −0.120654 + 0.208979i
\(347\) −270104. + 467833.i −0.120422 + 0.208577i −0.919934 0.392073i \(-0.871758\pi\)
0.799512 + 0.600650i \(0.205092\pi\)
\(348\) −15645.1 27098.2i −0.00692518 0.0119948i
\(349\) −1.73807e6 −0.763841 −0.381921 0.924195i \(-0.624737\pi\)
−0.381921 + 0.924195i \(0.624737\pi\)
\(350\) 0 0
\(351\) 772180. 0.334542
\(352\) −320447. 555031.i −0.137848 0.238759i
\(353\) 537109. 930300.i 0.229417 0.397362i −0.728219 0.685345i \(-0.759651\pi\)
0.957635 + 0.287983i \(0.0929847\pi\)
\(354\) −80116.8 + 138766.i −0.0339794 + 0.0588540i
\(355\) 328435. + 568866.i 0.138318 + 0.239574i
\(356\) −1.58464e6 −0.662682
\(357\) 0 0
\(358\) −186337. −0.0768409
\(359\) −60601.9 104966.i −0.0248170 0.0429844i 0.853350 0.521338i \(-0.174567\pi\)
−0.878167 + 0.478354i \(0.841234\pi\)
\(360\) 4536.59 7857.61i 0.00184490 0.00319547i
\(361\) −536639. + 929486.i −0.216728 + 0.375383i
\(362\) −1.65842e6 2.87247e6i −0.665156 1.15208i
\(363\) −3.64535e6 −1.45202
\(364\) 0 0
\(365\) 150160. 0.0589959
\(366\) −66207.4 114675.i −0.0258347 0.0447470i
\(367\) −276914. + 479630.i −0.107320 + 0.185884i −0.914684 0.404171i \(-0.867560\pi\)
0.807364 + 0.590054i \(0.200894\pi\)
\(368\) −475823. + 824150.i −0.183158 + 0.317239i
\(369\) −58063.8 100570.i −0.0221993 0.0384504i
\(370\) 506413. 0.192309
\(371\) 0 0
\(372\) −2.30333e6 −0.862977
\(373\) 250739. + 434293.i 0.0933146 + 0.161626i 0.908904 0.417006i \(-0.136920\pi\)
−0.815589 + 0.578631i \(0.803587\pi\)
\(374\) 1.32868e6 2.30135e6i 0.491182 0.850752i
\(375\) −963927. + 1.66957e6i −0.353970 + 0.613093i
\(376\) −60007.7 103936.i −0.0218896 0.0379139i
\(377\) −25593.6 −0.00927422
\(378\) 0 0
\(379\) 999004. 0.357248 0.178624 0.983917i \(-0.442835\pi\)
0.178624 + 0.983917i \(0.442835\pi\)
\(380\) −316508. 548209.i −0.112441 0.194754i
\(381\) 1.48321e6 2.56900e6i 0.523469 0.906676i
\(382\) −943833. + 1.63477e6i −0.330930 + 0.573188i
\(383\) 326232. + 565050.i 0.113640 + 0.196829i 0.917235 0.398346i \(-0.130416\pi\)
−0.803596 + 0.595176i \(0.797082\pi\)
\(384\) 258925. 0.0896077
\(385\) 0 0
\(386\) −2.75342e6 −0.940597
\(387\) −18234.1 31582.3i −0.00618879 0.0107193i
\(388\) −924387. + 1.60109e6i −0.311727 + 0.539927i
\(389\) 39626.5 68635.1i 0.0132774 0.0229971i −0.859310 0.511454i \(-0.829107\pi\)
0.872588 + 0.488457i \(0.162440\pi\)
\(390\) −137277. 237771.i −0.0457021 0.0791583i
\(391\) −3.94585e6 −1.30526
\(392\) 0 0
\(393\) 2.44026e6 0.796992
\(394\) 623830. + 1.08050e6i 0.202454 + 0.350660i
\(395\) −31288.0 + 54192.4i −0.0100899 + 0.0174762i
\(396\) 33801.6 58546.1i 0.0108318 0.0187612i
\(397\) 2.00443e6 + 3.47177e6i 0.638284 + 1.10554i 0.985809 + 0.167870i \(0.0536889\pi\)
−0.347525 + 0.937671i \(0.612978\pi\)
\(398\) −1.14885e6 −0.363542
\(399\) 0 0
\(400\) −687104. −0.214720
\(401\) −337209. 584063.i −0.104722 0.181384i 0.808903 0.587943i \(-0.200062\pi\)
−0.913625 + 0.406559i \(0.866729\pi\)
\(402\) −1.85283e6 + 3.20919e6i −0.571834 + 0.990445i
\(403\) −941994. + 1.63158e6i −0.288925 + 0.500433i
\(404\) 87611.7 + 151748.i 0.0267060 + 0.0462561i
\(405\) −1.27352e6 −0.385806
\(406\) 0 0
\(407\) 3.77322e6 1.12908
\(408\) 536795. + 929756.i 0.159646 + 0.276515i
\(409\) −1.42706e6 + 2.47175e6i −0.421828 + 0.730627i −0.996118 0.0880244i \(-0.971945\pi\)
0.574291 + 0.818652i \(0.305278\pi\)
\(410\) 722478. 1.25137e6i 0.212258 0.367642i
\(411\) 863171. + 1.49506e6i 0.252053 + 0.436569i
\(412\) 2.20359e6 0.639570
\(413\) 0 0
\(414\) −100382. −0.0287843
\(415\) 482523. + 835755.i 0.137530 + 0.238209i
\(416\) 105892. 183411.i 0.0300007 0.0519627i
\(417\) 1.61745e6 2.80151e6i 0.455503 0.788954i
\(418\) −2.35827e6 4.08464e6i −0.660164 1.14344i
\(419\) 4.66553e6 1.29827 0.649136 0.760672i \(-0.275130\pi\)
0.649136 + 0.760672i \(0.275130\pi\)
\(420\) 0 0
\(421\) −3.73317e6 −1.02653 −0.513266 0.858229i \(-0.671565\pi\)
−0.513266 + 0.858229i \(0.671565\pi\)
\(422\) −920987. 1.59520e6i −0.251752 0.436047i
\(423\) 6329.77 10963.5i 0.00172003 0.00297919i
\(424\) 598631. 1.03686e6i 0.161713 0.280095i
\(425\) −1.42448e6 2.46728e6i −0.382547 0.662591i
\(426\) −1.97731e6 −0.527898
\(427\) 0 0
\(428\) 1.20917e6 0.319064
\(429\) −1.02283e6 1.77160e6i −0.268325 0.464753i
\(430\) 226883. 392973.i 0.0591740 0.102492i
\(431\) −482335. + 835429.i −0.125071 + 0.216629i −0.921761 0.387760i \(-0.873249\pi\)
0.796690 + 0.604388i \(0.206582\pi\)
\(432\) −477896. 827741.i −0.123204 0.213395i
\(433\) 6.18096e6 1.58429 0.792147 0.610330i \(-0.208963\pi\)
0.792147 + 0.610330i \(0.208963\pi\)
\(434\) 0 0
\(435\) 41068.5 0.0104060
\(436\) −356210. 616974.i −0.0897409 0.155436i
\(437\) −3.50172e6 + 6.06516e6i −0.877158 + 1.51928i
\(438\) −226005. + 391452.i −0.0562902 + 0.0974975i
\(439\) −107567. 186312.i −0.0266391 0.0461402i 0.852399 0.522893i \(-0.175147\pi\)
−0.879038 + 0.476752i \(0.841814\pi\)
\(440\) 841174. 0.207135
\(441\) 0 0
\(442\) 878132. 0.213798
\(443\) 3.59934e6 + 6.23423e6i 0.871391 + 1.50929i 0.860558 + 0.509353i \(0.170115\pi\)
0.0108335 + 0.999941i \(0.496552\pi\)
\(444\) −762200. + 1.32017e6i −0.183490 + 0.317813i
\(445\) 1.03992e6 1.80119e6i 0.248943 0.431182i
\(446\) 2.39551e6 + 4.14915e6i 0.570245 + 0.987694i
\(447\) 6.42109e6 1.51999
\(448\) 0 0
\(449\) 3.92153e6 0.917994 0.458997 0.888438i \(-0.348209\pi\)
0.458997 + 0.888438i \(0.348209\pi\)
\(450\) −36238.7 62767.3i −0.00843610 0.0146118i
\(451\) 5.38309e6 9.32379e6i 1.24621 2.15850i
\(452\) −723652. + 1.25340e6i −0.166603 + 0.288565i
\(453\) −3.29375e6 5.70494e6i −0.754128 1.30619i
\(454\) 3.57824e6 0.814761
\(455\) 0 0
\(456\) 1.90550e6 0.429138
\(457\) −660839. 1.14461e6i −0.148015 0.256369i 0.782479 0.622677i \(-0.213955\pi\)
−0.930494 + 0.366308i \(0.880622\pi\)
\(458\) 518512. 898090.i 0.115504 0.200058i
\(459\) 1.98152e6 3.43209e6i 0.439002 0.760375i
\(460\) −624518. 1.08170e6i −0.137610 0.238348i
\(461\) 75459.1 0.0165371 0.00826855 0.999966i \(-0.497368\pi\)
0.00826855 + 0.999966i \(0.497368\pi\)
\(462\) 0 0
\(463\) −3.28757e6 −0.712727 −0.356363 0.934347i \(-0.615984\pi\)
−0.356363 + 0.934347i \(0.615984\pi\)
\(464\) 15839.7 + 27435.1i 0.00341547 + 0.00591577i
\(465\) 1.51156e6 2.61810e6i 0.324186 0.561506i
\(466\) 422630. 732016.i 0.0901561 0.156155i
\(467\) −321691. 557185.i −0.0682569 0.118224i 0.829877 0.557946i \(-0.188410\pi\)
−0.898134 + 0.439722i \(0.855077\pi\)
\(468\) 22339.6 0.00471477
\(469\) 0 0
\(470\) 157520. 0.0328921
\(471\) −942605. 1.63264e6i −0.195784 0.339108i
\(472\) 81112.9 140492.i 0.0167585 0.0290266i
\(473\) 1.69048e6 2.92799e6i 0.347422 0.601752i
\(474\) −94182.9 163130.i −0.0192542 0.0333493i
\(475\) −5.05660e6 −1.02831
\(476\) 0 0
\(477\) 126290. 0.0254141
\(478\) 926.036 + 1603.94i 0.000185378 + 0.000321084i
\(479\) −3.71324e6 + 6.43152e6i −0.739459 + 1.28078i 0.213280 + 0.976991i \(0.431585\pi\)
−0.952739 + 0.303790i \(0.901748\pi\)
\(480\) −169919. + 294309.i −0.0336620 + 0.0583043i
\(481\) 623434. + 1.07982e6i 0.122865 + 0.212808i
\(482\) 1.14558e6 0.224599
\(483\) 0 0
\(484\) 3.69067e6 0.716130
\(485\) −1.21326e6 2.10143e6i −0.234207 0.405658i
\(486\) 102260. 177119.i 0.0196388 0.0340154i
\(487\) 2.08542e6 3.61206e6i 0.398448 0.690132i −0.595087 0.803662i \(-0.702882\pi\)
0.993535 + 0.113529i \(0.0362156\pi\)
\(488\) 67030.6 + 116100.i 0.0127416 + 0.0220691i
\(489\) −748651. −0.141582
\(490\) 0 0
\(491\) −3.73674e6 −0.699502 −0.349751 0.936843i \(-0.613734\pi\)
−0.349751 + 0.936843i \(0.613734\pi\)
\(492\) 2.17480e6 + 3.76686e6i 0.405048 + 0.701563i
\(493\) −65676.6 + 113755.i −0.0121701 + 0.0210792i
\(494\) 779293. 1.34978e6i 0.143676 0.248854i
\(495\) 44364.6 + 76841.7i 0.00813811 + 0.0140956i
\(496\) 2.33197e6 0.425617
\(497\) 0 0
\(498\) −2.90498e6 −0.524891
\(499\) −4.35431e6 7.54188e6i −0.782831 1.35590i −0.930286 0.366834i \(-0.880442\pi\)
0.147456 0.989069i \(-0.452892\pi\)
\(500\) 975912. 1.69033e6i 0.174576 0.302375i
\(501\) 1.83059e6 3.17068e6i 0.325835 0.564363i
\(502\) 2.74336e6 + 4.75164e6i 0.485874 + 0.841558i
\(503\) −3.28384e6 −0.578711 −0.289355 0.957222i \(-0.593441\pi\)
−0.289355 + 0.957222i \(0.593441\pi\)
\(504\) 0 0
\(505\) −229981. −0.0401294
\(506\) −4.65321e6 8.05959e6i −0.807934 1.39938i
\(507\) −2.59587e6 + 4.49618e6i −0.448500 + 0.776826i
\(508\) −1.50166e6 + 2.60094e6i −0.258173 + 0.447169i
\(509\) −4.71851e6 8.17271e6i −0.807255 1.39821i −0.914758 0.404002i \(-0.867619\pi\)
0.107503 0.994205i \(-0.465714\pi\)
\(510\) −1.40909e6 −0.239890
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) −3.51698e6 6.09159e6i −0.590033 1.02197i
\(514\) 1.51845e6 2.63003e6i 0.253508 0.439089i
\(515\) −1.44611e6 + 2.50473e6i −0.240260 + 0.416143i
\(516\) 682962. + 1.18292e6i 0.112920 + 0.195584i
\(517\) 1.17366e6 0.193116
\(518\) 0 0
\(519\) 2.12303e6 0.345970
\(520\) 138984. + 240727.i 0.0225401 + 0.0390406i
\(521\) 2.95363e6 5.11584e6i 0.476719 0.825701i −0.522926 0.852378i \(-0.675159\pi\)
0.999644 + 0.0266776i \(0.00849276\pi\)
\(522\) −1670.81 + 2893.92i −0.000268380 + 0.000464848i
\(523\) 327168. + 566672.i 0.0523019 + 0.0905895i 0.890991 0.454021i \(-0.150011\pi\)
−0.838689 + 0.544610i \(0.816678\pi\)
\(524\) −2.47060e6 −0.393073
\(525\) 0 0
\(526\) 4.28978e6 0.676037
\(527\) 4.83457e6 + 8.37373e6i 0.758284 + 1.31339i
\(528\) −1.26605e6 + 2.19286e6i −0.197636 + 0.342315i
\(529\) −3.69124e6 + 6.39342e6i −0.573500 + 0.993331i
\(530\) 785704. + 1.36088e6i 0.121498 + 0.210441i
\(531\) 17112.0 0.00263369
\(532\) 0 0
\(533\) 3.55771e6 0.542440
\(534\) 3.13036e6 + 5.42194e6i 0.475052 + 0.822814i
\(535\) −793516. + 1.37441e6i −0.119859 + 0.207602i
\(536\) 1.87586e6 3.24909e6i 0.282026 0.488484i
\(537\) 368098. + 637565.i 0.0550843 + 0.0954088i
\(538\) −7.06445e6 −1.05226
\(539\) 0 0
\(540\) 1.25448e6 0.185131
\(541\) 431558. + 747480.i 0.0633936 + 0.109801i 0.895980 0.444094i \(-0.146474\pi\)
−0.832587 + 0.553895i \(0.813141\pi\)
\(542\) 4.10342e6 7.10734e6i 0.599996 1.03922i
\(543\) −6.55222e6 + 1.13488e7i −0.953649 + 1.65177i
\(544\) −543469. 941316.i −0.0787368 0.136376i
\(545\) 935052. 0.134848
\(546\) 0 0
\(547\) −5.45692e6 −0.779794 −0.389897 0.920859i \(-0.627489\pi\)
−0.389897 + 0.920859i \(0.627489\pi\)
\(548\) −873903. 1.51364e6i −0.124312 0.215314i
\(549\) −7070.55 + 12246.6i −0.00100120 + 0.00173414i
\(550\) 3.35969e6 5.81915e6i 0.473579 0.820263i
\(551\) 116569. + 201903.i 0.0163570 + 0.0283311i
\(552\) 3.75984e6 0.525196
\(553\) 0 0
\(554\) −3.48273e6 −0.482109
\(555\) −1.00039e6 1.73272e6i −0.137859 0.238779i
\(556\) −1.63756e6 + 2.83634e6i −0.224652 + 0.389109i
\(557\) −5.58881e6 + 9.68010e6i −0.763275 + 1.32203i 0.177879 + 0.984052i \(0.443077\pi\)
−0.941154 + 0.337979i \(0.890257\pi\)
\(558\) 122991. + 213027.i 0.0167220 + 0.0289634i
\(559\) 1.11724e6 0.151223
\(560\) 0 0
\(561\) −1.04989e7 −1.40844
\(562\) 4.70825e6 + 8.15493e6i 0.628809 + 1.08913i
\(563\) 440132. 762332.i 0.0585211 0.101361i −0.835281 0.549824i \(-0.814695\pi\)
0.893802 + 0.448462i \(0.148028\pi\)
\(564\) −237083. + 410640.i −0.0313836 + 0.0543580i
\(565\) −949793. 1.64509e6i −0.125172 0.216805i
\(566\) −8.76140e6 −1.14956
\(567\) 0 0
\(568\) 2.00189e6 0.260357
\(569\) 774858. + 1.34209e6i 0.100332 + 0.173781i 0.911822 0.410587i \(-0.134676\pi\)
−0.811489 + 0.584367i \(0.801343\pi\)
\(570\) −1.25049e6 + 2.16591e6i −0.161210 + 0.279224i
\(571\) 5.48507e6 9.50043e6i 0.704032 1.21942i −0.263008 0.964794i \(-0.584715\pi\)
0.967040 0.254625i \(-0.0819521\pi\)
\(572\) 1.03555e6 + 1.79363e6i 0.132337 + 0.229214i
\(573\) 7.45794e6 0.948926
\(574\) 0 0
\(575\) −9.97742e6 −1.25849
\(576\) −13825.8 23947.0i −0.00173634 0.00300743i
\(577\) −6.29341e6 + 1.09005e7i −0.786948 + 1.36303i 0.140880 + 0.990027i \(0.455007\pi\)
−0.927828 + 0.373008i \(0.878326\pi\)
\(578\) −586306. + 1.01551e6i −0.0729969 + 0.126434i
\(579\) 5.43921e6 + 9.42098e6i 0.674278 + 1.16788i
\(580\) −41579.1 −0.00513222
\(581\) 0 0
\(582\) 7.30428e6 0.893861
\(583\) 5.85418e6 + 1.01397e7i 0.713337 + 1.23554i
\(584\) 228815. 396319.i 0.0277621 0.0480854i
\(585\) −14660.4 + 25392.5i −0.00177115 + 0.00306772i
\(586\) 1.61540e6 + 2.79796e6i 0.194328 + 0.336587i
\(587\) −1.19962e7 −1.43697 −0.718484 0.695544i \(-0.755164\pi\)
−0.718484 + 0.695544i \(0.755164\pi\)
\(588\) 0 0
\(589\) 1.71617e7 2.03831
\(590\) 106461. + 184395.i 0.0125910 + 0.0218082i
\(591\) 2.46467e6 4.26894e6i 0.290262 0.502749i
\(592\) 771677. 1.33658e6i 0.0904964 0.156744i
\(593\) 2.66154e6 + 4.60993e6i 0.310811 + 0.538341i 0.978538 0.206065i \(-0.0660659\pi\)
−0.667727 + 0.744406i \(0.732733\pi\)
\(594\) 9.34696e6 1.08694
\(595\) 0 0
\(596\) −6.50092e6 −0.749651
\(597\) 2.26948e6 + 3.93085e6i 0.260609 + 0.451388i
\(598\) 1.53766e6 2.66331e6i 0.175836 0.304557i
\(599\) −3.77757e6 + 6.54293e6i −0.430175 + 0.745085i −0.996888 0.0788305i \(-0.974881\pi\)
0.566713 + 0.823915i \(0.308215\pi\)
\(600\) 1.35733e6 + 2.35097e6i 0.153925 + 0.266605i
\(601\) −4.44758e6 −0.502270 −0.251135 0.967952i \(-0.580804\pi\)
−0.251135 + 0.967952i \(0.580804\pi\)
\(602\) 0 0
\(603\) 395742. 0.0443219
\(604\) 3.33470e6 + 5.77588e6i 0.371933 + 0.644207i
\(605\) −2.42200e6 + 4.19503e6i −0.269021 + 0.465958i
\(606\) 346143. 599537.i 0.0382890 0.0663185i
\(607\) 2.78660e6 + 4.82653e6i 0.306975 + 0.531696i 0.977699 0.210011i \(-0.0673499\pi\)
−0.670724 + 0.741707i \(0.734017\pi\)
\(608\) −1.92919e6 −0.211649
\(609\) 0 0
\(610\) −175955. −0.0191460
\(611\) 193920. + 335879.i 0.0210145 + 0.0363982i
\(612\) 57326.5 99292.4i 0.00618695 0.0107161i
\(613\) 5.56323e6 9.63580e6i 0.597965 1.03571i −0.395156 0.918614i \(-0.629309\pi\)
0.993121 0.117092i \(-0.0373573\pi\)
\(614\) −423032. 732713.i −0.0452848 0.0784356i
\(615\) −5.70884e6 −0.608640
\(616\) 0 0
\(617\) −1.07454e7 −1.13634 −0.568170 0.822911i \(-0.692349\pi\)
−0.568170 + 0.822911i \(0.692349\pi\)
\(618\) −4.35306e6 7.53972e6i −0.458483 0.794116i
\(619\) 6.78781e6 1.17568e7i 0.712038 1.23329i −0.252053 0.967713i \(-0.581106\pi\)
0.964091 0.265572i \(-0.0855610\pi\)
\(620\) −1.53036e6 + 2.65065e6i −0.159887 + 0.276933i
\(621\) −6.93952e6 1.20196e7i −0.722105 1.25072i
\(622\) −1.16684e6 −0.120930
\(623\) 0 0
\(624\) −836736. −0.0860254
\(625\) −2.91287e6 5.04523e6i −0.298277 0.516632i
\(626\) 3.99195e6 6.91427e6i 0.407145 0.705197i
\(627\) −9.31722e6 + 1.61379e7i −0.946493 + 1.63937i
\(628\) 954324. + 1.65294e6i 0.0965599 + 0.167247i
\(629\) 6.39927e6 0.644917
\(630\) 0 0
\(631\) 1.27986e7 1.27964 0.639820 0.768525i \(-0.279009\pi\)
0.639820 + 0.768525i \(0.279009\pi\)
\(632\) 95353.9 + 165158.i 0.00949611 + 0.0164478i
\(633\) −3.63871e6 + 6.30242e6i −0.360942 + 0.625170i
\(634\) −5.61914e6 + 9.73264e6i −0.555197 + 0.961629i
\(635\) −1.97092e6 3.41374e6i −0.193970 0.335966i
\(636\) −4.73024e6 −0.463703
\(637\) 0 0
\(638\) −309801. −0.0301322
\(639\) 105582. + 182874.i 0.0102291 + 0.0177174i
\(640\) 172032. 297968.i 0.0166020 0.0287554i
\(641\) 442417. 766288.i 0.0425291 0.0736626i −0.843977 0.536379i \(-0.819792\pi\)
0.886506 + 0.462716i \(0.153125\pi\)
\(642\) −2.38864e6 4.13724e6i −0.228724 0.396162i
\(643\) −6.66271e6 −0.635511 −0.317756 0.948173i \(-0.602929\pi\)
−0.317756 + 0.948173i \(0.602929\pi\)
\(644\) 0 0
\(645\) −1.79277e6 −0.169678
\(646\) −3.99955e6 6.92742e6i −0.377077 0.653116i
\(647\) −8.45887e6 + 1.46512e7i −0.794423 + 1.37598i 0.128782 + 0.991673i \(0.458893\pi\)
−0.923205 + 0.384308i \(0.874440\pi\)
\(648\) −1.94060e6 + 3.36123e6i −0.181551 + 0.314456i
\(649\) 793226. + 1.37391e6i 0.0739239 + 0.128040i
\(650\) 2.22043e6 0.206136
\(651\) 0 0
\(652\) 757959. 0.0698275
\(653\) −4.74654e6 8.22124e6i −0.435606 0.754492i 0.561739 0.827315i \(-0.310133\pi\)
−0.997345 + 0.0728230i \(0.976799\pi\)
\(654\) −1.40734e6 + 2.43759e6i −0.128664 + 0.222852i
\(655\) 1.62133e6 2.80822e6i 0.147662 0.255758i
\(656\) −2.20184e6 3.81369e6i −0.199768 0.346008i
\(657\) 48272.0 0.00436297
\(658\) 0 0
\(659\) −4.97563e6 −0.446308 −0.223154 0.974783i \(-0.571635\pi\)
−0.223154 + 0.974783i \(0.571635\pi\)
\(660\) −1.66169e6 2.87813e6i −0.148487 0.257188i
\(661\) 1.05765e7 1.83191e7i 0.941543 1.63080i 0.179013 0.983847i \(-0.442710\pi\)
0.762530 0.646953i \(-0.223957\pi\)
\(662\) 2.76099e6 4.78218e6i 0.244861 0.424112i
\(663\) −1.73470e6 3.00458e6i −0.153264 0.265461i
\(664\) 2.94110e6 0.258874
\(665\) 0 0
\(666\) 162797. 0.0142220
\(667\) 230007. + 398384.i 0.0200183 + 0.0346727i
\(668\) −1.85335e6 + 3.21010e6i −0.160700 + 0.278341i
\(669\) 9.46438e6 1.63928e7i 0.817574 1.41608i
\(670\) 2.46207e6 + 4.26443e6i 0.211892 + 0.367007i
\(671\) −1.31102e6 −0.112410
\(672\) 0 0
\(673\) 417573. 0.0355382 0.0177691 0.999842i \(-0.494344\pi\)
0.0177691 + 0.999842i \(0.494344\pi\)
\(674\) 1.13286e6 + 1.96217e6i 0.0960562 + 0.166374i
\(675\) 5.01044e6 8.67834e6i 0.423269 0.733124i
\(676\) 2.62814e6 4.55208e6i 0.221199 0.383127i
\(677\) 1.31234e6 + 2.27304e6i 0.110046 + 0.190605i 0.915789 0.401661i \(-0.131567\pi\)
−0.805743 + 0.592266i \(0.798233\pi\)
\(678\) 5.71812e6 0.477726
\(679\) 0 0
\(680\) 1.42661e6 0.118313
\(681\) −7.06860e6 1.22432e7i −0.584071 1.01164i
\(682\) −1.14025e7 + 1.97497e7i −0.938726 + 1.62592i
\(683\) 4.37227e6 7.57300e6i 0.358637 0.621178i −0.629096 0.777328i \(-0.716575\pi\)
0.987733 + 0.156149i \(0.0499081\pi\)
\(684\) −101748. 176233.i −0.00831546 0.0144028i
\(685\) 2.29399e6 0.186795
\(686\) 0 0
\(687\) −4.09716e6 −0.331200
\(688\) −691453. 1.19763e6i −0.0556919 0.0964611i
\(689\) −1.93452e6 + 3.35069e6i −0.155248 + 0.268898i
\(690\) −2.46739e6 + 4.27365e6i −0.197295 + 0.341725i
\(691\) 2.19834e6 + 3.80763e6i 0.175146 + 0.303361i 0.940212 0.340591i \(-0.110627\pi\)
−0.765066 + 0.643952i \(0.777294\pi\)
\(692\) −2.14943e6 −0.170631
\(693\) 0 0
\(694\) −2.16083e6 −0.170303
\(695\) −2.14930e6 3.72270e6i −0.168786 0.292345i
\(696\) 62580.6 108393.i 0.00489684 0.00848158i
\(697\) 9.12957e6 1.58129e7i 0.711817 1.23290i
\(698\) −3.47614e6 6.02084e6i −0.270059 0.467755i
\(699\) −3.33951e6 −0.258518
\(700\) 0 0
\(701\) 6.51339e6 0.500624 0.250312 0.968165i \(-0.419467\pi\)
0.250312 + 0.968165i \(0.419467\pi\)
\(702\) 1.54436e6 + 2.67491e6i 0.118278 + 0.204864i
\(703\) 5.67900e6 9.83631e6i 0.433394 0.750661i
\(704\) 1.28179e6 2.22012e6i 0.0974731 0.168828i
\(705\) −311172. 538965.i −0.0235791 0.0408402i
\(706\) 4.29687e6 0.324445
\(707\) 0 0
\(708\) −640934. −0.0480541
\(709\) 5.23256e6 + 9.06305e6i 0.390929 + 0.677110i 0.992572 0.121655i \(-0.0388203\pi\)
−0.601643 + 0.798765i \(0.705487\pi\)
\(710\) −1.31374e6 + 2.27547e6i −0.0978056 + 0.169404i
\(711\) −10058.2 + 17421.3i −0.000746183 + 0.00129243i
\(712\) −3.16928e6 5.48935e6i −0.234294 0.405808i
\(713\) 3.38625e7 2.49457
\(714\) 0 0
\(715\) −2.71832e6 −0.198855
\(716\) −372675. 645492.i −0.0271674 0.0470553i
\(717\) 3658.66 6336.98i 0.000265781 0.000460346i
\(718\) 242408. 419862.i 0.0175483 0.0303946i
\(719\) −8.40746e6 1.45621e7i −0.606516 1.05052i −0.991810 0.127723i \(-0.959233\pi\)
0.385294 0.922794i \(-0.374100\pi\)
\(720\) 36292.7 0.00260909
\(721\) 0 0
\(722\) −4.29311e6 −0.306499
\(723\) −2.26302e6 3.91967e6i −0.161006 0.278871i
\(724\) 6.63368e6 1.14899e7i 0.470336 0.814646i
\(725\) −166069. + 287640.i −0.0117339 + 0.0203238i
\(726\) −7.29069e6 1.26278e7i −0.513366 0.889176i
\(727\) 1.71928e7 1.20646 0.603228 0.797569i \(-0.293881\pi\)
0.603228 + 0.797569i \(0.293881\pi\)
\(728\) 0 0
\(729\) 1.39284e7 0.970696
\(730\) 300320. + 520169.i 0.0208582 + 0.0361275i
\(731\) 2.86700e6 4.96579e6i 0.198442 0.343712i
\(732\) 264830. 458698.i 0.0182679 0.0316409i
\(733\) 9.86827e6 + 1.70923e7i 0.678393 + 1.17501i 0.975465 + 0.220155i \(0.0706564\pi\)
−0.297072 + 0.954855i \(0.596010\pi\)
\(734\) −2.21531e6 −0.151773
\(735\) 0 0
\(736\) −3.80659e6 −0.259025
\(737\) 1.83446e7 + 3.17738e7i 1.24405 + 2.15477i
\(738\) 232255. 402278.i 0.0156973 0.0271885i
\(739\) −6.43593e6 + 1.11474e7i −0.433511 + 0.750863i −0.997173 0.0751426i \(-0.976059\pi\)
0.563662 + 0.826006i \(0.309392\pi\)
\(740\) 1.01283e6 + 1.75427e6i 0.0679916 + 0.117765i
\(741\) −6.15778e6 −0.411983
\(742\) 0 0
\(743\) 2.45606e7 1.63218 0.816089 0.577927i \(-0.196138\pi\)
0.816089 + 0.577927i \(0.196138\pi\)
\(744\) −4.60667e6 7.97898e6i −0.305109 0.528464i
\(745\) 4.26623e6 7.38933e6i 0.281614 0.487769i
\(746\) −1.00296e6 + 1.73717e6i −0.0659834 + 0.114287i
\(747\) 155117. + 268671.i 0.0101709 + 0.0176165i
\(748\) 1.06295e7 0.694636
\(749\) 0 0
\(750\) −7.71142e6 −0.500589
\(751\) 162983. + 282294.i 0.0105449 + 0.0182643i 0.871250 0.490840i \(-0.163310\pi\)
−0.860705 + 0.509104i \(0.829977\pi\)
\(752\) 240031. 415746.i 0.0154783 0.0268092i
\(753\) 1.08387e7 1.87731e7i 0.696609 1.20656i
\(754\) −51187.1 88658.7i −0.00327893 0.00567928i
\(755\) −8.75360e6 −0.558881
\(756\) 0 0
\(757\) 1.84659e7 1.17120 0.585599 0.810601i \(-0.300859\pi\)
0.585599 + 0.810601i \(0.300859\pi\)
\(758\) 1.99801e6 + 3.46065e6i 0.126306 + 0.218769i
\(759\) −1.83842e7 + 3.18424e7i −1.15835 + 2.00633i
\(760\) 1.26603e6 2.19283e6i 0.0795081 0.137712i
\(761\) 2.56313e6 + 4.43947e6i 0.160439 + 0.277888i 0.935026 0.354579i \(-0.115376\pi\)
−0.774587 + 0.632467i \(0.782042\pi\)
\(762\) 1.18657e7 0.740298
\(763\) 0 0
\(764\) −7.55066e6 −0.468006
\(765\) 75241.0 + 130321.i 0.00464837 + 0.00805122i
\(766\) −1.30493e6 + 2.26020e6i −0.0803553 + 0.139179i
\(767\) −262123. + 454010.i −0.0160885 + 0.0278662i
\(768\) 517849. + 896941.i 0.0316811 + 0.0548733i
\(769\) −1.63432e6 −0.0996602 −0.0498301 0.998758i \(-0.515868\pi\)
−0.0498301 + 0.998758i \(0.515868\pi\)
\(770\) 0 0
\(771\) −1.19984e7 −0.726921
\(772\) −5.50683e6 9.53811e6i −0.332551 0.575996i
\(773\) −2.14128e6 + 3.70881e6i −0.128892 + 0.223247i −0.923248 0.384206i \(-0.874475\pi\)
0.794356 + 0.607453i \(0.207809\pi\)
\(774\) 72936.2 126329.i 0.00437614 0.00757969i
\(775\) 1.22246e7 + 2.11737e7i 0.731108 + 1.26632i
\(776\) −7.39510e6 −0.440849
\(777\) 0 0
\(778\) 317012. 0.0187770
\(779\) −1.62040e7 2.80661e7i −0.956704 1.65706i
\(780\) 549108. 951082.i 0.0323163 0.0559734i
\(781\) −9.78852e6 + 1.69542e7i −0.574235 + 0.994604i
\(782\) −7.89170e6 1.36688e7i −0.461481 0.799308i
\(783\) −462019. −0.0269312
\(784\) 0 0
\(785\) −2.50510e6 −0.145095
\(786\) 4.88051e6 + 8.45329e6i 0.281779 + 0.488056i
\(787\) −3.91482e6 + 6.78066e6i −0.225307 + 0.390243i −0.956411 0.292022i \(-0.905672\pi\)
0.731105 + 0.682265i \(0.239005\pi\)
\(788\) −2.49532e6 + 4.32202e6i −0.143156 + 0.247954i
\(789\) −8.47419e6 1.46777e7i −0.484625 0.839395i
\(790\) −250304. −0.0142692
\(791\) 0 0
\(792\) 270413. 0.0153184
\(793\) −216615. 375187.i −0.0122322 0.0211868i
\(794\) −8.01771e6 + 1.38871e7i −0.451335 + 0.781736i
\(795\) 3.10422e6 5.37666e6i 0.174195 0.301714i
\(796\) −2.29769e6 3.97972e6i −0.128531 0.222623i
\(797\) 3.68238e6 0.205344 0.102672 0.994715i \(-0.467261\pi\)
0.102672 + 0.994715i \(0.467261\pi\)
\(798\) 0 0
\(799\) 1.99050e6 0.110305
\(800\) −1.37421e6 2.38020e6i −0.0759150 0.131489i
\(801\) 334304. 579031.i 0.0184102 0.0318875i
\(802\) 1.34884e6 2.33625e6i 0.0740497 0.128258i
\(803\) 2.23765e6 + 3.87572e6i 0.122462 + 0.212111i
\(804\) −1.48226e7 −0.808695
\(805\) 0 0
\(806\) −7.53595e6 −0.408602
\(807\) 1.39554e7 + 2.41714e7i 0.754324 + 1.30653i
\(808\) −350447. + 606992.i −0.0188840 + 0.0327080i
\(809\) −1.04091e7 + 1.80290e7i −0.559165 + 0.968502i 0.438402 + 0.898779i \(0.355545\pi\)
−0.997566 + 0.0697227i \(0.977789\pi\)
\(810\) −2.54704e6 4.41161e6i −0.136403 0.236257i
\(811\) −3.03542e7 −1.62057 −0.810283 0.586039i \(-0.800687\pi\)
−0.810283 + 0.586039i \(0.800687\pi\)
\(812\) 0 0
\(813\) −3.24243e7 −1.72046
\(814\) 7.54644e6 + 1.30708e7i 0.399191 + 0.691420i
\(815\) −497410. + 861540.i −0.0262314 + 0.0454341i
\(816\) −2.14718e6 + 3.71902e6i −0.112887 + 0.195526i
\(817\) −5.08861e6 8.81373e6i −0.266713 0.461960i
\(818\) −1.14165e7 −0.596555
\(819\) 0 0
\(820\) 5.77982e6 0.300179
\(821\) −1.37193e7 2.37626e7i −0.710355 1.23037i −0.964724 0.263264i \(-0.915201\pi\)
0.254369 0.967107i \(-0.418132\pi\)
\(822\) −3.45268e6 + 5.98022e6i −0.178228 + 0.308701i
\(823\) −7.95629e6 + 1.37807e7i −0.409459 + 0.709204i −0.994829 0.101562i \(-0.967616\pi\)
0.585370 + 0.810766i \(0.300949\pi\)
\(824\) 4.40718e6 + 7.63346e6i 0.226122 + 0.391655i
\(825\) −2.65474e7 −1.35796
\(826\) 0 0
\(827\) 1.40824e7 0.716001 0.358001 0.933721i \(-0.383459\pi\)
0.358001 + 0.933721i \(0.383459\pi\)
\(828\) −200764. 347734.i −0.0101768 0.0176267i
\(829\) 1.09441e7 1.89558e7i 0.553089 0.957978i −0.444960 0.895550i \(-0.646782\pi\)
0.998049 0.0624281i \(-0.0198844\pi\)
\(830\) −1.93009e6 + 3.34302e6i −0.0972486 + 0.168439i
\(831\) 6.87992e6 + 1.19164e7i 0.345605 + 0.598606i
\(832\) 847139. 0.0424274
\(833\) 0 0
\(834\) 1.29396e7 0.644179
\(835\) −2.43253e6 4.21326e6i −0.120737 0.209123i
\(836\) 9.43306e6 1.63385e7i 0.466807 0.808533i
\(837\) −1.70050e7 + 2.94535e7i −0.839003 + 1.45320i
\(838\) 9.33106e6 + 1.61619e7i 0.459009 + 0.795026i
\(839\) 1.98669e7 0.974372 0.487186 0.873298i \(-0.338023\pi\)
0.487186 + 0.873298i \(0.338023\pi\)
\(840\) 0 0
\(841\) −2.04958e7 −0.999253
\(842\) −7.46635e6 1.29321e7i −0.362934 0.628620i
\(843\) 1.86017e7 3.22191e7i 0.901538 1.56151i
\(844\) 3.68395e6 6.38078e6i 0.178015 0.308332i
\(845\) 3.44944e6 + 5.97460e6i 0.166191 + 0.287851i
\(846\) 50638.1 0.00243249
\(847\) 0 0
\(848\) 4.78905e6 0.228697
\(849\) 1.73076e7 + 2.99777e7i 0.824077 + 1.42734i
\(850\) 5.69793e6 9.86911e6i 0.270502 0.468523i
\(851\) 1.12055e7 1.94085e7i 0.530405 0.918688i
\(852\) −3.95461e6 6.84959e6i −0.186640 0.323270i
\(853\) −8.75258e6 −0.411873 −0.205937 0.978565i \(-0.566024\pi\)
−0.205937 + 0.978565i \(0.566024\pi\)
\(854\) 0 0
\(855\) 267089. 0.0124951
\(856\) 2.41834e6 + 4.18868e6i 0.112806 + 0.195386i
\(857\) −977384. + 1.69288e6i −0.0454583 + 0.0787361i −0.887859 0.460115i \(-0.847808\pi\)
0.842401 + 0.538851i \(0.181141\pi\)
\(858\) 4.09133e6 7.08640e6i 0.189735 0.328630i
\(859\) 2.49225e6 + 4.31670e6i 0.115241 + 0.199604i 0.917876 0.396867i \(-0.129902\pi\)
−0.802635 + 0.596471i \(0.796569\pi\)
\(860\) 1.81506e6 0.0836847
\(861\) 0 0
\(862\) −3.85868e6 −0.176877
\(863\) 8.49654e6 + 1.47164e7i 0.388343 + 0.672629i 0.992227 0.124443i \(-0.0397144\pi\)
−0.603884 + 0.797072i \(0.706381\pi\)
\(864\) 1.91159e6 3.31096e6i 0.0871183 0.150893i
\(865\) 1.41056e6 2.44316e6i 0.0640991 0.111023i
\(866\) 1.23619e7 + 2.14115e7i 0.560133 + 0.970179i
\(867\) 4.63285e6 0.209315
\(868\) 0 0
\(869\) −1.86498e6 −0.0837772
\(870\) 82137.0 + 142265.i 0.00367909 + 0.00637237i
\(871\) −6.06200e6 + 1.04997e7i −0.270751 + 0.468955i
\(872\) 1.42484e6 2.46790e6i 0.0634564 0.109910i
\(873\) −390027. 675546.i −0.0173204 0.0299999i
\(874\) −2.80138e7 −1.24049
\(875\) 0 0
\(876\) −1.80804e6 −0.0796064
\(877\) −9.09797e6 1.57581e7i −0.399434 0.691840i 0.594222 0.804301i \(-0.297460\pi\)
−0.993656 + 0.112461i \(0.964127\pi\)
\(878\) 430269. 745249.i 0.0188367 0.0326261i
\(879\) 6.38225e6 1.10544e7i 0.278613 0.482572i
\(880\) 1.68235e6 + 2.91391e6i 0.0732334 + 0.126844i
\(881\) −1.77637e7 −0.771068 −0.385534 0.922694i \(-0.625983\pi\)
−0.385534 + 0.922694i \(0.625983\pi\)
\(882\) 0 0
\(883\) 1.71479e6 0.0740131 0.0370065 0.999315i \(-0.488218\pi\)
0.0370065 + 0.999315i \(0.488218\pi\)
\(884\) 1.75626e6 + 3.04194e6i 0.0755891 + 0.130924i
\(885\) 420613. 728523.i 0.0180520 0.0312669i
\(886\) −1.43973e7 + 2.49369e7i −0.616167 + 1.06723i
\(887\) −1.21218e7 2.09955e7i −0.517318 0.896021i −0.999798 0.0201139i \(-0.993597\pi\)
0.482480 0.875907i \(-0.339736\pi\)
\(888\) −6.09760e6 −0.259494
\(889\) 0 0
\(890\) 8.31936e6 0.352058
\(891\) −1.89777e7 3.28704e7i −0.800847 1.38711i
\(892\) −9.58206e6 + 1.65966e7i −0.403224 + 0.698405i
\(893\) 1.76646e6 3.05960e6i 0.0741267 0.128391i
\(894\) 1.28422e7 + 2.22433e7i 0.537396 + 0.930798i
\(895\) 978272. 0.0408227
\(896\) 0 0
\(897\) −1.21502e7 −0.504200
\(898\) 7.84306e6 + 1.35846e7i 0.324560 + 0.562154i
\(899\) 563624. 976225.i 0.0232589 0.0402857i
\(900\) 144955. 251069.i 0.00596522 0.0103321i
\(901\) 9.92852e6 + 1.71967e7i 0.407448 + 0.705721i
\(902\) 4.30647e7 1.76240
\(903\) 0 0
\(904\) −5.78921e6 −0.235613
\(905\) 8.70671e6 + 1.50805e7i 0.353372 + 0.612059i
\(906\) 1.31750e7 2.28198e7i 0.533249 0.923615i
\(907\) 9.52161e6 1.64919e7i 0.384319 0.665661i −0.607355 0.794430i \(-0.707769\pi\)
0.991675 + 0.128770i \(0.0411028\pi\)
\(908\) 7.15649e6 + 1.23954e7i 0.288062 + 0.498937i
\(909\) −73932.0 −0.00296772
\(910\) 0 0
\(911\) −3.18731e7 −1.27242 −0.636208 0.771518i \(-0.719498\pi\)
−0.636208 + 0.771518i \(0.719498\pi\)
\(912\) 3.81101e6 + 6.60085e6i 0.151723 + 0.262793i
\(913\) −1.43809e7 + 2.49084e7i −0.570964 + 0.988939i
\(914\) 2.64336e6 4.57843e6i 0.104662 0.181280i
\(915\) 347589. + 602041.i 0.0137250 + 0.0237724i
\(916\) 4.14810e6 0.163347
\(917\) 0 0
\(918\) 1.58522e7 0.620843
\(919\) 1.47429e7 + 2.55355e7i 0.575830 + 0.997367i 0.995951 + 0.0898988i \(0.0286544\pi\)
−0.420121 + 0.907468i \(0.638012\pi\)
\(920\) 2.49807e6 4.32679e6i 0.0973050 0.168537i
\(921\) −1.67135e6 + 2.89486e6i −0.0649259 + 0.112455i
\(922\) 150918. + 261398.i 0.00584675 + 0.0101269i
\(923\) −6.46927e6 −0.249949
\(924\) 0 0
\(925\) 1.61811e7 0.621804
\(926\) −6.57515e6 1.13885e7i −0.251987 0.436454i
\(927\) −464881. + 805197.i −0.0177681 + 0.0307753i
\(928\) −63358.6 + 109740.i −0.00241510 + 0.00418308i
\(929\) −4.86935e6 8.43397e6i −0.185111 0.320621i 0.758503 0.651670i \(-0.225931\pi\)
−0.943614 + 0.331048i \(0.892598\pi\)
\(930\) 1.20925e7 0.458468
\(931\) 0 0
\(932\) 3.38104e6 0.127500
\(933\) 2.30501e6 + 3.99240e6i 0.0866901 + 0.150152i
\(934\) 1.28676e6 2.22874e6i 0.0482649 0.0835973i
\(935\) −6.97559e6 + 1.20821e7i −0.260947 + 0.451973i
\(936\) 44679.2 + 77386.6i 0.00166692 + 0.00288720i
\(937\) −2.66734e7 −0.992498 −0.496249 0.868180i \(-0.665290\pi\)
−0.496249 + 0.868180i \(0.665290\pi\)
\(938\) 0 0
\(939\) −3.15434e7 −1.16747
\(940\) 315041. + 545666.i 0.0116291 + 0.0201422i
\(941\) 1.61432e6 2.79609e6i 0.0594315 0.102938i −0.834779 0.550585i \(-0.814405\pi\)
0.894210 + 0.447647i \(0.147738\pi\)
\(942\) 3.77042e6 6.53056e6i 0.138440 0.239786i
\(943\) −3.19728e7 5.53785e7i −1.17085 2.02797i
\(944\) 648903. 0.0237001
\(945\) 0 0
\(946\) 1.35238e7 0.491328
\(947\) 2.29622e6 + 3.97717e6i 0.0832029 + 0.144112i 0.904624 0.426210i \(-0.140152\pi\)
−0.821421 + 0.570322i \(0.806818\pi\)
\(948\) 376732. 652518.i 0.0136148 0.0235815i
\(949\) −739434. + 1.28074e6i −0.0266523 + 0.0461631i
\(950\) −1.01132e7 1.75166e7i −0.363563 0.629709i
\(951\) 4.44011e7 1.59200
\(952\) 0 0
\(953\) 2.97125e7 1.05976 0.529880 0.848073i \(-0.322237\pi\)
0.529880 + 0.848073i \(0.322237\pi\)
\(954\) 252581. + 437482.i 0.00898523 + 0.0155629i
\(955\) 4.95512e6 8.58253e6i 0.175811 0.304514i
\(956\) −3704.14 + 6415.77i −0.000131082 + 0.000227041i
\(957\) 611993. + 1.06000e6i 0.0216006 + 0.0374134i
\(958\) −2.97059e7 −1.04575
\(959\) 0 0
\(960\) −1.35935e6 −0.0476052
\(961\) −2.71748e7 4.70681e7i −0.949199 1.64406i
\(962\) −2.49373e6 + 4.31928e6i −0.0868786 + 0.150478i
\(963\) −255092. + 441833.i −0.00886403 + 0.0153530i
\(964\) 2.29116e6 + 3.96840e6i 0.0794077 + 0.137538i
\(965\) 1.44554e7 0.499704
\(966\) 0 0
\(967\) 7.64435e6 0.262890 0.131445 0.991323i \(-0.458038\pi\)
0.131445 + 0.991323i \(0.458038\pi\)
\(968\) 7.38134e6 + 1.27849e7i 0.253190 + 0.438538i
\(969\) −1.58017e7 + 2.73694e7i −0.540624 + 0.936388i
\(970\) 4.85303e6 8.40570e6i 0.165609 0.286843i
\(971\) −2.49810e7 4.32684e7i −0.850281 1.47273i −0.880955 0.473200i \(-0.843099\pi\)
0.0306743 0.999529i \(-0.490235\pi\)
\(972\) 818079. 0.0277734
\(973\) 0 0
\(974\) 1.66834e7 0.563491
\(975\) −4.38632e6 7.59734e6i −0.147771 0.255947i
\(976\) −268122. + 464401.i −0.00900966 + 0.0156052i
\(977\) −2.02697e7 + 3.51082e7i −0.679378 + 1.17672i 0.295791 + 0.955253i \(0.404417\pi\)
−0.975169 + 0.221464i \(0.928916\pi\)
\(978\) −1.49730e6 2.59340e6i −0.0500567 0.0867007i
\(979\) 6.19865e7 2.06700
\(980\) 0 0
\(981\) 300592. 0.00997251
\(982\) −7.47348e6 1.29445e7i −0.247311 0.428356i
\(983\) −2.06528e7 + 3.57717e7i −0.681703 + 1.18074i 0.292757 + 0.956187i \(0.405427\pi\)
−0.974461 + 0.224558i \(0.927906\pi\)
\(984\) −8.69919e6 + 1.50674e7i −0.286412 + 0.496080i
\(985\) −3.27511e6 5.67265e6i −0.107556 0.186292i
\(986\) −525413. −0.0172111
\(987\) 0 0
\(988\) 6.23434e6 0.203188
\(989\) −1.00406e7 1.73908e7i −0.326413 0.565364i
\(990\) −177458. + 307367.i −0.00575451 + 0.00996711i
\(991\) 9.20419e6 1.59421e7i 0.297715 0.515658i −0.677897 0.735156i \(-0.737109\pi\)
0.975613 + 0.219498i \(0.0704420\pi\)
\(992\) 4.66394e6 + 8.07819e6i 0.150478 + 0.260636i
\(993\) −2.18167e7 −0.702126
\(994\) 0 0
\(995\) 6.03144e6 0.193136
\(996\) −5.80995e6 1.00631e7i −0.185577 0.321429i
\(997\) −1.69854e7 + 2.94196e7i −0.541175 + 0.937343i 0.457662 + 0.889126i \(0.348687\pi\)
−0.998837 + 0.0482164i \(0.984646\pi\)
\(998\) 1.74172e7 3.01675e7i 0.553545 0.958768i
\(999\) 1.12543e7 + 1.94931e7i 0.356784 + 0.617968i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.6.c.f.67.2 4
7.2 even 3 inner 98.6.c.f.79.2 4
7.3 odd 6 98.6.a.c.1.2 2
7.4 even 3 98.6.a.f.1.1 2
7.5 odd 6 14.6.c.b.9.1 4
7.6 odd 2 14.6.c.b.11.1 yes 4
21.5 even 6 126.6.g.e.37.2 4
21.11 odd 6 882.6.a.bl.1.2 2
21.17 even 6 882.6.a.bt.1.2 2
21.20 even 2 126.6.g.e.109.2 4
28.3 even 6 784.6.a.bc.1.1 2
28.11 odd 6 784.6.a.r.1.2 2
28.19 even 6 112.6.i.b.65.2 4
28.27 even 2 112.6.i.b.81.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.b.9.1 4 7.5 odd 6
14.6.c.b.11.1 yes 4 7.6 odd 2
98.6.a.c.1.2 2 7.3 odd 6
98.6.a.f.1.1 2 7.4 even 3
98.6.c.f.67.2 4 1.1 even 1 trivial
98.6.c.f.79.2 4 7.2 even 3 inner
112.6.i.b.65.2 4 28.19 even 6
112.6.i.b.81.2 4 28.27 even 2
126.6.g.e.37.2 4 21.5 even 6
126.6.g.e.109.2 4 21.20 even 2
784.6.a.r.1.2 2 28.11 odd 6
784.6.a.bc.1.1 2 28.3 even 6
882.6.a.bl.1.2 2 21.11 odd 6
882.6.a.bt.1.2 2 21.17 even 6