Properties

Label 98.6.c.a
Level $98$
Weight $6$
Character orbit 98.c
Analytic conductor $15.718$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,6,Mod(67,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.67"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,-8,-16,-10,64,0,128,179] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.7176143417\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \zeta_{6} q^{2} + (8 \zeta_{6} - 8) q^{3} + (16 \zeta_{6} - 16) q^{4} - 10 \zeta_{6} q^{5} + 32 q^{6} + 64 q^{8} + 179 \zeta_{6} q^{9} + (40 \zeta_{6} - 40) q^{10} + ( - 340 \zeta_{6} + 340) q^{11} + \cdots + 60860 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 8 q^{3} - 16 q^{4} - 10 q^{5} + 64 q^{6} + 128 q^{8} + 179 q^{9} - 40 q^{10} + 340 q^{11} - 128 q^{12} - 588 q^{13} + 160 q^{15} - 256 q^{16} - 1226 q^{17} + 716 q^{18} - 2432 q^{19} + 320 q^{20}+ \cdots + 121720 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
−2.00000 3.46410i −4.00000 + 6.92820i −8.00000 + 13.8564i −5.00000 8.66025i 32.0000 0 64.0000 89.5000 + 155.019i −20.0000 + 34.6410i
79.1 −2.00000 + 3.46410i −4.00000 6.92820i −8.00000 13.8564i −5.00000 + 8.66025i 32.0000 0 64.0000 89.5000 155.019i −20.0000 34.6410i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.6.c.a 2
7.b odd 2 1 98.6.c.b 2
7.c even 3 1 14.6.a.b 1
7.c even 3 1 inner 98.6.c.a 2
7.d odd 6 1 98.6.a.b 1
7.d odd 6 1 98.6.c.b 2
21.g even 6 1 882.6.a.g 1
21.h odd 6 1 126.6.a.c 1
28.f even 6 1 784.6.a.h 1
28.g odd 6 1 112.6.a.d 1
35.j even 6 1 350.6.a.b 1
35.l odd 12 2 350.6.c.f 2
56.k odd 6 1 448.6.a.k 1
56.p even 6 1 448.6.a.f 1
84.n even 6 1 1008.6.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.6.a.b 1 7.c even 3 1
98.6.a.b 1 7.d odd 6 1
98.6.c.a 2 1.a even 1 1 trivial
98.6.c.a 2 7.c even 3 1 inner
98.6.c.b 2 7.b odd 2 1
98.6.c.b 2 7.d odd 6 1
112.6.a.d 1 28.g odd 6 1
126.6.a.c 1 21.h odd 6 1
350.6.a.b 1 35.j even 6 1
350.6.c.f 2 35.l odd 12 2
448.6.a.f 1 56.p even 6 1
448.6.a.k 1 56.k odd 6 1
784.6.a.h 1 28.f even 6 1
882.6.a.g 1 21.g even 6 1
1008.6.a.n 1 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 8T_{3} + 64 \) acting on \(S_{6}^{\mathrm{new}}(98, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$3$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$5$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 340T + 115600 \) Copy content Toggle raw display
$13$ \( (T + 294)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 1226 T + 1503076 \) Copy content Toggle raw display
$19$ \( T^{2} + 2432 T + 5914624 \) Copy content Toggle raw display
$23$ \( T^{2} + 2000 T + 4000000 \) Copy content Toggle raw display
$29$ \( (T + 6746)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 8856 T + 78428736 \) Copy content Toggle raw display
$37$ \( T^{2} + 9182 T + 84309124 \) Copy content Toggle raw display
$41$ \( (T + 14574)^{2} \) Copy content Toggle raw display
$43$ \( (T - 8108)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 312T + 97344 \) Copy content Toggle raw display
$53$ \( T^{2} - 14634 T + 214153956 \) Copy content Toggle raw display
$59$ \( T^{2} - 27656 T + 764854336 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 1179098244 \) Copy content Toggle raw display
$67$ \( T^{2} + 12316 T + 151683856 \) Copy content Toggle raw display
$71$ \( (T - 36920)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 3809111524 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 4192821504 \) Copy content Toggle raw display
$83$ \( (T + 77056)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 8166 T + 66683556 \) Copy content Toggle raw display
$97$ \( (T - 20650)^{2} \) Copy content Toggle raw display
show more
show less