Properties

Label 98.6.a.h.1.2
Level $98$
Weight $6$
Character 98.1
Self dual yes
Analytic conductor $15.718$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,6,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8,14,32,70,56,0,128,244] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.7176143417\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{79}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 79 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(8.88819\) of defining polynomial
Character \(\chi\) \(=\) 98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +24.7764 q^{3} +16.0000 q^{4} -36.1056 q^{5} +99.1056 q^{6} +64.0000 q^{8} +370.869 q^{9} -144.422 q^{10} +155.435 q^{11} +396.422 q^{12} +1158.87 q^{13} -894.565 q^{15} +256.000 q^{16} +1238.08 q^{17} +1483.48 q^{18} -280.279 q^{19} -577.689 q^{20} +621.739 q^{22} -3482.39 q^{23} +1585.69 q^{24} -1821.39 q^{25} +4635.48 q^{26} +3168.14 q^{27} -5656.78 q^{29} -3578.26 q^{30} -2314.70 q^{31} +1024.00 q^{32} +3851.11 q^{33} +4952.32 q^{34} +5933.91 q^{36} -2333.18 q^{37} -1121.12 q^{38} +28712.6 q^{39} -2310.76 q^{40} +3812.61 q^{41} +3925.73 q^{43} +2486.96 q^{44} -13390.4 q^{45} -13929.6 q^{46} -11116.5 q^{47} +6342.76 q^{48} -7285.56 q^{50} +30675.2 q^{51} +18541.9 q^{52} -11186.2 q^{53} +12672.6 q^{54} -5612.06 q^{55} -6944.31 q^{57} -22627.1 q^{58} -6010.35 q^{59} -14313.0 q^{60} -14838.7 q^{61} -9258.81 q^{62} +4096.00 q^{64} -41841.6 q^{65} +15404.4 q^{66} -42983.9 q^{67} +19809.3 q^{68} -86281.1 q^{69} -19962.4 q^{71} +23735.6 q^{72} +45550.6 q^{73} -9332.70 q^{74} -45127.4 q^{75} -4484.47 q^{76} +114850. q^{78} +108992. q^{79} -9243.02 q^{80} -11626.1 q^{81} +15250.4 q^{82} +55829.0 q^{83} -44701.6 q^{85} +15702.9 q^{86} -140155. q^{87} +9947.82 q^{88} -95545.8 q^{89} -53561.8 q^{90} -55718.2 q^{92} -57349.9 q^{93} -44465.8 q^{94} +10119.6 q^{95} +25371.0 q^{96} +15004.9 q^{97} +57646.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 14 q^{3} + 32 q^{4} + 70 q^{5} + 56 q^{6} + 128 q^{8} + 244 q^{9} + 280 q^{10} + 62 q^{11} + 224 q^{12} + 1820 q^{13} - 2038 q^{15} + 512 q^{16} + 1694 q^{17} + 976 q^{18} + 826 q^{19} + 1120 q^{20}+ \cdots + 69500 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 24.7764 1.58941 0.794703 0.606998i \(-0.207627\pi\)
0.794703 + 0.606998i \(0.207627\pi\)
\(4\) 16.0000 0.500000
\(5\) −36.1056 −0.645876 −0.322938 0.946420i \(-0.604671\pi\)
−0.322938 + 0.946420i \(0.604671\pi\)
\(6\) 99.1056 1.12388
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 370.869 1.52621
\(10\) −144.422 −0.456703
\(11\) 155.435 0.387317 0.193658 0.981069i \(-0.437965\pi\)
0.193658 + 0.981069i \(0.437965\pi\)
\(12\) 396.422 0.794703
\(13\) 1158.87 1.90185 0.950925 0.309422i \(-0.100136\pi\)
0.950925 + 0.309422i \(0.100136\pi\)
\(14\) 0 0
\(15\) −894.565 −1.02656
\(16\) 256.000 0.250000
\(17\) 1238.08 1.03903 0.519513 0.854462i \(-0.326113\pi\)
0.519513 + 0.854462i \(0.326113\pi\)
\(18\) 1483.48 1.07919
\(19\) −280.279 −0.178118 −0.0890588 0.996026i \(-0.528386\pi\)
−0.0890588 + 0.996026i \(0.528386\pi\)
\(20\) −577.689 −0.322938
\(21\) 0 0
\(22\) 621.739 0.273874
\(23\) −3482.39 −1.37264 −0.686322 0.727298i \(-0.740776\pi\)
−0.686322 + 0.727298i \(0.740776\pi\)
\(24\) 1585.69 0.561940
\(25\) −1821.39 −0.582844
\(26\) 4635.48 1.34481
\(27\) 3168.14 0.836364
\(28\) 0 0
\(29\) −5656.78 −1.24903 −0.624517 0.781011i \(-0.714704\pi\)
−0.624517 + 0.781011i \(0.714704\pi\)
\(30\) −3578.26 −0.725887
\(31\) −2314.70 −0.432604 −0.216302 0.976326i \(-0.569400\pi\)
−0.216302 + 0.976326i \(0.569400\pi\)
\(32\) 1024.00 0.176777
\(33\) 3851.11 0.615604
\(34\) 4952.32 0.734703
\(35\) 0 0
\(36\) 5933.91 0.763106
\(37\) −2333.18 −0.280184 −0.140092 0.990139i \(-0.544740\pi\)
−0.140092 + 0.990139i \(0.544740\pi\)
\(38\) −1121.12 −0.125948
\(39\) 28712.6 3.02281
\(40\) −2310.76 −0.228352
\(41\) 3812.61 0.354211 0.177106 0.984192i \(-0.443327\pi\)
0.177106 + 0.984192i \(0.443327\pi\)
\(42\) 0 0
\(43\) 3925.73 0.323780 0.161890 0.986809i \(-0.448241\pi\)
0.161890 + 0.986809i \(0.448241\pi\)
\(44\) 2486.96 0.193658
\(45\) −13390.4 −0.985743
\(46\) −13929.6 −0.970606
\(47\) −11116.5 −0.734043 −0.367022 0.930212i \(-0.619622\pi\)
−0.367022 + 0.930212i \(0.619622\pi\)
\(48\) 6342.76 0.397352
\(49\) 0 0
\(50\) −7285.56 −0.412133
\(51\) 30675.2 1.65143
\(52\) 18541.9 0.950925
\(53\) −11186.2 −0.547007 −0.273504 0.961871i \(-0.588183\pi\)
−0.273504 + 0.961871i \(0.588183\pi\)
\(54\) 12672.6 0.591399
\(55\) −5612.06 −0.250159
\(56\) 0 0
\(57\) −6944.31 −0.283101
\(58\) −22627.1 −0.883201
\(59\) −6010.35 −0.224786 −0.112393 0.993664i \(-0.535852\pi\)
−0.112393 + 0.993664i \(0.535852\pi\)
\(60\) −14313.0 −0.513279
\(61\) −14838.7 −0.510589 −0.255295 0.966863i \(-0.582172\pi\)
−0.255295 + 0.966863i \(0.582172\pi\)
\(62\) −9258.81 −0.305897
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −41841.6 −1.22836
\(66\) 15404.4 0.435298
\(67\) −42983.9 −1.16982 −0.584909 0.811099i \(-0.698870\pi\)
−0.584909 + 0.811099i \(0.698870\pi\)
\(68\) 19809.3 0.519513
\(69\) −86281.1 −2.18169
\(70\) 0 0
\(71\) −19962.4 −0.469967 −0.234984 0.971999i \(-0.575504\pi\)
−0.234984 + 0.971999i \(0.575504\pi\)
\(72\) 23735.6 0.539597
\(73\) 45550.6 1.00043 0.500215 0.865901i \(-0.333254\pi\)
0.500215 + 0.865901i \(0.333254\pi\)
\(74\) −9332.70 −0.198120
\(75\) −45127.4 −0.926376
\(76\) −4484.47 −0.0890588
\(77\) 0 0
\(78\) 114850. 2.13745
\(79\) 108992. 1.96484 0.982419 0.186687i \(-0.0597750\pi\)
0.982419 + 0.186687i \(0.0597750\pi\)
\(80\) −9243.02 −0.161469
\(81\) −11626.1 −0.196890
\(82\) 15250.4 0.250465
\(83\) 55829.0 0.889538 0.444769 0.895645i \(-0.353286\pi\)
0.444769 + 0.895645i \(0.353286\pi\)
\(84\) 0 0
\(85\) −44701.6 −0.671082
\(86\) 15702.9 0.228947
\(87\) −140155. −1.98522
\(88\) 9947.82 0.136937
\(89\) −95545.8 −1.27861 −0.639303 0.768955i \(-0.720777\pi\)
−0.639303 + 0.768955i \(0.720777\pi\)
\(90\) −53561.8 −0.697026
\(91\) 0 0
\(92\) −55718.2 −0.686322
\(93\) −57349.9 −0.687584
\(94\) −44465.8 −0.519047
\(95\) 10119.6 0.115042
\(96\) 25371.0 0.280970
\(97\) 15004.9 0.161922 0.0809609 0.996717i \(-0.474201\pi\)
0.0809609 + 0.996717i \(0.474201\pi\)
\(98\) 0 0
\(99\) 57646.0 0.591127
\(100\) −29142.2 −0.291422
\(101\) 26876.1 0.262158 0.131079 0.991372i \(-0.458156\pi\)
0.131079 + 0.991372i \(0.458156\pi\)
\(102\) 122701. 1.16774
\(103\) −51915.2 −0.482171 −0.241086 0.970504i \(-0.577503\pi\)
−0.241086 + 0.970504i \(0.577503\pi\)
\(104\) 74167.6 0.672405
\(105\) 0 0
\(106\) −44744.8 −0.386793
\(107\) −24974.8 −0.210883 −0.105442 0.994425i \(-0.533626\pi\)
−0.105442 + 0.994425i \(0.533626\pi\)
\(108\) 50690.3 0.418182
\(109\) −3636.14 −0.0293140 −0.0146570 0.999893i \(-0.504666\pi\)
−0.0146570 + 0.999893i \(0.504666\pi\)
\(110\) −22448.2 −0.176889
\(111\) −57807.7 −0.445326
\(112\) 0 0
\(113\) 62175.0 0.458057 0.229028 0.973420i \(-0.426445\pi\)
0.229028 + 0.973420i \(0.426445\pi\)
\(114\) −27777.2 −0.200183
\(115\) 125734. 0.886557
\(116\) −90508.5 −0.624517
\(117\) 429789. 2.90262
\(118\) −24041.4 −0.158948
\(119\) 0 0
\(120\) −57252.2 −0.362943
\(121\) −136891. −0.849986
\(122\) −59354.9 −0.361041
\(123\) 94462.7 0.562986
\(124\) −37035.2 −0.216302
\(125\) 178592. 1.02232
\(126\) 0 0
\(127\) 63550.3 0.349630 0.174815 0.984601i \(-0.444067\pi\)
0.174815 + 0.984601i \(0.444067\pi\)
\(128\) 16384.0 0.0883883
\(129\) 97265.5 0.514617
\(130\) −167366. −0.868581
\(131\) 136297. 0.693918 0.346959 0.937880i \(-0.387214\pi\)
0.346959 + 0.937880i \(0.387214\pi\)
\(132\) 61617.8 0.307802
\(133\) 0 0
\(134\) −171935. −0.827187
\(135\) −114388. −0.540187
\(136\) 79237.2 0.367351
\(137\) 335303. 1.52629 0.763144 0.646228i \(-0.223655\pi\)
0.763144 + 0.646228i \(0.223655\pi\)
\(138\) −345124. −1.54269
\(139\) 58195.2 0.255476 0.127738 0.991808i \(-0.459228\pi\)
0.127738 + 0.991808i \(0.459228\pi\)
\(140\) 0 0
\(141\) −275426. −1.16669
\(142\) −79849.7 −0.332317
\(143\) 180129. 0.736618
\(144\) 94942.6 0.381553
\(145\) 204241. 0.806721
\(146\) 182202. 0.707411
\(147\) 0 0
\(148\) −37330.8 −0.140092
\(149\) 283058. 1.04450 0.522251 0.852792i \(-0.325092\pi\)
0.522251 + 0.852792i \(0.325092\pi\)
\(150\) −180510. −0.655047
\(151\) −241558. −0.862142 −0.431071 0.902318i \(-0.641864\pi\)
−0.431071 + 0.902318i \(0.641864\pi\)
\(152\) −17937.9 −0.0629741
\(153\) 459166. 1.58577
\(154\) 0 0
\(155\) 83573.6 0.279409
\(156\) 459402. 1.51141
\(157\) −214029. −0.692984 −0.346492 0.938053i \(-0.612627\pi\)
−0.346492 + 0.938053i \(0.612627\pi\)
\(158\) 435968. 1.38935
\(159\) −277154. −0.869417
\(160\) −36972.1 −0.114176
\(161\) 0 0
\(162\) −46504.5 −0.139222
\(163\) 64466.0 0.190047 0.0950237 0.995475i \(-0.469707\pi\)
0.0950237 + 0.995475i \(0.469707\pi\)
\(164\) 61001.7 0.177106
\(165\) −139047. −0.397604
\(166\) 223316. 0.628999
\(167\) −442694. −1.22832 −0.614162 0.789180i \(-0.710506\pi\)
−0.614162 + 0.789180i \(0.710506\pi\)
\(168\) 0 0
\(169\) 971685. 2.61703
\(170\) −178806. −0.474527
\(171\) −103947. −0.271845
\(172\) 62811.7 0.161890
\(173\) −78599.0 −0.199665 −0.0998325 0.995004i \(-0.531831\pi\)
−0.0998325 + 0.995004i \(0.531831\pi\)
\(174\) −560618. −1.40376
\(175\) 0 0
\(176\) 39791.3 0.0968292
\(177\) −148915. −0.357277
\(178\) −382183. −0.904111
\(179\) −510427. −1.19070 −0.595348 0.803468i \(-0.702986\pi\)
−0.595348 + 0.803468i \(0.702986\pi\)
\(180\) −214247. −0.492872
\(181\) −22051.8 −0.0500319 −0.0250160 0.999687i \(-0.507964\pi\)
−0.0250160 + 0.999687i \(0.507964\pi\)
\(182\) 0 0
\(183\) −367650. −0.811534
\(184\) −222873. −0.485303
\(185\) 84240.6 0.180964
\(186\) −229400. −0.486195
\(187\) 192441. 0.402432
\(188\) −177863. −0.367022
\(189\) 0 0
\(190\) 40478.5 0.0813469
\(191\) −558152. −1.10706 −0.553528 0.832831i \(-0.686719\pi\)
−0.553528 + 0.832831i \(0.686719\pi\)
\(192\) 101484. 0.198676
\(193\) −49316.3 −0.0953009 −0.0476504 0.998864i \(-0.515173\pi\)
−0.0476504 + 0.998864i \(0.515173\pi\)
\(194\) 60019.8 0.114496
\(195\) −1.03668e6 −1.95236
\(196\) 0 0
\(197\) −941509. −1.72846 −0.864229 0.503099i \(-0.832193\pi\)
−0.864229 + 0.503099i \(0.832193\pi\)
\(198\) 230584. 0.417990
\(199\) 640012. 1.14566 0.572830 0.819675i \(-0.305846\pi\)
0.572830 + 0.819675i \(0.305846\pi\)
\(200\) −116569. −0.206067
\(201\) −1.06499e6 −1.85932
\(202\) 107505. 0.185374
\(203\) 0 0
\(204\) 490803. 0.825717
\(205\) −137656. −0.228777
\(206\) −207661. −0.340947
\(207\) −1.29151e6 −2.09495
\(208\) 296671. 0.475462
\(209\) −43565.1 −0.0689879
\(210\) 0 0
\(211\) 921869. 1.42549 0.712743 0.701425i \(-0.247452\pi\)
0.712743 + 0.701425i \(0.247452\pi\)
\(212\) −178979. −0.273504
\(213\) −494597. −0.746969
\(214\) −99899.1 −0.149117
\(215\) −141741. −0.209121
\(216\) 202761. 0.295699
\(217\) 0 0
\(218\) −14544.6 −0.0207281
\(219\) 1.12858e6 1.59009
\(220\) −89792.9 −0.125079
\(221\) 1.43477e6 1.97607
\(222\) −231231. −0.314893
\(223\) −837700. −1.12805 −0.564023 0.825759i \(-0.690747\pi\)
−0.564023 + 0.825759i \(0.690747\pi\)
\(224\) 0 0
\(225\) −675497. −0.889544
\(226\) 248700. 0.323895
\(227\) −1.33069e6 −1.71400 −0.857002 0.515313i \(-0.827676\pi\)
−0.857002 + 0.515313i \(0.827676\pi\)
\(228\) −111109. −0.141551
\(229\) 1.01063e6 1.27352 0.636759 0.771063i \(-0.280275\pi\)
0.636759 + 0.771063i \(0.280275\pi\)
\(230\) 502935. 0.626891
\(231\) 0 0
\(232\) −362034. −0.441600
\(233\) 1.48610e6 1.79332 0.896661 0.442718i \(-0.145986\pi\)
0.896661 + 0.442718i \(0.145986\pi\)
\(234\) 1.71916e6 2.05247
\(235\) 401366. 0.474101
\(236\) −96165.6 −0.112393
\(237\) 2.70043e6 3.12293
\(238\) 0 0
\(239\) 875637. 0.991584 0.495792 0.868441i \(-0.334878\pi\)
0.495792 + 0.868441i \(0.334878\pi\)
\(240\) −229009. −0.256640
\(241\) 1.45294e6 1.61141 0.805706 0.592316i \(-0.201786\pi\)
0.805706 + 0.592316i \(0.201786\pi\)
\(242\) −547564. −0.601031
\(243\) −1.05791e6 −1.14930
\(244\) −237419. −0.255295
\(245\) 0 0
\(246\) 377851. 0.398091
\(247\) −324807. −0.338753
\(248\) −148141. −0.152949
\(249\) 1.38324e6 1.41384
\(250\) 714368. 0.722890
\(251\) −198384. −0.198757 −0.0993786 0.995050i \(-0.531685\pi\)
−0.0993786 + 0.995050i \(0.531685\pi\)
\(252\) 0 0
\(253\) −541284. −0.531648
\(254\) 254201. 0.247226
\(255\) −1.10754e6 −1.06662
\(256\) 65536.0 0.0625000
\(257\) 479572. 0.452919 0.226460 0.974021i \(-0.427285\pi\)
0.226460 + 0.974021i \(0.427285\pi\)
\(258\) 389062. 0.363890
\(259\) 0 0
\(260\) −669466. −0.614179
\(261\) −2.09793e6 −1.90629
\(262\) 545188. 0.490674
\(263\) 454943. 0.405572 0.202786 0.979223i \(-0.435000\pi\)
0.202786 + 0.979223i \(0.435000\pi\)
\(264\) 246471. 0.217649
\(265\) 403884. 0.353299
\(266\) 0 0
\(267\) −2.36728e6 −2.03222
\(268\) −687742. −0.584909
\(269\) −860136. −0.724747 −0.362374 0.932033i \(-0.618034\pi\)
−0.362374 + 0.932033i \(0.618034\pi\)
\(270\) −457550. −0.381970
\(271\) 1.30558e6 1.07989 0.539946 0.841700i \(-0.318445\pi\)
0.539946 + 0.841700i \(0.318445\pi\)
\(272\) 316949. 0.259757
\(273\) 0 0
\(274\) 1.34121e6 1.07925
\(275\) −283107. −0.225745
\(276\) −1.38050e6 −1.09084
\(277\) −543109. −0.425292 −0.212646 0.977129i \(-0.568208\pi\)
−0.212646 + 0.977129i \(0.568208\pi\)
\(278\) 232781. 0.180649
\(279\) −858452. −0.660246
\(280\) 0 0
\(281\) 998089. 0.754055 0.377028 0.926202i \(-0.376946\pi\)
0.377028 + 0.926202i \(0.376946\pi\)
\(282\) −1.10170e6 −0.824976
\(283\) 1.77732e6 1.31917 0.659583 0.751632i \(-0.270733\pi\)
0.659583 + 0.751632i \(0.270733\pi\)
\(284\) −319399. −0.234984
\(285\) 250728. 0.182848
\(286\) 720514. 0.520868
\(287\) 0 0
\(288\) 379770. 0.269799
\(289\) 112986. 0.0795759
\(290\) 816965. 0.570438
\(291\) 371768. 0.257359
\(292\) 728809. 0.500215
\(293\) −1.63987e6 −1.11594 −0.557969 0.829862i \(-0.688419\pi\)
−0.557969 + 0.829862i \(0.688419\pi\)
\(294\) 0 0
\(295\) 217007. 0.145184
\(296\) −149323. −0.0990599
\(297\) 492439. 0.323938
\(298\) 1.13223e6 0.738575
\(299\) −4.03564e6 −2.61056
\(300\) −722039. −0.463188
\(301\) 0 0
\(302\) −966231. −0.609626
\(303\) 665894. 0.416676
\(304\) −71751.5 −0.0445294
\(305\) 535760. 0.329777
\(306\) 1.83666e6 1.12131
\(307\) 2.38130e6 1.44201 0.721006 0.692928i \(-0.243680\pi\)
0.721006 + 0.692928i \(0.243680\pi\)
\(308\) 0 0
\(309\) −1.28627e6 −0.766366
\(310\) 334294. 0.197572
\(311\) −1.24513e6 −0.729983 −0.364992 0.931011i \(-0.618928\pi\)
−0.364992 + 0.931011i \(0.618928\pi\)
\(312\) 1.83761e6 1.06873
\(313\) 1.66299e6 0.959465 0.479732 0.877415i \(-0.340734\pi\)
0.479732 + 0.877415i \(0.340734\pi\)
\(314\) −856115. −0.490014
\(315\) 0 0
\(316\) 1.74387e6 0.982419
\(317\) −2.62486e6 −1.46709 −0.733547 0.679639i \(-0.762136\pi\)
−0.733547 + 0.679639i \(0.762136\pi\)
\(318\) −1.10862e6 −0.614771
\(319\) −879260. −0.483772
\(320\) −147888. −0.0807345
\(321\) −618784. −0.335179
\(322\) 0 0
\(323\) −347008. −0.185069
\(324\) −186018. −0.0984448
\(325\) −2.11075e6 −1.10848
\(326\) 257864. 0.134384
\(327\) −90090.5 −0.0465918
\(328\) 244007. 0.125233
\(329\) 0 0
\(330\) −556186. −0.281148
\(331\) 1.73886e6 0.872355 0.436178 0.899861i \(-0.356332\pi\)
0.436178 + 0.899861i \(0.356332\pi\)
\(332\) 893264. 0.444769
\(333\) −865303. −0.427620
\(334\) −1.77078e6 −0.868556
\(335\) 1.55196e6 0.755558
\(336\) 0 0
\(337\) 853564. 0.409413 0.204706 0.978823i \(-0.434376\pi\)
0.204706 + 0.978823i \(0.434376\pi\)
\(338\) 3.88674e6 1.85052
\(339\) 1.54047e6 0.728038
\(340\) −715225. −0.335541
\(341\) −359785. −0.167555
\(342\) −415788. −0.192224
\(343\) 0 0
\(344\) 251247. 0.114473
\(345\) 3.11523e6 1.40910
\(346\) −314396. −0.141184
\(347\) −2.98500e6 −1.33082 −0.665411 0.746477i \(-0.731744\pi\)
−0.665411 + 0.746477i \(0.731744\pi\)
\(348\) −2.24247e6 −0.992611
\(349\) 2.87467e6 1.26335 0.631676 0.775233i \(-0.282367\pi\)
0.631676 + 0.775233i \(0.282367\pi\)
\(350\) 0 0
\(351\) 3.67146e6 1.59064
\(352\) 159165. 0.0684686
\(353\) 1.47109e6 0.628352 0.314176 0.949365i \(-0.398272\pi\)
0.314176 + 0.949365i \(0.398272\pi\)
\(354\) −595659. −0.252633
\(355\) 720755. 0.303540
\(356\) −1.52873e6 −0.639303
\(357\) 0 0
\(358\) −2.04171e6 −0.841950
\(359\) 3.07799e6 1.26047 0.630233 0.776406i \(-0.282959\pi\)
0.630233 + 0.776406i \(0.282959\pi\)
\(360\) −856989. −0.348513
\(361\) −2.39754e6 −0.968274
\(362\) −88207.2 −0.0353779
\(363\) −3.39167e6 −1.35097
\(364\) 0 0
\(365\) −1.64463e6 −0.646154
\(366\) −1.47060e6 −0.573841
\(367\) 1.61670e6 0.626561 0.313281 0.949661i \(-0.398572\pi\)
0.313281 + 0.949661i \(0.398572\pi\)
\(368\) −891492. −0.343161
\(369\) 1.41398e6 0.540602
\(370\) 336962. 0.127961
\(371\) 0 0
\(372\) −917599. −0.343792
\(373\) −4.76119e6 −1.77192 −0.885958 0.463766i \(-0.846498\pi\)
−0.885958 + 0.463766i \(0.846498\pi\)
\(374\) 769763. 0.284563
\(375\) 4.42487e6 1.62488
\(376\) −711453. −0.259523
\(377\) −6.55547e6 −2.37548
\(378\) 0 0
\(379\) 1.00193e6 0.358294 0.179147 0.983822i \(-0.442666\pi\)
0.179147 + 0.983822i \(0.442666\pi\)
\(380\) 161914. 0.0575209
\(381\) 1.57455e6 0.555704
\(382\) −2.23261e6 −0.782806
\(383\) −2.82152e6 −0.982849 −0.491424 0.870920i \(-0.663524\pi\)
−0.491424 + 0.870920i \(0.663524\pi\)
\(384\) 405936. 0.140485
\(385\) 0 0
\(386\) −197265. −0.0673879
\(387\) 1.45593e6 0.494156
\(388\) 240079. 0.0809609
\(389\) −1.24240e6 −0.416281 −0.208140 0.978099i \(-0.566741\pi\)
−0.208140 + 0.978099i \(0.566741\pi\)
\(390\) −4.14674e6 −1.38053
\(391\) −4.31148e6 −1.42621
\(392\) 0 0
\(393\) 3.37695e6 1.10292
\(394\) −3.76603e6 −1.22220
\(395\) −3.93522e6 −1.26904
\(396\) 922336. 0.295564
\(397\) 2.74562e6 0.874308 0.437154 0.899387i \(-0.355986\pi\)
0.437154 + 0.899387i \(0.355986\pi\)
\(398\) 2.56005e6 0.810103
\(399\) 0 0
\(400\) −466276. −0.145711
\(401\) −3.71335e6 −1.15320 −0.576601 0.817026i \(-0.695621\pi\)
−0.576601 + 0.817026i \(0.695621\pi\)
\(402\) −4.25994e6 −1.31474
\(403\) −2.68244e6 −0.822748
\(404\) 430018. 0.131079
\(405\) 419768. 0.127166
\(406\) 0 0
\(407\) −362656. −0.108520
\(408\) 1.96321e6 0.583870
\(409\) 3.75940e6 1.11125 0.555623 0.831434i \(-0.312480\pi\)
0.555623 + 0.831434i \(0.312480\pi\)
\(410\) −550625. −0.161769
\(411\) 8.30761e6 2.42589
\(412\) −830643. −0.241086
\(413\) 0 0
\(414\) −5.16605e6 −1.48135
\(415\) −2.01574e6 −0.574531
\(416\) 1.18668e6 0.336203
\(417\) 1.44187e6 0.406055
\(418\) −174260. −0.0487818
\(419\) 4.60027e6 1.28011 0.640056 0.768328i \(-0.278911\pi\)
0.640056 + 0.768328i \(0.278911\pi\)
\(420\) 0 0
\(421\) −404864. −0.111328 −0.0556639 0.998450i \(-0.517728\pi\)
−0.0556639 + 0.998450i \(0.517728\pi\)
\(422\) 3.68748e6 1.00797
\(423\) −4.12275e6 −1.12031
\(424\) −715917. −0.193396
\(425\) −2.25503e6 −0.605591
\(426\) −1.97839e6 −0.528187
\(427\) 0 0
\(428\) −399596. −0.105442
\(429\) 4.46293e6 1.17079
\(430\) −566963. −0.147871
\(431\) 94758.5 0.0245711 0.0122856 0.999925i \(-0.496089\pi\)
0.0122856 + 0.999925i \(0.496089\pi\)
\(432\) 811045. 0.209091
\(433\) 4.31727e6 1.10660 0.553298 0.832983i \(-0.313369\pi\)
0.553298 + 0.832983i \(0.313369\pi\)
\(434\) 0 0
\(435\) 5.06036e6 1.28221
\(436\) −58178.3 −0.0146570
\(437\) 976041. 0.244492
\(438\) 4.51432e6 1.12436
\(439\) −2.22367e6 −0.550693 −0.275346 0.961345i \(-0.588793\pi\)
−0.275346 + 0.961345i \(0.588793\pi\)
\(440\) −359172. −0.0884444
\(441\) 0 0
\(442\) 5.73909e6 1.39729
\(443\) −4.68425e6 −1.13405 −0.567024 0.823701i \(-0.691905\pi\)
−0.567024 + 0.823701i \(0.691905\pi\)
\(444\) −924922. −0.222663
\(445\) 3.44973e6 0.825821
\(446\) −3.35080e6 −0.797648
\(447\) 7.01315e6 1.66014
\(448\) 0 0
\(449\) 897932. 0.210198 0.105099 0.994462i \(-0.466484\pi\)
0.105099 + 0.994462i \(0.466484\pi\)
\(450\) −2.70199e6 −0.629003
\(451\) 592612. 0.137192
\(452\) 994800. 0.229028
\(453\) −5.98493e6 −1.37029
\(454\) −5.32276e6 −1.21198
\(455\) 0 0
\(456\) −444436. −0.100091
\(457\) 5.98181e6 1.33981 0.669903 0.742448i \(-0.266336\pi\)
0.669903 + 0.742448i \(0.266336\pi\)
\(458\) 4.04253e6 0.900513
\(459\) 3.92242e6 0.869004
\(460\) 2.01174e6 0.443279
\(461\) 1.62507e6 0.356138 0.178069 0.984018i \(-0.443015\pi\)
0.178069 + 0.984018i \(0.443015\pi\)
\(462\) 0 0
\(463\) −8.46295e6 −1.83472 −0.917359 0.398060i \(-0.869683\pi\)
−0.917359 + 0.398060i \(0.869683\pi\)
\(464\) −1.44814e6 −0.312259
\(465\) 2.07065e6 0.444094
\(466\) 5.94440e6 1.26807
\(467\) 7.66594e6 1.62657 0.813286 0.581864i \(-0.197676\pi\)
0.813286 + 0.581864i \(0.197676\pi\)
\(468\) 6.87663e6 1.45131
\(469\) 0 0
\(470\) 1.60546e6 0.335240
\(471\) −5.30286e6 −1.10143
\(472\) −384662. −0.0794740
\(473\) 610195. 0.125405
\(474\) 1.08017e7 2.20824
\(475\) 510497. 0.103815
\(476\) 0 0
\(477\) −4.14862e6 −0.834849
\(478\) 3.50255e6 0.701156
\(479\) −2.40292e6 −0.478521 −0.239261 0.970955i \(-0.576905\pi\)
−0.239261 + 0.970955i \(0.576905\pi\)
\(480\) −916035. −0.181472
\(481\) −2.70385e6 −0.532867
\(482\) 5.81178e6 1.13944
\(483\) 0 0
\(484\) −2.19026e6 −0.424993
\(485\) −541762. −0.104581
\(486\) −4.23165e6 −0.812679
\(487\) −170302. −0.0325384 −0.0162692 0.999868i \(-0.505179\pi\)
−0.0162692 + 0.999868i \(0.505179\pi\)
\(488\) −949678. −0.180521
\(489\) 1.59724e6 0.302063
\(490\) 0 0
\(491\) −5.77628e6 −1.08130 −0.540648 0.841249i \(-0.681821\pi\)
−0.540648 + 0.841249i \(0.681821\pi\)
\(492\) 1.51140e6 0.281493
\(493\) −7.00355e6 −1.29778
\(494\) −1.29923e6 −0.239534
\(495\) −2.08134e6 −0.381795
\(496\) −592564. −0.108151
\(497\) 0 0
\(498\) 5.53296e6 0.999734
\(499\) 543602. 0.0977303 0.0488652 0.998805i \(-0.484440\pi\)
0.0488652 + 0.998805i \(0.484440\pi\)
\(500\) 2.85747e6 0.511160
\(501\) −1.09684e7 −1.95230
\(502\) −793537. −0.140543
\(503\) −5.40086e6 −0.951794 −0.475897 0.879501i \(-0.657876\pi\)
−0.475897 + 0.879501i \(0.657876\pi\)
\(504\) 0 0
\(505\) −970378. −0.169322
\(506\) −2.16514e6 −0.375932
\(507\) 2.40749e7 4.15953
\(508\) 1.01680e6 0.174815
\(509\) 8.34418e6 1.42754 0.713772 0.700378i \(-0.246985\pi\)
0.713772 + 0.700378i \(0.246985\pi\)
\(510\) −4.43018e6 −0.754216
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) −887964. −0.148971
\(514\) 1.91829e6 0.320262
\(515\) 1.87443e6 0.311423
\(516\) 1.55625e6 0.257309
\(517\) −1.72788e6 −0.284307
\(518\) 0 0
\(519\) −1.94740e6 −0.317349
\(520\) −2.67786e6 −0.434290
\(521\) −1.14784e7 −1.85262 −0.926310 0.376762i \(-0.877037\pi\)
−0.926310 + 0.376762i \(0.877037\pi\)
\(522\) −8.39171e6 −1.34795
\(523\) −4.38734e6 −0.701370 −0.350685 0.936494i \(-0.614051\pi\)
−0.350685 + 0.936494i \(0.614051\pi\)
\(524\) 2.18075e6 0.346959
\(525\) 0 0
\(526\) 1.81977e6 0.286782
\(527\) −2.86579e6 −0.449487
\(528\) 985884. 0.153901
\(529\) 5.69070e6 0.884151
\(530\) 1.61554e6 0.249820
\(531\) −2.22906e6 −0.343071
\(532\) 0 0
\(533\) 4.41832e6 0.673657
\(534\) −9.46912e6 −1.43700
\(535\) 901728. 0.136204
\(536\) −2.75097e6 −0.413593
\(537\) −1.26465e7 −1.89250
\(538\) −3.44055e6 −0.512474
\(539\) 0 0
\(540\) −1.83020e6 −0.270094
\(541\) 7.22306e6 1.06103 0.530515 0.847675i \(-0.321998\pi\)
0.530515 + 0.847675i \(0.321998\pi\)
\(542\) 5.22232e6 0.763599
\(543\) −546364. −0.0795211
\(544\) 1.26779e6 0.183676
\(545\) 131285. 0.0189332
\(546\) 0 0
\(547\) 3.54529e6 0.506622 0.253311 0.967385i \(-0.418480\pi\)
0.253311 + 0.967385i \(0.418480\pi\)
\(548\) 5.36486e6 0.763144
\(549\) −5.50323e6 −0.779267
\(550\) −1.13243e6 −0.159626
\(551\) 1.58548e6 0.222475
\(552\) −5.52199e6 −0.771343
\(553\) 0 0
\(554\) −2.17243e6 −0.300727
\(555\) 2.08718e6 0.287625
\(556\) 931124. 0.127738
\(557\) 1.03663e7 1.41575 0.707873 0.706340i \(-0.249655\pi\)
0.707873 + 0.706340i \(0.249655\pi\)
\(558\) −3.43381e6 −0.466864
\(559\) 4.54941e6 0.615780
\(560\) 0 0
\(561\) 4.76799e6 0.639628
\(562\) 3.99235e6 0.533198
\(563\) −4.48282e6 −0.596047 −0.298023 0.954559i \(-0.596327\pi\)
−0.298023 + 0.954559i \(0.596327\pi\)
\(564\) −4.40681e6 −0.583346
\(565\) −2.24486e6 −0.295848
\(566\) 7.10928e6 0.932792
\(567\) 0 0
\(568\) −1.27760e6 −0.166158
\(569\) 6.49335e6 0.840792 0.420396 0.907341i \(-0.361891\pi\)
0.420396 + 0.907341i \(0.361891\pi\)
\(570\) 1.00291e6 0.129293
\(571\) −497508. −0.0638571 −0.0319286 0.999490i \(-0.510165\pi\)
−0.0319286 + 0.999490i \(0.510165\pi\)
\(572\) 2.88206e6 0.368309
\(573\) −1.38290e7 −1.75956
\(574\) 0 0
\(575\) 6.34279e6 0.800038
\(576\) 1.51908e6 0.190776
\(577\) −6.55123e6 −0.819187 −0.409594 0.912268i \(-0.634330\pi\)
−0.409594 + 0.912268i \(0.634330\pi\)
\(578\) 451946. 0.0562687
\(579\) −1.22188e6 −0.151472
\(580\) 3.26786e6 0.403360
\(581\) 0 0
\(582\) 1.48707e6 0.181981
\(583\) −1.73873e6 −0.211865
\(584\) 2.91524e6 0.353706
\(585\) −1.55178e7 −1.87474
\(586\) −6.55947e6 −0.789087
\(587\) −30793.5 −0.00368862 −0.00184431 0.999998i \(-0.500587\pi\)
−0.00184431 + 0.999998i \(0.500587\pi\)
\(588\) 0 0
\(589\) 648763. 0.0770544
\(590\) 868028. 0.102661
\(591\) −2.33272e7 −2.74722
\(592\) −597293. −0.0700459
\(593\) 570937. 0.0666732 0.0333366 0.999444i \(-0.489387\pi\)
0.0333366 + 0.999444i \(0.489387\pi\)
\(594\) 1.96976e6 0.229059
\(595\) 0 0
\(596\) 4.52893e6 0.522251
\(597\) 1.58572e7 1.82092
\(598\) −1.61425e7 −1.84595
\(599\) 9.07111e6 1.03298 0.516492 0.856292i \(-0.327238\pi\)
0.516492 + 0.856292i \(0.327238\pi\)
\(600\) −2.88816e6 −0.327524
\(601\) −1.36309e7 −1.53936 −0.769679 0.638431i \(-0.779584\pi\)
−0.769679 + 0.638431i \(0.779584\pi\)
\(602\) 0 0
\(603\) −1.59414e7 −1.78539
\(604\) −3.86492e6 −0.431071
\(605\) 4.94253e6 0.548985
\(606\) 2.66358e6 0.294634
\(607\) −3.95651e6 −0.435853 −0.217927 0.975965i \(-0.569929\pi\)
−0.217927 + 0.975965i \(0.569929\pi\)
\(608\) −287006. −0.0314870
\(609\) 0 0
\(610\) 2.14304e6 0.233188
\(611\) −1.28825e7 −1.39604
\(612\) 7.34666e6 0.792887
\(613\) 1.32310e6 0.142214 0.0711070 0.997469i \(-0.477347\pi\)
0.0711070 + 0.997469i \(0.477347\pi\)
\(614\) 9.52522e6 1.01966
\(615\) −3.41063e6 −0.363619
\(616\) 0 0
\(617\) 9.26370e6 0.979651 0.489826 0.871820i \(-0.337060\pi\)
0.489826 + 0.871820i \(0.337060\pi\)
\(618\) −5.14508e6 −0.541903
\(619\) 669385. 0.0702182 0.0351091 0.999383i \(-0.488822\pi\)
0.0351091 + 0.999383i \(0.488822\pi\)
\(620\) 1.33718e6 0.139704
\(621\) −1.10327e7 −1.14803
\(622\) −4.98051e6 −0.516176
\(623\) 0 0
\(624\) 7.35043e6 0.755703
\(625\) −756327. −0.0774479
\(626\) 6.65196e6 0.678444
\(627\) −1.07939e6 −0.109650
\(628\) −3.42446e6 −0.346492
\(629\) −2.88866e6 −0.291118
\(630\) 0 0
\(631\) −666246. −0.0666133 −0.0333067 0.999445i \(-0.510604\pi\)
−0.0333067 + 0.999445i \(0.510604\pi\)
\(632\) 6.97549e6 0.694675
\(633\) 2.28406e7 2.26568
\(634\) −1.04994e7 −1.03739
\(635\) −2.29452e6 −0.225817
\(636\) −4.43446e6 −0.434708
\(637\) 0 0
\(638\) −3.51704e6 −0.342078
\(639\) −7.40345e6 −0.717269
\(640\) −591553. −0.0570879
\(641\) −2.10877e6 −0.202714 −0.101357 0.994850i \(-0.532318\pi\)
−0.101357 + 0.994850i \(0.532318\pi\)
\(642\) −2.47514e6 −0.237007
\(643\) 1.25977e7 1.20161 0.600806 0.799395i \(-0.294846\pi\)
0.600806 + 0.799395i \(0.294846\pi\)
\(644\) 0 0
\(645\) −3.51182e6 −0.332379
\(646\) −1.38803e6 −0.130863
\(647\) 1.71299e7 1.60877 0.804386 0.594107i \(-0.202494\pi\)
0.804386 + 0.594107i \(0.202494\pi\)
\(648\) −744072. −0.0696110
\(649\) −934217. −0.0870635
\(650\) −8.44301e6 −0.783815
\(651\) 0 0
\(652\) 1.03146e6 0.0950237
\(653\) −8.25525e6 −0.757613 −0.378806 0.925476i \(-0.623665\pi\)
−0.378806 + 0.925476i \(0.623665\pi\)
\(654\) −360362. −0.0329454
\(655\) −4.92108e6 −0.448185
\(656\) 976028. 0.0885529
\(657\) 1.68933e7 1.52687
\(658\) 0 0
\(659\) −1.05417e7 −0.945581 −0.472790 0.881175i \(-0.656753\pi\)
−0.472790 + 0.881175i \(0.656753\pi\)
\(660\) −2.22474e6 −0.198802
\(661\) 4.47640e6 0.398498 0.199249 0.979949i \(-0.436150\pi\)
0.199249 + 0.979949i \(0.436150\pi\)
\(662\) 6.95542e6 0.616848
\(663\) 3.55485e7 3.14078
\(664\) 3.57306e6 0.314499
\(665\) 0 0
\(666\) −3.46121e6 −0.302373
\(667\) 1.96991e7 1.71448
\(668\) −7.08311e6 −0.614162
\(669\) −2.07552e7 −1.79292
\(670\) 6.20783e6 0.534260
\(671\) −2.30645e6 −0.197760
\(672\) 0 0
\(673\) −1.87165e7 −1.59289 −0.796447 0.604708i \(-0.793290\pi\)
−0.796447 + 0.604708i \(0.793290\pi\)
\(674\) 3.41426e6 0.289498
\(675\) −5.77042e6 −0.487470
\(676\) 1.55470e7 1.30852
\(677\) 4.16232e6 0.349031 0.174515 0.984654i \(-0.444164\pi\)
0.174515 + 0.984654i \(0.444164\pi\)
\(678\) 6.16188e6 0.514801
\(679\) 0 0
\(680\) −2.86090e6 −0.237263
\(681\) −3.29697e7 −2.72425
\(682\) −1.43914e6 −0.118479
\(683\) −1.28691e7 −1.05559 −0.527796 0.849371i \(-0.676981\pi\)
−0.527796 + 0.849371i \(0.676981\pi\)
\(684\) −1.66315e6 −0.135923
\(685\) −1.21063e7 −0.985793
\(686\) 0 0
\(687\) 2.50398e7 2.02414
\(688\) 1.00499e6 0.0809449
\(689\) −1.29634e7 −1.04033
\(690\) 1.24609e7 0.996384
\(691\) −9.29037e6 −0.740181 −0.370090 0.928996i \(-0.620673\pi\)
−0.370090 + 0.928996i \(0.620673\pi\)
\(692\) −1.25758e6 −0.0998325
\(693\) 0 0
\(694\) −1.19400e7 −0.941033
\(695\) −2.10117e6 −0.165006
\(696\) −8.96989e6 −0.701882
\(697\) 4.72032e6 0.368035
\(698\) 1.14987e7 0.893325
\(699\) 3.68202e7 2.85032
\(700\) 0 0
\(701\) 2.50809e7 1.92774 0.963870 0.266375i \(-0.0858258\pi\)
0.963870 + 0.266375i \(0.0858258\pi\)
\(702\) 1.46859e7 1.12475
\(703\) 653940. 0.0499057
\(704\) 636661. 0.0484146
\(705\) 9.94439e6 0.753539
\(706\) 5.88437e6 0.444312
\(707\) 0 0
\(708\) −2.38264e6 −0.178638
\(709\) 9.93780e6 0.742463 0.371231 0.928540i \(-0.378936\pi\)
0.371231 + 0.928540i \(0.378936\pi\)
\(710\) 2.88302e6 0.214635
\(711\) 4.04218e7 2.99876
\(712\) −6.11493e6 −0.452055
\(713\) 8.06069e6 0.593811
\(714\) 0 0
\(715\) −6.50364e6 −0.475764
\(716\) −8.16683e6 −0.595348
\(717\) 2.16951e7 1.57603
\(718\) 1.23120e7 0.891285
\(719\) −1.40009e7 −1.01003 −0.505016 0.863110i \(-0.668513\pi\)
−0.505016 + 0.863110i \(0.668513\pi\)
\(720\) −3.42795e6 −0.246436
\(721\) 0 0
\(722\) −9.59017e6 −0.684673
\(723\) 3.59987e7 2.56119
\(724\) −352829. −0.0250160
\(725\) 1.03032e7 0.727993
\(726\) −1.35667e7 −0.955282
\(727\) 8.27315e6 0.580544 0.290272 0.956944i \(-0.406254\pi\)
0.290272 + 0.956944i \(0.406254\pi\)
\(728\) 0 0
\(729\) −2.33861e7 −1.62982
\(730\) −6.57852e6 −0.456900
\(731\) 4.86037e6 0.336416
\(732\) −5.88240e6 −0.405767
\(733\) −3.28591e6 −0.225889 −0.112945 0.993601i \(-0.536028\pi\)
−0.112945 + 0.993601i \(0.536028\pi\)
\(734\) 6.46679e6 0.443046
\(735\) 0 0
\(736\) −3.56597e6 −0.242651
\(737\) −6.68119e6 −0.453090
\(738\) 5.65592e6 0.382263
\(739\) 1.00913e7 0.679728 0.339864 0.940475i \(-0.389619\pi\)
0.339864 + 0.940475i \(0.389619\pi\)
\(740\) 1.34785e6 0.0904820
\(741\) −8.04754e6 −0.538416
\(742\) 0 0
\(743\) 1.73443e7 1.15261 0.576307 0.817233i \(-0.304493\pi\)
0.576307 + 0.817233i \(0.304493\pi\)
\(744\) −3.67040e6 −0.243098
\(745\) −1.02200e7 −0.674619
\(746\) −1.90447e7 −1.25293
\(747\) 2.07053e7 1.35762
\(748\) 3.07905e6 0.201216
\(749\) 0 0
\(750\) 1.76995e7 1.14897
\(751\) −1.75971e7 −1.13852 −0.569262 0.822156i \(-0.692771\pi\)
−0.569262 + 0.822156i \(0.692771\pi\)
\(752\) −2.84581e6 −0.183511
\(753\) −4.91525e6 −0.315906
\(754\) −2.62219e7 −1.67971
\(755\) 8.72158e6 0.556836
\(756\) 0 0
\(757\) −4.66480e6 −0.295865 −0.147932 0.988997i \(-0.547262\pi\)
−0.147932 + 0.988997i \(0.547262\pi\)
\(758\) 4.00772e6 0.253352
\(759\) −1.34111e7 −0.845005
\(760\) 647657. 0.0406734
\(761\) 1.82717e7 1.14371 0.571857 0.820353i \(-0.306223\pi\)
0.571857 + 0.820353i \(0.306223\pi\)
\(762\) 6.29819e6 0.392942
\(763\) 0 0
\(764\) −8.93044e6 −0.553528
\(765\) −1.65785e7 −1.02421
\(766\) −1.12861e7 −0.694979
\(767\) −6.96521e6 −0.427510
\(768\) 1.62375e6 0.0993379
\(769\) −2.31895e7 −1.41409 −0.707043 0.707171i \(-0.749971\pi\)
−0.707043 + 0.707171i \(0.749971\pi\)
\(770\) 0 0
\(771\) 1.18821e7 0.719873
\(772\) −789060. −0.0476504
\(773\) 2.02149e6 0.121681 0.0608405 0.998148i \(-0.480622\pi\)
0.0608405 + 0.998148i \(0.480622\pi\)
\(774\) 5.82374e6 0.349421
\(775\) 4.21597e6 0.252141
\(776\) 960317. 0.0572480
\(777\) 0 0
\(778\) −4.96959e6 −0.294355
\(779\) −1.06859e6 −0.0630913
\(780\) −1.65869e7 −0.976180
\(781\) −3.10285e6 −0.182026
\(782\) −1.72459e7 −1.00849
\(783\) −1.79215e7 −1.04465
\(784\) 0 0
\(785\) 7.72763e6 0.447582
\(786\) 1.35078e7 0.779880
\(787\) 1.57744e7 0.907856 0.453928 0.891038i \(-0.350022\pi\)
0.453928 + 0.891038i \(0.350022\pi\)
\(788\) −1.50641e7 −0.864229
\(789\) 1.12718e7 0.644618
\(790\) −1.57409e7 −0.897348
\(791\) 0 0
\(792\) 3.68934e6 0.208995
\(793\) −1.71961e7 −0.971064
\(794\) 1.09825e7 0.618229
\(795\) 1.00068e7 0.561535
\(796\) 1.02402e7 0.572830
\(797\) 1.22436e6 0.0682750 0.0341375 0.999417i \(-0.489132\pi\)
0.0341375 + 0.999417i \(0.489132\pi\)
\(798\) 0 0
\(799\) −1.37631e7 −0.762690
\(800\) −1.86510e6 −0.103033
\(801\) −3.54350e7 −1.95142
\(802\) −1.48534e7 −0.815437
\(803\) 7.08014e6 0.387483
\(804\) −1.70398e7 −0.929658
\(805\) 0 0
\(806\) −1.07297e7 −0.581771
\(807\) −2.13111e7 −1.15192
\(808\) 1.72007e6 0.0926869
\(809\) −2.77325e7 −1.48976 −0.744882 0.667196i \(-0.767494\pi\)
−0.744882 + 0.667196i \(0.767494\pi\)
\(810\) 1.67907e6 0.0899201
\(811\) −1.19246e7 −0.636636 −0.318318 0.947984i \(-0.603118\pi\)
−0.318318 + 0.947984i \(0.603118\pi\)
\(812\) 0 0
\(813\) 3.23476e7 1.71639
\(814\) −1.45063e6 −0.0767351
\(815\) −2.32758e6 −0.122747
\(816\) 7.85284e6 0.412859
\(817\) −1.10030e6 −0.0576709
\(818\) 1.50376e7 0.785770
\(819\) 0 0
\(820\) −2.20250e6 −0.114388
\(821\) 1.60462e7 0.830836 0.415418 0.909631i \(-0.363635\pi\)
0.415418 + 0.909631i \(0.363635\pi\)
\(822\) 3.32304e7 1.71536
\(823\) −1.12307e7 −0.577970 −0.288985 0.957334i \(-0.593318\pi\)
−0.288985 + 0.957334i \(0.593318\pi\)
\(824\) −3.32257e6 −0.170473
\(825\) −7.01437e6 −0.358801
\(826\) 0 0
\(827\) −2.68427e7 −1.36478 −0.682389 0.730989i \(-0.739059\pi\)
−0.682389 + 0.730989i \(0.739059\pi\)
\(828\) −2.06642e7 −1.04747
\(829\) 2.80419e7 1.41717 0.708584 0.705626i \(-0.249334\pi\)
0.708584 + 0.705626i \(0.249334\pi\)
\(830\) −8.06295e6 −0.406255
\(831\) −1.34563e7 −0.675962
\(832\) 4.74673e6 0.237731
\(833\) 0 0
\(834\) 5.76747e6 0.287125
\(835\) 1.59837e7 0.793344
\(836\) −697042. −0.0344940
\(837\) −7.33331e6 −0.361815
\(838\) 1.84011e7 0.905176
\(839\) −3.30603e7 −1.62145 −0.810723 0.585430i \(-0.800926\pi\)
−0.810723 + 0.585430i \(0.800926\pi\)
\(840\) 0 0
\(841\) 1.14880e7 0.560086
\(842\) −1.61946e6 −0.0787207
\(843\) 2.47290e7 1.19850
\(844\) 1.47499e7 0.712743
\(845\) −3.50832e7 −1.69028
\(846\) −1.64910e7 −0.792176
\(847\) 0 0
\(848\) −2.86367e6 −0.136752
\(849\) 4.40356e7 2.09669
\(850\) −9.02010e6 −0.428217
\(851\) 8.12503e6 0.384593
\(852\) −7.91355e6 −0.373484
\(853\) 2.73897e7 1.28889 0.644444 0.764652i \(-0.277089\pi\)
0.644444 + 0.764652i \(0.277089\pi\)
\(854\) 0 0
\(855\) 3.75306e6 0.175578
\(856\) −1.59838e6 −0.0745585
\(857\) −2.96721e6 −0.138005 −0.0690027 0.997616i \(-0.521982\pi\)
−0.0690027 + 0.997616i \(0.521982\pi\)
\(858\) 1.78517e7 0.827870
\(859\) −3.97960e7 −1.84016 −0.920081 0.391729i \(-0.871877\pi\)
−0.920081 + 0.391729i \(0.871877\pi\)
\(860\) −2.26785e6 −0.104561
\(861\) 0 0
\(862\) 379034. 0.0173744
\(863\) 7.19597e6 0.328899 0.164450 0.986385i \(-0.447415\pi\)
0.164450 + 0.986385i \(0.447415\pi\)
\(864\) 3.24418e6 0.147850
\(865\) 2.83786e6 0.128959
\(866\) 1.72691e7 0.782482
\(867\) 2.79940e6 0.126478
\(868\) 0 0
\(869\) 1.69411e7 0.761015
\(870\) 2.02414e7 0.906657
\(871\) −4.98127e7 −2.22482
\(872\) −232713. −0.0103641
\(873\) 5.56488e6 0.247127
\(874\) 3.90417e6 0.172882
\(875\) 0 0
\(876\) 1.80573e7 0.795045
\(877\) 2.51242e7 1.10305 0.551523 0.834160i \(-0.314047\pi\)
0.551523 + 0.834160i \(0.314047\pi\)
\(878\) −8.89469e6 −0.389399
\(879\) −4.06300e7 −1.77368
\(880\) −1.43669e6 −0.0625396
\(881\) 120262. 0.00522022 0.00261011 0.999997i \(-0.499169\pi\)
0.00261011 + 0.999997i \(0.499169\pi\)
\(882\) 0 0
\(883\) 2.43497e7 1.05097 0.525487 0.850802i \(-0.323883\pi\)
0.525487 + 0.850802i \(0.323883\pi\)
\(884\) 2.29564e7 0.988036
\(885\) 5.37665e6 0.230756
\(886\) −1.87370e7 −0.801893
\(887\) −2.82766e7 −1.20675 −0.603377 0.797456i \(-0.706179\pi\)
−0.603377 + 0.797456i \(0.706179\pi\)
\(888\) −3.69969e6 −0.157446
\(889\) 0 0
\(890\) 1.37989e7 0.583943
\(891\) −1.80710e6 −0.0762586
\(892\) −1.34032e7 −0.564023
\(893\) 3.11571e6 0.130746
\(894\) 2.80526e7 1.17390
\(895\) 1.84293e7 0.769042
\(896\) 0 0
\(897\) −9.99885e7 −4.14924
\(898\) 3.59173e6 0.148632
\(899\) 1.30938e7 0.540337
\(900\) −1.08080e7 −0.444772
\(901\) −1.38494e7 −0.568355
\(902\) 2.37045e6 0.0970094
\(903\) 0 0
\(904\) 3.97920e6 0.161948
\(905\) 796192. 0.0323144
\(906\) −2.39397e7 −0.968944
\(907\) −2.43168e7 −0.981496 −0.490748 0.871302i \(-0.663276\pi\)
−0.490748 + 0.871302i \(0.663276\pi\)
\(908\) −2.12910e7 −0.857002
\(909\) 9.96754e6 0.400109
\(910\) 0 0
\(911\) −3.36224e7 −1.34225 −0.671123 0.741346i \(-0.734188\pi\)
−0.671123 + 0.741346i \(0.734188\pi\)
\(912\) −1.77774e6 −0.0707753
\(913\) 8.67777e6 0.344533
\(914\) 2.39272e7 0.947386
\(915\) 1.32742e7 0.524150
\(916\) 1.61701e7 0.636759
\(917\) 0 0
\(918\) 1.56897e7 0.614479
\(919\) −8.13749e6 −0.317835 −0.158917 0.987292i \(-0.550800\pi\)
−0.158917 + 0.987292i \(0.550800\pi\)
\(920\) 8.04695e6 0.313445
\(921\) 5.90001e7 2.29194
\(922\) 6.50026e6 0.251828
\(923\) −2.31338e7 −0.893807
\(924\) 0 0
\(925\) 4.24962e6 0.163304
\(926\) −3.38518e7 −1.29734
\(927\) −1.92538e7 −0.735896
\(928\) −5.79254e6 −0.220800
\(929\) 3.58054e7 1.36116 0.680580 0.732674i \(-0.261728\pi\)
0.680580 + 0.732674i \(0.261728\pi\)
\(930\) 8.28261e6 0.314022
\(931\) 0 0
\(932\) 2.37776e7 0.896661
\(933\) −3.08498e7 −1.16024
\(934\) 3.06638e7 1.15016
\(935\) −6.94818e6 −0.259921
\(936\) 2.75065e7 1.02623
\(937\) 4.65849e7 1.73339 0.866694 0.498840i \(-0.166241\pi\)
0.866694 + 0.498840i \(0.166241\pi\)
\(938\) 0 0
\(939\) 4.12029e7 1.52498
\(940\) 6.42185e6 0.237050
\(941\) −2.06725e6 −0.0761059 −0.0380529 0.999276i \(-0.512116\pi\)
−0.0380529 + 0.999276i \(0.512116\pi\)
\(942\) −2.12115e7 −0.778831
\(943\) −1.32770e7 −0.486206
\(944\) −1.53865e6 −0.0561966
\(945\) 0 0
\(946\) 2.44078e6 0.0886750
\(947\) 2.36773e7 0.857940 0.428970 0.903319i \(-0.358877\pi\)
0.428970 + 0.903319i \(0.358877\pi\)
\(948\) 4.32069e7 1.56146
\(949\) 5.27872e7 1.90267
\(950\) 2.04199e6 0.0734082
\(951\) −6.50345e7 −2.33181
\(952\) 0 0
\(953\) −3.40521e6 −0.121454 −0.0607270 0.998154i \(-0.519342\pi\)
−0.0607270 + 0.998154i \(0.519342\pi\)
\(954\) −1.65945e7 −0.590327
\(955\) 2.01524e7 0.715020
\(956\) 1.40102e7 0.495792
\(957\) −2.17849e7 −0.768910
\(958\) −9.61170e6 −0.338366
\(959\) 0 0
\(960\) −3.66414e6 −0.128320
\(961\) −2.32713e7 −0.812854
\(962\) −1.08154e7 −0.376794
\(963\) −9.26238e6 −0.321852
\(964\) 2.32471e7 0.805706
\(965\) 1.78059e6 0.0615525
\(966\) 0 0
\(967\) 1.44238e6 0.0496036 0.0248018 0.999692i \(-0.492105\pi\)
0.0248018 + 0.999692i \(0.492105\pi\)
\(968\) −8.76103e6 −0.300515
\(969\) −8.59761e6 −0.294150
\(970\) −2.16705e6 −0.0739502
\(971\) −5.15954e6 −0.175616 −0.0878078 0.996137i \(-0.527986\pi\)
−0.0878078 + 0.996137i \(0.527986\pi\)
\(972\) −1.69266e7 −0.574651
\(973\) 0 0
\(974\) −681206. −0.0230081
\(975\) −5.22968e7 −1.76183
\(976\) −3.79871e6 −0.127647
\(977\) −6.97650e6 −0.233831 −0.116915 0.993142i \(-0.537301\pi\)
−0.116915 + 0.993142i \(0.537301\pi\)
\(978\) 6.38894e6 0.213590
\(979\) −1.48511e7 −0.495225
\(980\) 0 0
\(981\) −1.34853e6 −0.0447394
\(982\) −2.31051e7 −0.764592
\(983\) −2.81568e7 −0.929393 −0.464696 0.885470i \(-0.653837\pi\)
−0.464696 + 0.885470i \(0.653837\pi\)
\(984\) 6.04561e6 0.199046
\(985\) 3.39937e7 1.11637
\(986\) −2.80142e7 −0.917669
\(987\) 0 0
\(988\) −5.19691e6 −0.169376
\(989\) −1.36709e7 −0.444434
\(990\) −8.32536e6 −0.269970
\(991\) −2.34043e7 −0.757028 −0.378514 0.925596i \(-0.623565\pi\)
−0.378514 + 0.925596i \(0.623565\pi\)
\(992\) −2.37025e6 −0.0764743
\(993\) 4.30825e7 1.38653
\(994\) 0 0
\(995\) −2.31080e7 −0.739954
\(996\) 2.21319e7 0.706919
\(997\) −4.30284e7 −1.37094 −0.685468 0.728103i \(-0.740402\pi\)
−0.685468 + 0.728103i \(0.740402\pi\)
\(998\) 2.17441e6 0.0691058
\(999\) −7.39183e6 −0.234336
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.6.a.h.1.2 2
3.2 odd 2 882.6.a.ba.1.2 2
4.3 odd 2 784.6.a.s.1.1 2
7.2 even 3 14.6.c.a.11.1 yes 4
7.3 odd 6 98.6.c.e.79.2 4
7.4 even 3 14.6.c.a.9.1 4
7.5 odd 6 98.6.c.e.67.2 4
7.6 odd 2 98.6.a.g.1.1 2
21.2 odd 6 126.6.g.j.109.1 4
21.11 odd 6 126.6.g.j.37.1 4
21.20 even 2 882.6.a.bi.1.1 2
28.11 odd 6 112.6.i.d.65.2 4
28.23 odd 6 112.6.i.d.81.2 4
28.27 even 2 784.6.a.bb.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.a.9.1 4 7.4 even 3
14.6.c.a.11.1 yes 4 7.2 even 3
98.6.a.g.1.1 2 7.6 odd 2
98.6.a.h.1.2 2 1.1 even 1 trivial
98.6.c.e.67.2 4 7.5 odd 6
98.6.c.e.79.2 4 7.3 odd 6
112.6.i.d.65.2 4 28.11 odd 6
112.6.i.d.81.2 4 28.23 odd 6
126.6.g.j.37.1 4 21.11 odd 6
126.6.g.j.109.1 4 21.2 odd 6
784.6.a.s.1.1 2 4.3 odd 2
784.6.a.bb.1.2 2 28.27 even 2
882.6.a.ba.1.2 2 3.2 odd 2
882.6.a.bi.1.1 2 21.20 even 2