Properties

Label 98.6.a.h
Level $98$
Weight $6$
Character orbit 98.a
Self dual yes
Analytic conductor $15.718$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,6,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8,14,32,70,56,0,128,244] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.7176143417\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{79}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 79 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{79}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + (\beta + 7) q^{3} + 16 q^{4} + ( - 4 \beta + 35) q^{5} + (4 \beta + 28) q^{6} + 64 q^{8} + (14 \beta + 122) q^{9} + ( - 16 \beta + 140) q^{10} + (7 \beta + 31) q^{11} + (16 \beta + 112) q^{12}+ \cdots + (1288 \beta + 34750) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 14 q^{3} + 32 q^{4} + 70 q^{5} + 56 q^{6} + 128 q^{8} + 244 q^{9} + 280 q^{10} + 62 q^{11} + 224 q^{12} + 1820 q^{13} - 2038 q^{15} + 512 q^{16} + 1694 q^{17} + 976 q^{18} + 826 q^{19} + 1120 q^{20}+ \cdots + 69500 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.88819
8.88819
4.00000 −10.7764 16.0000 106.106 −43.1056 0 64.0000 −126.869 424.422
1.2 4.00000 24.7764 16.0000 −36.1056 99.1056 0 64.0000 370.869 −144.422
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.6.a.h 2
3.b odd 2 1 882.6.a.ba 2
4.b odd 2 1 784.6.a.s 2
7.b odd 2 1 98.6.a.g 2
7.c even 3 2 14.6.c.a 4
7.d odd 6 2 98.6.c.e 4
21.c even 2 1 882.6.a.bi 2
21.h odd 6 2 126.6.g.j 4
28.d even 2 1 784.6.a.bb 2
28.g odd 6 2 112.6.i.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.6.c.a 4 7.c even 3 2
98.6.a.g 2 7.b odd 2 1
98.6.a.h 2 1.a even 1 1 trivial
98.6.c.e 4 7.d odd 6 2
112.6.i.d 4 28.g odd 6 2
126.6.g.j 4 21.h odd 6 2
784.6.a.s 2 4.b odd 2 1
784.6.a.bb 2 28.d even 2 1
882.6.a.ba 2 3.b odd 2 1
882.6.a.bi 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 14T_{3} - 267 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(98))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 14T - 267 \) Copy content Toggle raw display
$5$ \( T^{2} - 70T - 3831 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 62T - 14523 \) Copy content Toggle raw display
$13$ \( T^{2} - 1820 T + 766164 \) Copy content Toggle raw display
$17$ \( T^{2} - 1694 T + 564465 \) Copy content Toggle raw display
$19$ \( T^{2} - 826T - 310067 \) Copy content Toggle raw display
$23$ \( T^{2} + 2734 T - 2606187 \) Copy content Toggle raw display
$29$ \( T^{2} + 2852 T - 15866028 \) Copy content Toggle raw display
$31$ \( T^{2} + 2674 T + 831669 \) Copy content Toggle raw display
$37$ \( T^{2} + 9146 T + 15895513 \) Copy content Toggle raw display
$41$ \( T^{2} - 6132 T + 8842932 \) Copy content Toggle raw display
$43$ \( T^{2} + 16040 T - 78380144 \) Copy content Toggle raw display
$47$ \( T^{2} + 25326 T + 157959765 \) Copy content Toggle raw display
$53$ \( T^{2} - 14958 T - 292454559 \) Copy content Toggle raw display
$59$ \( T^{2} + 1106 T - 29476875 \) Copy content Toggle raw display
$61$ \( T^{2} + 28042 T + 195919785 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 2564337365 \) Copy content Toggle raw display
$71$ \( T^{2} + 11056 T - 177793920 \) Copy content Toggle raw display
$73$ \( T^{2} - 35070 T - 477396991 \) Copy content Toggle raw display
$79$ \( T^{2} - 101762 T - 788013915 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 5608638000 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 1917778095 \) Copy content Toggle raw display
$97$ \( T^{2} + 8316 T - 349929580 \) Copy content Toggle raw display
show more
show less