Properties

Label 98.6.a.g.1.2
Level $98$
Weight $6$
Character 98.1
Self dual yes
Analytic conductor $15.718$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,6,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8,-14,32,-70,-56,0,128,244] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.7176143417\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{79}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 79 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(8.88819\) of defining polynomial
Character \(\chi\) \(=\) 98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +10.7764 q^{3} +16.0000 q^{4} -106.106 q^{5} +43.1056 q^{6} +64.0000 q^{8} -126.869 q^{9} -424.422 q^{10} -93.4347 q^{11} +172.422 q^{12} -661.131 q^{13} -1143.43 q^{15} +256.000 q^{16} -455.919 q^{17} -507.478 q^{18} -1106.28 q^{19} -1697.69 q^{20} -373.739 q^{22} +748.390 q^{23} +689.689 q^{24} +8133.39 q^{25} -2644.52 q^{26} -3985.86 q^{27} +2804.78 q^{29} -4573.74 q^{30} +359.299 q^{31} +1024.00 q^{32} -1006.89 q^{33} -1823.68 q^{34} -2029.91 q^{36} -6812.82 q^{37} -4425.12 q^{38} -7124.60 q^{39} -6790.76 q^{40} -2319.39 q^{41} -19965.7 q^{43} -1494.96 q^{44} +13461.6 q^{45} +2993.56 q^{46} +14209.5 q^{47} +2758.76 q^{48} +32533.6 q^{50} -4913.17 q^{51} -10578.1 q^{52} +26144.2 q^{53} -15943.4 q^{54} +9913.94 q^{55} -11921.7 q^{57} +11219.1 q^{58} -4904.35 q^{59} -18295.0 q^{60} +13203.3 q^{61} +1437.19 q^{62} +4096.00 q^{64} +70149.6 q^{65} -4027.56 q^{66} -59658.1 q^{67} -7294.71 q^{68} +8064.94 q^{69} +8906.43 q^{71} -8119.64 q^{72} +10480.6 q^{73} -27251.3 q^{74} +87648.6 q^{75} -17700.5 q^{76} -28498.4 q^{78} -7230.02 q^{79} -27163.0 q^{80} -12123.9 q^{81} -9277.57 q^{82} +100461. q^{83} +48375.6 q^{85} -79862.9 q^{86} +30225.4 q^{87} -5979.82 q^{88} -20071.8 q^{89} +53846.2 q^{90} +11974.2 q^{92} +3871.94 q^{93} +56838.2 q^{94} +117382. q^{95} +11035.0 q^{96} +23320.9 q^{97} +11854.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 14 q^{3} + 32 q^{4} - 70 q^{5} - 56 q^{6} + 128 q^{8} + 244 q^{9} - 280 q^{10} + 62 q^{11} - 224 q^{12} - 1820 q^{13} - 2038 q^{15} + 512 q^{16} - 1694 q^{17} + 976 q^{18} - 826 q^{19} - 1120 q^{20}+ \cdots + 69500 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 10.7764 0.691306 0.345653 0.938362i \(-0.387657\pi\)
0.345653 + 0.938362i \(0.387657\pi\)
\(4\) 16.0000 0.500000
\(5\) −106.106 −1.89807 −0.949037 0.315165i \(-0.897940\pi\)
−0.949037 + 0.315165i \(0.897940\pi\)
\(6\) 43.1056 0.488827
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) −126.869 −0.522096
\(10\) −424.422 −1.34214
\(11\) −93.4347 −0.232823 −0.116412 0.993201i \(-0.537139\pi\)
−0.116412 + 0.993201i \(0.537139\pi\)
\(12\) 172.422 0.345653
\(13\) −661.131 −1.08500 −0.542499 0.840057i \(-0.682522\pi\)
−0.542499 + 0.840057i \(0.682522\pi\)
\(14\) 0 0
\(15\) −1143.43 −1.31215
\(16\) 256.000 0.250000
\(17\) −455.919 −0.382618 −0.191309 0.981530i \(-0.561273\pi\)
−0.191309 + 0.981530i \(0.561273\pi\)
\(18\) −507.478 −0.369178
\(19\) −1106.28 −0.703041 −0.351521 0.936180i \(-0.614335\pi\)
−0.351521 + 0.936180i \(0.614335\pi\)
\(20\) −1697.69 −0.949037
\(21\) 0 0
\(22\) −373.739 −0.164631
\(23\) 748.390 0.294991 0.147495 0.989063i \(-0.452879\pi\)
0.147495 + 0.989063i \(0.452879\pi\)
\(24\) 689.689 0.244413
\(25\) 8133.39 2.60268
\(26\) −2644.52 −0.767209
\(27\) −3985.86 −1.05223
\(28\) 0 0
\(29\) 2804.78 0.619304 0.309652 0.950850i \(-0.399787\pi\)
0.309652 + 0.950850i \(0.399787\pi\)
\(30\) −4573.74 −0.927830
\(31\) 359.299 0.0671508 0.0335754 0.999436i \(-0.489311\pi\)
0.0335754 + 0.999436i \(0.489311\pi\)
\(32\) 1024.00 0.176777
\(33\) −1006.89 −0.160952
\(34\) −1823.68 −0.270552
\(35\) 0 0
\(36\) −2029.91 −0.261048
\(37\) −6812.82 −0.818131 −0.409066 0.912505i \(-0.634145\pi\)
−0.409066 + 0.912505i \(0.634145\pi\)
\(38\) −4425.12 −0.497125
\(39\) −7124.60 −0.750065
\(40\) −6790.76 −0.671070
\(41\) −2319.39 −0.215484 −0.107742 0.994179i \(-0.534362\pi\)
−0.107742 + 0.994179i \(0.534362\pi\)
\(42\) 0 0
\(43\) −19965.7 −1.64670 −0.823349 0.567535i \(-0.807897\pi\)
−0.823349 + 0.567535i \(0.807897\pi\)
\(44\) −1494.96 −0.116412
\(45\) 13461.6 0.990978
\(46\) 2993.56 0.208590
\(47\) 14209.5 0.938287 0.469143 0.883122i \(-0.344563\pi\)
0.469143 + 0.883122i \(0.344563\pi\)
\(48\) 2758.76 0.172826
\(49\) 0 0
\(50\) 32533.6 1.84038
\(51\) −4913.17 −0.264506
\(52\) −10578.1 −0.542499
\(53\) 26144.2 1.27846 0.639228 0.769017i \(-0.279254\pi\)
0.639228 + 0.769017i \(0.279254\pi\)
\(54\) −15943.4 −0.744042
\(55\) 9913.94 0.441916
\(56\) 0 0
\(57\) −11921.7 −0.486016
\(58\) 11219.1 0.437914
\(59\) −4904.35 −0.183422 −0.0917110 0.995786i \(-0.529234\pi\)
−0.0917110 + 0.995786i \(0.529234\pi\)
\(60\) −18295.0 −0.656075
\(61\) 13203.3 0.454315 0.227158 0.973858i \(-0.427057\pi\)
0.227158 + 0.973858i \(0.427057\pi\)
\(62\) 1437.19 0.0474828
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 70149.6 2.05941
\(66\) −4027.56 −0.113810
\(67\) −59658.1 −1.62361 −0.811807 0.583926i \(-0.801516\pi\)
−0.811807 + 0.583926i \(0.801516\pi\)
\(68\) −7294.71 −0.191309
\(69\) 8064.94 0.203929
\(70\) 0 0
\(71\) 8906.43 0.209680 0.104840 0.994489i \(-0.466567\pi\)
0.104840 + 0.994489i \(0.466567\pi\)
\(72\) −8119.64 −0.184589
\(73\) 10480.6 0.230186 0.115093 0.993355i \(-0.463283\pi\)
0.115093 + 0.993355i \(0.463283\pi\)
\(74\) −27251.3 −0.578506
\(75\) 87648.6 1.79925
\(76\) −17700.5 −0.351521
\(77\) 0 0
\(78\) −28498.4 −0.530376
\(79\) −7230.02 −0.130338 −0.0651691 0.997874i \(-0.520759\pi\)
−0.0651691 + 0.997874i \(0.520759\pi\)
\(80\) −27163.0 −0.474518
\(81\) −12123.9 −0.205319
\(82\) −9277.57 −0.152370
\(83\) 100461. 1.60067 0.800336 0.599552i \(-0.204655\pi\)
0.800336 + 0.599552i \(0.204655\pi\)
\(84\) 0 0
\(85\) 48375.6 0.726238
\(86\) −79862.9 −1.16439
\(87\) 30225.4 0.428128
\(88\) −5979.82 −0.0823155
\(89\) −20071.8 −0.268603 −0.134302 0.990940i \(-0.542879\pi\)
−0.134302 + 0.990940i \(0.542879\pi\)
\(90\) 53846.2 0.700727
\(91\) 0 0
\(92\) 11974.2 0.147495
\(93\) 3871.94 0.0464217
\(94\) 56838.2 0.663469
\(95\) 117382. 1.33442
\(96\) 11035.0 0.122207
\(97\) 23320.9 0.251662 0.125831 0.992052i \(-0.459840\pi\)
0.125831 + 0.992052i \(0.459840\pi\)
\(98\) 0 0
\(99\) 11854.0 0.121556
\(100\) 130134. 1.30134
\(101\) 68974.1 0.672795 0.336398 0.941720i \(-0.390791\pi\)
0.336398 + 0.941720i \(0.390791\pi\)
\(102\) −19652.7 −0.187034
\(103\) −113725. −1.05624 −0.528121 0.849169i \(-0.677103\pi\)
−0.528121 + 0.849169i \(0.677103\pi\)
\(104\) −42312.4 −0.383605
\(105\) 0 0
\(106\) 104577. 0.904005
\(107\) −121287. −1.02413 −0.512066 0.858946i \(-0.671120\pi\)
−0.512066 + 0.858946i \(0.671120\pi\)
\(108\) −63773.7 −0.526117
\(109\) −61373.9 −0.494786 −0.247393 0.968915i \(-0.579574\pi\)
−0.247393 + 0.968915i \(0.579574\pi\)
\(110\) 39655.8 0.312482
\(111\) −73417.7 −0.565579
\(112\) 0 0
\(113\) −242939. −1.78979 −0.894893 0.446281i \(-0.852748\pi\)
−0.894893 + 0.446281i \(0.852748\pi\)
\(114\) −47686.8 −0.343665
\(115\) −79408.4 −0.559914
\(116\) 44876.5 0.309652
\(117\) 83877.3 0.566474
\(118\) −19617.4 −0.129699
\(119\) 0 0
\(120\) −73179.8 −0.463915
\(121\) −152321. −0.945793
\(122\) 52813.1 0.321249
\(123\) −24994.7 −0.148965
\(124\) 5748.78 0.0335754
\(125\) −531418. −3.04201
\(126\) 0 0
\(127\) 201922. 1.11090 0.555448 0.831551i \(-0.312547\pi\)
0.555448 + 0.831551i \(0.312547\pi\)
\(128\) 16384.0 0.0883883
\(129\) −215159. −1.13837
\(130\) 280598. 1.45622
\(131\) −283521. −1.44347 −0.721734 0.692171i \(-0.756655\pi\)
−0.721734 + 0.692171i \(0.756655\pi\)
\(132\) −16110.2 −0.0804761
\(133\) 0 0
\(134\) −238633. −1.14807
\(135\) 422922. 1.99722
\(136\) −29178.8 −0.135276
\(137\) 188471. 0.857911 0.428955 0.903326i \(-0.358882\pi\)
0.428955 + 0.903326i \(0.358882\pi\)
\(138\) 32259.8 0.144199
\(139\) 211579. 0.928830 0.464415 0.885618i \(-0.346265\pi\)
0.464415 + 0.885618i \(0.346265\pi\)
\(140\) 0 0
\(141\) 153128. 0.648643
\(142\) 35625.7 0.148266
\(143\) 61772.5 0.252613
\(144\) −32478.6 −0.130524
\(145\) −297603. −1.17548
\(146\) 41922.4 0.162766
\(147\) 0 0
\(148\) −109005. −0.409066
\(149\) −293324. −1.08238 −0.541192 0.840899i \(-0.682027\pi\)
−0.541192 + 0.840899i \(0.682027\pi\)
\(150\) 350594. 1.27226
\(151\) −204476. −0.729794 −0.364897 0.931048i \(-0.618896\pi\)
−0.364897 + 0.931048i \(0.618896\pi\)
\(152\) −70801.9 −0.248563
\(153\) 57842.2 0.199764
\(154\) 0 0
\(155\) −38123.6 −0.127457
\(156\) −113994. −0.375033
\(157\) −505915. −1.63805 −0.819027 0.573755i \(-0.805486\pi\)
−0.819027 + 0.573755i \(0.805486\pi\)
\(158\) −28920.1 −0.0921630
\(159\) 281740. 0.883804
\(160\) −108652. −0.335535
\(161\) 0 0
\(162\) −48495.5 −0.145182
\(163\) −284200. −0.837829 −0.418914 0.908026i \(-0.637589\pi\)
−0.418914 + 0.908026i \(0.637589\pi\)
\(164\) −37110.3 −0.107742
\(165\) 106837. 0.305499
\(166\) 401844. 1.13185
\(167\) 13145.7 0.0364747 0.0182373 0.999834i \(-0.494195\pi\)
0.0182373 + 0.999834i \(0.494195\pi\)
\(168\) 0 0
\(169\) 65800.6 0.177220
\(170\) 193502. 0.513528
\(171\) 140353. 0.367055
\(172\) −319452. −0.823349
\(173\) −51453.0 −0.130706 −0.0653530 0.997862i \(-0.520817\pi\)
−0.0653530 + 0.997862i \(0.520817\pi\)
\(174\) 120902. 0.302732
\(175\) 0 0
\(176\) −23919.3 −0.0582058
\(177\) −52851.2 −0.126801
\(178\) −80287.3 −0.189931
\(179\) −497735. −1.16109 −0.580544 0.814229i \(-0.697160\pi\)
−0.580544 + 0.814229i \(0.697160\pi\)
\(180\) 215385. 0.495489
\(181\) 227120. 0.515299 0.257650 0.966238i \(-0.417052\pi\)
0.257650 + 0.966238i \(0.417052\pi\)
\(182\) 0 0
\(183\) 142284. 0.314071
\(184\) 47897.0 0.104295
\(185\) 722879. 1.55287
\(186\) 15487.8 0.0328251
\(187\) 42598.7 0.0890825
\(188\) 227353. 0.469143
\(189\) 0 0
\(190\) 469529. 0.943580
\(191\) 502778. 0.997225 0.498612 0.866825i \(-0.333843\pi\)
0.498612 + 0.866825i \(0.333843\pi\)
\(192\) 44140.1 0.0864132
\(193\) 140322. 0.271165 0.135582 0.990766i \(-0.456709\pi\)
0.135582 + 0.990766i \(0.456709\pi\)
\(194\) 93283.8 0.177952
\(195\) 755960. 1.42368
\(196\) 0 0
\(197\) 378993. 0.695769 0.347885 0.937537i \(-0.386900\pi\)
0.347885 + 0.937537i \(0.386900\pi\)
\(198\) 47416.0 0.0859533
\(199\) 461022. 0.825256 0.412628 0.910900i \(-0.364611\pi\)
0.412628 + 0.910900i \(0.364611\pi\)
\(200\) 520537. 0.920188
\(201\) −642899. −1.12241
\(202\) 275897. 0.475738
\(203\) 0 0
\(204\) −78610.6 −0.132253
\(205\) 246100. 0.409004
\(206\) −454901. −0.746876
\(207\) −94947.9 −0.154014
\(208\) −169249. −0.271249
\(209\) 103365. 0.163684
\(210\) 0 0
\(211\) 202139. 0.312567 0.156284 0.987712i \(-0.450049\pi\)
0.156284 + 0.987712i \(0.450049\pi\)
\(212\) 418307. 0.639228
\(213\) 95979.1 0.144953
\(214\) −485149. −0.724170
\(215\) 2.11848e6 3.12556
\(216\) −255095. −0.372021
\(217\) 0 0
\(218\) −245495. −0.349866
\(219\) 112943. 0.159129
\(220\) 158623. 0.220958
\(221\) 301422. 0.415140
\(222\) −293671. −0.399925
\(223\) −694340. −0.934997 −0.467498 0.883994i \(-0.654845\pi\)
−0.467498 + 0.883994i \(0.654845\pi\)
\(224\) 0 0
\(225\) −1.03188e6 −1.35885
\(226\) −971756. −1.26557
\(227\) −1.26697e6 −1.63194 −0.815968 0.578096i \(-0.803796\pi\)
−0.815968 + 0.578096i \(0.803796\pi\)
\(228\) −190747. −0.243008
\(229\) −856477. −1.07926 −0.539631 0.841902i \(-0.681436\pi\)
−0.539631 + 0.841902i \(0.681436\pi\)
\(230\) −317633. −0.395919
\(231\) 0 0
\(232\) 179506. 0.218957
\(233\) −284358. −0.343143 −0.171571 0.985172i \(-0.554884\pi\)
−0.171571 + 0.985172i \(0.554884\pi\)
\(234\) 335509. 0.400557
\(235\) −1.50771e6 −1.78094
\(236\) −78469.6 −0.0917110
\(237\) −77913.5 −0.0901035
\(238\) 0 0
\(239\) −427941. −0.484606 −0.242303 0.970201i \(-0.577903\pi\)
−0.242303 + 0.970201i \(0.577903\pi\)
\(240\) −292719. −0.328037
\(241\) −809581. −0.897879 −0.448940 0.893562i \(-0.648198\pi\)
−0.448940 + 0.893562i \(0.648198\pi\)
\(242\) −609284. −0.668777
\(243\) 837912. 0.910296
\(244\) 211253. 0.227158
\(245\) 0 0
\(246\) −99978.7 −0.105334
\(247\) 731395. 0.762798
\(248\) 22995.1 0.0237414
\(249\) 1.08261e6 1.10655
\(250\) −2.12567e6 −2.15103
\(251\) 1.26305e6 1.26542 0.632711 0.774388i \(-0.281942\pi\)
0.632711 + 0.774388i \(0.281942\pi\)
\(252\) 0 0
\(253\) −69925.6 −0.0686808
\(254\) 807687. 0.785523
\(255\) 521314. 0.502052
\(256\) 65536.0 0.0625000
\(257\) −56138.2 −0.0530183 −0.0265091 0.999649i \(-0.508439\pi\)
−0.0265091 + 0.999649i \(0.508439\pi\)
\(258\) −860634. −0.804951
\(259\) 0 0
\(260\) 1.12239e6 1.02970
\(261\) −355841. −0.323336
\(262\) −1.13408e6 −1.02069
\(263\) 1.54275e6 1.37533 0.687664 0.726029i \(-0.258636\pi\)
0.687664 + 0.726029i \(0.258636\pi\)
\(264\) −64440.9 −0.0569052
\(265\) −2.77405e6 −2.42660
\(266\) 0 0
\(267\) −216302. −0.185687
\(268\) −954530. −0.811807
\(269\) 1.20535e6 1.01563 0.507813 0.861467i \(-0.330454\pi\)
0.507813 + 0.861467i \(0.330454\pi\)
\(270\) 1.69169e6 1.41225
\(271\) −1.76489e6 −1.45980 −0.729900 0.683554i \(-0.760433\pi\)
−0.729900 + 0.683554i \(0.760433\pi\)
\(272\) −116715. −0.0956546
\(273\) 0 0
\(274\) 753882. 0.606634
\(275\) −759941. −0.605966
\(276\) 129039. 0.101964
\(277\) 1.48319e6 1.16144 0.580719 0.814104i \(-0.302771\pi\)
0.580719 + 0.814104i \(0.302771\pi\)
\(278\) 846317. 0.656782
\(279\) −45584.0 −0.0350592
\(280\) 0 0
\(281\) −1.26812e6 −0.958061 −0.479031 0.877798i \(-0.659012\pi\)
−0.479031 + 0.877798i \(0.659012\pi\)
\(282\) 612510. 0.458660
\(283\) 1.44657e6 1.07368 0.536838 0.843685i \(-0.319619\pi\)
0.536838 + 0.843685i \(0.319619\pi\)
\(284\) 142503. 0.104840
\(285\) 1.26496e6 0.922495
\(286\) 247090. 0.178624
\(287\) 0 0
\(288\) −129914. −0.0922945
\(289\) −1.21199e6 −0.853603
\(290\) −1.19041e6 −0.831193
\(291\) 251316. 0.173975
\(292\) 167689. 0.115093
\(293\) −367016. −0.249756 −0.124878 0.992172i \(-0.539854\pi\)
−0.124878 + 0.992172i \(0.539854\pi\)
\(294\) 0 0
\(295\) 520379. 0.348149
\(296\) −436021. −0.289253
\(297\) 372417. 0.244985
\(298\) −1.17330e6 −0.765362
\(299\) −494784. −0.320064
\(300\) 1.40238e6 0.899625
\(301\) 0 0
\(302\) −817905. −0.516042
\(303\) 743292. 0.465107
\(304\) −283207. −0.175760
\(305\) −1.40094e6 −0.862324
\(306\) 231369. 0.141254
\(307\) 131281. 0.0794979 0.0397490 0.999210i \(-0.487344\pi\)
0.0397490 + 0.999210i \(0.487344\pi\)
\(308\) 0 0
\(309\) −1.22555e6 −0.730186
\(310\) −152494. −0.0901259
\(311\) 2.33471e6 1.36878 0.684389 0.729118i \(-0.260069\pi\)
0.684389 + 0.729118i \(0.260069\pi\)
\(312\) −455974. −0.265188
\(313\) 772801. 0.445869 0.222934 0.974833i \(-0.428436\pi\)
0.222934 + 0.974833i \(0.428436\pi\)
\(314\) −2.02366e6 −1.15828
\(315\) 0 0
\(316\) −115680. −0.0651691
\(317\) 524336. 0.293063 0.146532 0.989206i \(-0.453189\pi\)
0.146532 + 0.989206i \(0.453189\pi\)
\(318\) 1.12696e6 0.624944
\(319\) −262064. −0.144188
\(320\) −434608. −0.237259
\(321\) −1.30704e6 −0.707988
\(322\) 0 0
\(323\) 504374. 0.268996
\(324\) −193982. −0.102659
\(325\) −5.37723e6 −2.82391
\(326\) −1.13680e6 −0.592434
\(327\) −661389. −0.342048
\(328\) −148441. −0.0761850
\(329\) 0 0
\(330\) 427346. 0.216020
\(331\) 631635. 0.316881 0.158440 0.987369i \(-0.449353\pi\)
0.158440 + 0.987369i \(0.449353\pi\)
\(332\) 1.60738e6 0.800336
\(333\) 864339. 0.427143
\(334\) 52582.7 0.0257915
\(335\) 6.33006e6 3.08174
\(336\) 0 0
\(337\) 3.33479e6 1.59954 0.799768 0.600309i \(-0.204956\pi\)
0.799768 + 0.600309i \(0.204956\pi\)
\(338\) 263202. 0.125314
\(339\) −2.61800e6 −1.23729
\(340\) 774009. 0.363119
\(341\) −33571.0 −0.0156343
\(342\) 561412. 0.259547
\(343\) 0 0
\(344\) −1.27781e6 −0.582196
\(345\) −855735. −0.387072
\(346\) −205812. −0.0924231
\(347\) −650351. −0.289951 −0.144975 0.989435i \(-0.546310\pi\)
−0.144975 + 0.989435i \(0.546310\pi\)
\(348\) 483606. 0.214064
\(349\) 601041. 0.264144 0.132072 0.991240i \(-0.457837\pi\)
0.132072 + 0.991240i \(0.457837\pi\)
\(350\) 0 0
\(351\) 2.63517e6 1.14167
\(352\) −95677.2 −0.0411577
\(353\) 2.88889e6 1.23394 0.616970 0.786987i \(-0.288360\pi\)
0.616970 + 0.786987i \(0.288360\pi\)
\(354\) −211405. −0.0896616
\(355\) −945021. −0.397989
\(356\) −321149. −0.134302
\(357\) 0 0
\(358\) −1.99094e6 −0.821014
\(359\) −97830.5 −0.0400625 −0.0200313 0.999799i \(-0.506377\pi\)
−0.0200313 + 0.999799i \(0.506377\pi\)
\(360\) 861539. 0.350364
\(361\) −1.25225e6 −0.505733
\(362\) 908481. 0.364371
\(363\) −1.64147e6 −0.653832
\(364\) 0 0
\(365\) −1.11205e6 −0.436910
\(366\) 569135. 0.222082
\(367\) −2.14775e6 −0.832374 −0.416187 0.909279i \(-0.636634\pi\)
−0.416187 + 0.909279i \(0.636634\pi\)
\(368\) 191588. 0.0737477
\(369\) 294260. 0.112503
\(370\) 2.89151e6 1.09805
\(371\) 0 0
\(372\) 61951.1 0.0232109
\(373\) 4.20458e6 1.56477 0.782386 0.622794i \(-0.214003\pi\)
0.782386 + 0.622794i \(0.214003\pi\)
\(374\) 170395. 0.0629908
\(375\) −5.72677e6 −2.10296
\(376\) 909411. 0.331734
\(377\) −1.85433e6 −0.671943
\(378\) 0 0
\(379\) −535586. −0.191527 −0.0957637 0.995404i \(-0.530529\pi\)
−0.0957637 + 0.995404i \(0.530529\pi\)
\(380\) 1.87812e6 0.667212
\(381\) 2.17599e6 0.767969
\(382\) 2.01111e6 0.705144
\(383\) 3.84697e6 1.34005 0.670027 0.742337i \(-0.266283\pi\)
0.670027 + 0.742337i \(0.266283\pi\)
\(384\) 176560. 0.0611034
\(385\) 0 0
\(386\) 561289. 0.191742
\(387\) 2.53304e6 0.859736
\(388\) 373135. 0.125831
\(389\) −1.69833e6 −0.569045 −0.284523 0.958669i \(-0.591835\pi\)
−0.284523 + 0.958669i \(0.591835\pi\)
\(390\) 3.02384e6 1.00669
\(391\) −341206. −0.112869
\(392\) 0 0
\(393\) −3.05533e6 −0.997877
\(394\) 1.51597e6 0.491983
\(395\) 767145. 0.247391
\(396\) 189664. 0.0607781
\(397\) −3.62378e6 −1.15394 −0.576972 0.816764i \(-0.695766\pi\)
−0.576972 + 0.816764i \(0.695766\pi\)
\(398\) 1.84409e6 0.583544
\(399\) 0 0
\(400\) 2.08215e6 0.650671
\(401\) −2.79801e6 −0.868937 −0.434469 0.900687i \(-0.643064\pi\)
−0.434469 + 0.900687i \(0.643064\pi\)
\(402\) −2.57160e6 −0.793666
\(403\) −237543. −0.0728585
\(404\) 1.10359e6 0.336398
\(405\) 1.28641e6 0.389710
\(406\) 0 0
\(407\) 636554. 0.190480
\(408\) −314443. −0.0935171
\(409\) 666281. 0.196947 0.0984735 0.995140i \(-0.468604\pi\)
0.0984735 + 0.995140i \(0.468604\pi\)
\(410\) 984401. 0.289210
\(411\) 2.03103e6 0.593078
\(412\) −1.81960e6 −0.528121
\(413\) 0 0
\(414\) −379791. −0.108904
\(415\) −1.06595e7 −3.03819
\(416\) −676998. −0.191802
\(417\) 2.28006e6 0.642105
\(418\) 413460. 0.115742
\(419\) −2.89203e6 −0.804762 −0.402381 0.915472i \(-0.631817\pi\)
−0.402381 + 0.915472i \(0.631817\pi\)
\(420\) 0 0
\(421\) 6.72027e6 1.84791 0.923956 0.382498i \(-0.124936\pi\)
0.923956 + 0.382498i \(0.124936\pi\)
\(422\) 808555. 0.221018
\(423\) −1.80276e6 −0.489876
\(424\) 1.67323e6 0.452002
\(425\) −3.70817e6 −0.995835
\(426\) 383917. 0.102497
\(427\) 0 0
\(428\) −1.94060e6 −0.512066
\(429\) 665685. 0.174633
\(430\) 8.47390e6 2.21010
\(431\) 4.72298e6 1.22468 0.612341 0.790594i \(-0.290228\pi\)
0.612341 + 0.790594i \(0.290228\pi\)
\(432\) −1.02038e6 −0.263058
\(433\) 5.78136e6 1.48187 0.740935 0.671577i \(-0.234383\pi\)
0.740935 + 0.671577i \(0.234383\pi\)
\(434\) 0 0
\(435\) −3.20708e6 −0.812619
\(436\) −981982. −0.247393
\(437\) −827929. −0.207391
\(438\) 451772. 0.112521
\(439\) −5.36873e6 −1.32957 −0.664784 0.747036i \(-0.731476\pi\)
−0.664784 + 0.747036i \(0.731476\pi\)
\(440\) 634492. 0.156241
\(441\) 0 0
\(442\) 1.20569e6 0.293548
\(443\) 4.31511e6 1.04468 0.522339 0.852738i \(-0.325059\pi\)
0.522339 + 0.852738i \(0.325059\pi\)
\(444\) −1.17468e6 −0.282789
\(445\) 2.12973e6 0.509829
\(446\) −2.77736e6 −0.661143
\(447\) −3.16097e6 −0.748259
\(448\) 0 0
\(449\) 4.75292e6 1.11261 0.556307 0.830977i \(-0.312218\pi\)
0.556307 + 0.830977i \(0.312218\pi\)
\(450\) −4.12751e6 −0.960854
\(451\) 216712. 0.0501696
\(452\) −3.88702e6 −0.894893
\(453\) −2.20352e6 −0.504511
\(454\) −5.06790e6 −1.15395
\(455\) 0 0
\(456\) −762988. −0.171833
\(457\) 2.13728e6 0.478707 0.239354 0.970932i \(-0.423064\pi\)
0.239354 + 0.970932i \(0.423064\pi\)
\(458\) −3.42591e6 −0.763153
\(459\) 1.81723e6 0.402604
\(460\) −1.27053e6 −0.279957
\(461\) 1.72920e6 0.378959 0.189479 0.981885i \(-0.439320\pi\)
0.189479 + 0.981885i \(0.439320\pi\)
\(462\) 0 0
\(463\) −6.54367e6 −1.41863 −0.709315 0.704892i \(-0.750996\pi\)
−0.709315 + 0.704892i \(0.750996\pi\)
\(464\) 718024. 0.154826
\(465\) −410835. −0.0881119
\(466\) −1.13743e6 −0.242639
\(467\) 1.79419e6 0.380694 0.190347 0.981717i \(-0.439039\pi\)
0.190347 + 0.981717i \(0.439039\pi\)
\(468\) 1.34204e6 0.283237
\(469\) 0 0
\(470\) −6.03085e6 −1.25931
\(471\) −5.45194e6 −1.13240
\(472\) −313878. −0.0648495
\(473\) 1.86549e6 0.383390
\(474\) −311654. −0.0637128
\(475\) −8.99780e6 −1.82979
\(476\) 0 0
\(477\) −3.31690e6 −0.667477
\(478\) −1.71176e6 −0.342669
\(479\) −4.09403e6 −0.815289 −0.407645 0.913141i \(-0.633650\pi\)
−0.407645 + 0.913141i \(0.633650\pi\)
\(480\) −1.17088e6 −0.231957
\(481\) 4.50417e6 0.887670
\(482\) −3.23833e6 −0.634897
\(483\) 0 0
\(484\) −2.43714e6 −0.472897
\(485\) −2.47448e6 −0.477672
\(486\) 3.35165e6 0.643676
\(487\) −4.45210e6 −0.850634 −0.425317 0.905045i \(-0.639837\pi\)
−0.425317 + 0.905045i \(0.639837\pi\)
\(488\) 845010. 0.160625
\(489\) −3.06265e6 −0.579196
\(490\) 0 0
\(491\) 7.09674e6 1.32848 0.664240 0.747519i \(-0.268755\pi\)
0.664240 + 0.747519i \(0.268755\pi\)
\(492\) −399915. −0.0744826
\(493\) −1.27875e6 −0.236957
\(494\) 2.92558e6 0.539380
\(495\) −1.25778e6 −0.230723
\(496\) 91980.4 0.0167877
\(497\) 0 0
\(498\) 4.33043e6 0.782451
\(499\) 9.41903e6 1.69338 0.846691 0.532085i \(-0.178591\pi\)
0.846691 + 0.532085i \(0.178591\pi\)
\(500\) −8.50269e6 −1.52101
\(501\) 141663. 0.0252152
\(502\) 5.05219e6 0.894789
\(503\) −957258. −0.168698 −0.0843489 0.996436i \(-0.526881\pi\)
−0.0843489 + 0.996436i \(0.526881\pi\)
\(504\) 0 0
\(505\) −7.31854e6 −1.27702
\(506\) −279703. −0.0485646
\(507\) 709093. 0.122513
\(508\) 3.23075e6 0.555448
\(509\) 4.01453e6 0.686816 0.343408 0.939186i \(-0.388419\pi\)
0.343408 + 0.939186i \(0.388419\pi\)
\(510\) 2.08526e6 0.355005
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 4.40947e6 0.739764
\(514\) −224553. −0.0374896
\(515\) 1.20669e7 2.00483
\(516\) −3.44254e6 −0.569186
\(517\) −1.32766e6 −0.218455
\(518\) 0 0
\(519\) −554478. −0.0903578
\(520\) 4.48958e6 0.728110
\(521\) 4.31820e6 0.696960 0.348480 0.937316i \(-0.386698\pi\)
0.348480 + 0.937316i \(0.386698\pi\)
\(522\) −1.42336e6 −0.228633
\(523\) −1.34501e6 −0.215017 −0.107508 0.994204i \(-0.534287\pi\)
−0.107508 + 0.994204i \(0.534287\pi\)
\(524\) −4.53634e6 −0.721734
\(525\) 0 0
\(526\) 6.17100e6 0.972504
\(527\) −163811. −0.0256931
\(528\) −257764. −0.0402380
\(529\) −5.87626e6 −0.912980
\(530\) −1.10962e7 −1.71587
\(531\) 622212. 0.0957640
\(532\) 0 0
\(533\) 1.53342e6 0.233799
\(534\) −865207. −0.131301
\(535\) 1.28692e7 1.94388
\(536\) −3.81812e6 −0.574034
\(537\) −5.36378e6 −0.802667
\(538\) 4.82141e6 0.718156
\(539\) 0 0
\(540\) 6.76675e6 0.998609
\(541\) −7.06006e6 −1.03709 −0.518543 0.855051i \(-0.673526\pi\)
−0.518543 + 0.855051i \(0.673526\pi\)
\(542\) −7.05954e6 −1.03223
\(543\) 2.44754e6 0.356229
\(544\) −466862. −0.0676380
\(545\) 6.51211e6 0.939140
\(546\) 0 0
\(547\) −1.23520e7 −1.76510 −0.882549 0.470221i \(-0.844174\pi\)
−0.882549 + 0.470221i \(0.844174\pi\)
\(548\) 3.01553e6 0.428955
\(549\) −1.67509e6 −0.237196
\(550\) −3.03976e6 −0.428483
\(551\) −3.10287e6 −0.435396
\(552\) 516156. 0.0720997
\(553\) 0 0
\(554\) 5.93275e6 0.821261
\(555\) 7.79002e6 1.07351
\(556\) 3.38527e6 0.464415
\(557\) −1.22251e7 −1.66961 −0.834803 0.550549i \(-0.814418\pi\)
−0.834803 + 0.550549i \(0.814418\pi\)
\(558\) −182336. −0.0247906
\(559\) 1.32000e7 1.78666
\(560\) 0 0
\(561\) 459060. 0.0615832
\(562\) −5.07247e6 −0.677452
\(563\) 812527. 0.108036 0.0540178 0.998540i \(-0.482797\pi\)
0.0540178 + 0.998540i \(0.482797\pi\)
\(564\) 2.45004e6 0.324321
\(565\) 2.57772e7 3.39715
\(566\) 5.78628e6 0.759204
\(567\) 0 0
\(568\) 570011. 0.0741332
\(569\) −8.43881e6 −1.09270 −0.546350 0.837557i \(-0.683983\pi\)
−0.546350 + 0.837557i \(0.683983\pi\)
\(570\) 5.05983e6 0.652302
\(571\) 3.71511e6 0.476849 0.238425 0.971161i \(-0.423369\pi\)
0.238425 + 0.971161i \(0.423369\pi\)
\(572\) 988361. 0.126306
\(573\) 5.41813e6 0.689387
\(574\) 0 0
\(575\) 6.08695e6 0.767768
\(576\) −519657. −0.0652621
\(577\) −1.30375e7 −1.63025 −0.815126 0.579284i \(-0.803332\pi\)
−0.815126 + 0.579284i \(0.803332\pi\)
\(578\) −4.84798e6 −0.603589
\(579\) 1.51217e6 0.187458
\(580\) −4.76164e6 −0.587742
\(581\) 0 0
\(582\) 1.00526e6 0.123019
\(583\) −2.44278e6 −0.297654
\(584\) 670758. 0.0813830
\(585\) −8.89984e6 −1.07521
\(586\) −1.46806e6 −0.176604
\(587\) −1.15227e7 −1.38026 −0.690128 0.723687i \(-0.742446\pi\)
−0.690128 + 0.723687i \(0.742446\pi\)
\(588\) 0 0
\(589\) −397485. −0.0472098
\(590\) 2.08152e6 0.246178
\(591\) 4.08417e6 0.480989
\(592\) −1.74408e6 −0.204533
\(593\) 1.20103e7 1.40254 0.701271 0.712895i \(-0.252616\pi\)
0.701271 + 0.712895i \(0.252616\pi\)
\(594\) 1.48967e6 0.173230
\(595\) 0 0
\(596\) −4.69318e6 −0.541192
\(597\) 4.96815e6 0.570504
\(598\) −1.97913e6 −0.226320
\(599\) −1.17460e6 −0.133759 −0.0668794 0.997761i \(-0.521304\pi\)
−0.0668794 + 0.997761i \(0.521304\pi\)
\(600\) 5.60951e6 0.636131
\(601\) 1.62934e7 1.84003 0.920014 0.391886i \(-0.128177\pi\)
0.920014 + 0.391886i \(0.128177\pi\)
\(602\) 0 0
\(603\) 7.56879e6 0.847683
\(604\) −3.27162e6 −0.364897
\(605\) 1.61621e7 1.79519
\(606\) 2.97317e6 0.328880
\(607\) 1.82629e6 0.201186 0.100593 0.994928i \(-0.467926\pi\)
0.100593 + 0.994928i \(0.467926\pi\)
\(608\) −1.13283e6 −0.124281
\(609\) 0 0
\(610\) −5.60377e6 −0.609755
\(611\) −9.39436e6 −1.01804
\(612\) 925476. 0.0998819
\(613\) −5.10271e6 −0.548466 −0.274233 0.961663i \(-0.588424\pi\)
−0.274233 + 0.961663i \(0.588424\pi\)
\(614\) 525124. 0.0562135
\(615\) 2.65207e6 0.282747
\(616\) 0 0
\(617\) −8.03920e6 −0.850158 −0.425079 0.905156i \(-0.639754\pi\)
−0.425079 + 0.905156i \(0.639754\pi\)
\(618\) −4.90219e6 −0.516320
\(619\) −8.60132e6 −0.902274 −0.451137 0.892455i \(-0.648981\pi\)
−0.451137 + 0.892455i \(0.648981\pi\)
\(620\) −609977. −0.0637286
\(621\) −2.98298e6 −0.310399
\(622\) 9.33886e6 0.967872
\(623\) 0 0
\(624\) −1.82390e6 −0.187516
\(625\) 3.09695e7 3.17128
\(626\) 3.09120e6 0.315277
\(627\) 1.11390e6 0.113156
\(628\) −8.09464e6 −0.819027
\(629\) 3.10610e6 0.313032
\(630\) 0 0
\(631\) 6.21151e6 0.621046 0.310523 0.950566i \(-0.399496\pi\)
0.310523 + 0.950566i \(0.399496\pi\)
\(632\) −462721. −0.0460815
\(633\) 2.17833e6 0.216080
\(634\) 2.09734e6 0.207227
\(635\) −2.14250e7 −2.10856
\(636\) 4.50784e6 0.441902
\(637\) 0 0
\(638\) −1.04826e6 −0.101957
\(639\) −1.12995e6 −0.109473
\(640\) −1.73843e6 −0.167768
\(641\) 4.45143e6 0.427912 0.213956 0.976843i \(-0.431365\pi\)
0.213956 + 0.976843i \(0.431365\pi\)
\(642\) −5.22815e6 −0.500623
\(643\) −1.58708e7 −1.51381 −0.756907 0.653523i \(-0.773290\pi\)
−0.756907 + 0.653523i \(0.773290\pi\)
\(644\) 0 0
\(645\) 2.28295e7 2.16071
\(646\) 2.01750e6 0.190209
\(647\) 3.65619e6 0.343375 0.171687 0.985151i \(-0.445078\pi\)
0.171687 + 0.985151i \(0.445078\pi\)
\(648\) −775928. −0.0725912
\(649\) 458237. 0.0427049
\(650\) −2.15089e7 −1.99680
\(651\) 0 0
\(652\) −4.54720e6 −0.418914
\(653\) −4.15039e6 −0.380896 −0.190448 0.981697i \(-0.560994\pi\)
−0.190448 + 0.981697i \(0.560994\pi\)
\(654\) −2.64555e6 −0.241865
\(655\) 3.00832e7 2.73981
\(656\) −593764. −0.0538709
\(657\) −1.32967e6 −0.120179
\(658\) 0 0
\(659\) −1.33739e7 −1.19962 −0.599810 0.800143i \(-0.704757\pi\)
−0.599810 + 0.800143i \(0.704757\pi\)
\(660\) 1.70938e6 0.152750
\(661\) 9.82641e6 0.874764 0.437382 0.899276i \(-0.355906\pi\)
0.437382 + 0.899276i \(0.355906\pi\)
\(662\) 2.52654e6 0.224069
\(663\) 3.24824e6 0.286989
\(664\) 6.42950e6 0.565923
\(665\) 0 0
\(666\) 3.45736e6 0.302036
\(667\) 2.09907e6 0.182689
\(668\) 210331. 0.0182373
\(669\) −7.48248e6 −0.646369
\(670\) 2.53202e7 2.17912
\(671\) −1.23365e6 −0.105775
\(672\) 0 0
\(673\) 401148. 0.0341403 0.0170702 0.999854i \(-0.494566\pi\)
0.0170702 + 0.999854i \(0.494566\pi\)
\(674\) 1.33392e7 1.13104
\(675\) −3.24185e7 −2.73863
\(676\) 1.05281e6 0.0886101
\(677\) −2.07302e7 −1.73833 −0.869164 0.494524i \(-0.835343\pi\)
−0.869164 + 0.494524i \(0.835343\pi\)
\(678\) −1.04720e7 −0.874896
\(679\) 0 0
\(680\) 3.09604e6 0.256764
\(681\) −1.36534e7 −1.12817
\(682\) −134284. −0.0110551
\(683\) −1.91996e7 −1.57485 −0.787427 0.616409i \(-0.788587\pi\)
−0.787427 + 0.616409i \(0.788587\pi\)
\(684\) 2.24565e6 0.183528
\(685\) −1.99978e7 −1.62838
\(686\) 0 0
\(687\) −9.22972e6 −0.746100
\(688\) −5.11123e6 −0.411675
\(689\) −1.72847e7 −1.38712
\(690\) −3.42294e6 −0.273701
\(691\) 1.13093e7 0.901033 0.450517 0.892768i \(-0.351240\pi\)
0.450517 + 0.892768i \(0.351240\pi\)
\(692\) −823248. −0.0653530
\(693\) 0 0
\(694\) −2.60140e6 −0.205026
\(695\) −2.24497e7 −1.76299
\(696\) 1.93443e6 0.151366
\(697\) 1.05746e6 0.0824480
\(698\) 2.40417e6 0.186778
\(699\) −3.06435e6 −0.237217
\(700\) 0 0
\(701\) −1.92159e7 −1.47695 −0.738473 0.674283i \(-0.764453\pi\)
−0.738473 + 0.674283i \(0.764453\pi\)
\(702\) 1.05407e7 0.807284
\(703\) 7.53689e6 0.575180
\(704\) −382709. −0.0291029
\(705\) −1.62477e7 −1.23117
\(706\) 1.15555e7 0.872527
\(707\) 0 0
\(708\) −845619. −0.0634004
\(709\) 5.64480e6 0.421729 0.210864 0.977515i \(-0.432372\pi\)
0.210864 + 0.977515i \(0.432372\pi\)
\(710\) −3.78009e6 −0.281421
\(711\) 917268. 0.0680491
\(712\) −1.28460e6 −0.0949657
\(713\) 268896. 0.0198089
\(714\) 0 0
\(715\) −6.55441e6 −0.479478
\(716\) −7.96376e6 −0.580544
\(717\) −4.61166e6 −0.335011
\(718\) −391322. −0.0283285
\(719\) −4.42077e6 −0.318916 −0.159458 0.987205i \(-0.550975\pi\)
−0.159458 + 0.987205i \(0.550975\pi\)
\(720\) 3.44616e6 0.247744
\(721\) 0 0
\(722\) −5.00898e6 −0.357607
\(723\) −8.72436e6 −0.620709
\(724\) 3.63392e6 0.257650
\(725\) 2.28124e7 1.61185
\(726\) −6.56588e6 −0.462329
\(727\) −1.92503e7 −1.35083 −0.675416 0.737437i \(-0.736036\pi\)
−0.675416 + 0.737437i \(0.736036\pi\)
\(728\) 0 0
\(729\) 1.19758e7 0.834611
\(730\) −4.44819e6 −0.308942
\(731\) 9.10277e6 0.630057
\(732\) 2.27654e6 0.157035
\(733\) −1.30187e7 −0.894966 −0.447483 0.894292i \(-0.647680\pi\)
−0.447483 + 0.894292i \(0.647680\pi\)
\(734\) −8.59100e6 −0.588577
\(735\) 0 0
\(736\) 766352. 0.0521475
\(737\) 5.57414e6 0.378015
\(738\) 1.17704e6 0.0795518
\(739\) −1.70955e7 −1.15152 −0.575758 0.817620i \(-0.695293\pi\)
−0.575758 + 0.817620i \(0.695293\pi\)
\(740\) 1.15661e7 0.776437
\(741\) 7.88180e6 0.527327
\(742\) 0 0
\(743\) 2.36546e7 1.57197 0.785984 0.618247i \(-0.212157\pi\)
0.785984 + 0.618247i \(0.212157\pi\)
\(744\) 247804. 0.0164126
\(745\) 3.11233e7 2.05445
\(746\) 1.68183e7 1.10646
\(747\) −1.27454e7 −0.835705
\(748\) 681579. 0.0445413
\(749\) 0 0
\(750\) −2.29071e7 −1.48702
\(751\) −166564. −0.0107766 −0.00538828 0.999985i \(-0.501715\pi\)
−0.00538828 + 0.999985i \(0.501715\pi\)
\(752\) 3.63764e6 0.234572
\(753\) 1.36111e7 0.874794
\(754\) −7.41730e6 −0.475136
\(755\) 2.16961e7 1.38520
\(756\) 0 0
\(757\) −4.63842e6 −0.294192 −0.147096 0.989122i \(-0.546993\pi\)
−0.147096 + 0.989122i \(0.546993\pi\)
\(758\) −2.14234e6 −0.135430
\(759\) −753546. −0.0474794
\(760\) 7.51247e6 0.471790
\(761\) 6.96999e6 0.436285 0.218143 0.975917i \(-0.430000\pi\)
0.218143 + 0.975917i \(0.430000\pi\)
\(762\) 8.70395e6 0.543036
\(763\) 0 0
\(764\) 8.04445e6 0.498612
\(765\) −6.13738e6 −0.379166
\(766\) 1.53879e7 0.947561
\(767\) 3.24242e6 0.199013
\(768\) 706241. 0.0432066
\(769\) −3.02590e6 −0.184518 −0.0922590 0.995735i \(-0.529409\pi\)
−0.0922590 + 0.995735i \(0.529409\pi\)
\(770\) 0 0
\(771\) −604967. −0.0366518
\(772\) 2.24516e6 0.135582
\(773\) −2.78539e7 −1.67663 −0.838314 0.545188i \(-0.816458\pi\)
−0.838314 + 0.545188i \(0.816458\pi\)
\(774\) 1.01322e7 0.607925
\(775\) 2.92232e6 0.174772
\(776\) 1.49254e6 0.0889758
\(777\) 0 0
\(778\) −6.79330e6 −0.402376
\(779\) 2.56589e6 0.151494
\(780\) 1.20954e7 0.711839
\(781\) −832170. −0.0488185
\(782\) −1.36482e6 −0.0798104
\(783\) −1.11795e7 −0.651653
\(784\) 0 0
\(785\) 5.36804e7 3.10915
\(786\) −1.22213e7 −0.705606
\(787\) −2.87913e7 −1.65701 −0.828503 0.559985i \(-0.810807\pi\)
−0.828503 + 0.559985i \(0.810807\pi\)
\(788\) 6.06388e6 0.347885
\(789\) 1.66253e7 0.950773
\(790\) 3.06858e6 0.174932
\(791\) 0 0
\(792\) 758657. 0.0429766
\(793\) −8.72910e6 −0.492931
\(794\) −1.44951e7 −0.815962
\(795\) −2.98942e7 −1.67753
\(796\) 7.37635e6 0.412628
\(797\) 3.67489e6 0.204927 0.102463 0.994737i \(-0.467328\pi\)
0.102463 + 0.994737i \(0.467328\pi\)
\(798\) 0 0
\(799\) −6.47841e6 −0.359006
\(800\) 8.32859e6 0.460094
\(801\) 2.54650e6 0.140237
\(802\) −1.11920e7 −0.614431
\(803\) −979251. −0.0535926
\(804\) −1.02864e7 −0.561207
\(805\) 0 0
\(806\) −950173. −0.0515187
\(807\) 1.29894e7 0.702108
\(808\) 4.41435e6 0.237869
\(809\) −1.04012e7 −0.558744 −0.279372 0.960183i \(-0.590126\pi\)
−0.279372 + 0.960183i \(0.590126\pi\)
\(810\) 5.14564e6 0.275567
\(811\) 1.53749e7 0.820844 0.410422 0.911896i \(-0.365381\pi\)
0.410422 + 0.911896i \(0.365381\pi\)
\(812\) 0 0
\(813\) −1.90191e7 −1.00917
\(814\) 2.54622e6 0.134690
\(815\) 3.01552e7 1.59026
\(816\) −1.25777e6 −0.0661266
\(817\) 2.20877e7 1.15770
\(818\) 2.66513e6 0.139263
\(819\) 0 0
\(820\) 3.93761e6 0.204502
\(821\) 1.91243e7 0.990209 0.495104 0.868834i \(-0.335130\pi\)
0.495104 + 0.868834i \(0.335130\pi\)
\(822\) 8.12413e6 0.419370
\(823\) 2.88895e6 0.148676 0.0743381 0.997233i \(-0.476316\pi\)
0.0743381 + 0.997233i \(0.476316\pi\)
\(824\) −7.27841e6 −0.373438
\(825\) −8.18942e6 −0.418908
\(826\) 0 0
\(827\) −1.99201e7 −1.01281 −0.506406 0.862295i \(-0.669026\pi\)
−0.506406 + 0.862295i \(0.669026\pi\)
\(828\) −1.51917e6 −0.0770068
\(829\) 1.19726e7 0.605065 0.302532 0.953139i \(-0.402168\pi\)
0.302532 + 0.953139i \(0.402168\pi\)
\(830\) −4.26379e7 −2.14833
\(831\) 1.59834e7 0.802909
\(832\) −2.70799e6 −0.135625
\(833\) 0 0
\(834\) 9.12024e6 0.454037
\(835\) −1.39483e6 −0.0692316
\(836\) 1.65384e6 0.0818422
\(837\) −1.43211e6 −0.0706584
\(838\) −1.15681e7 −0.569053
\(839\) 1.43453e7 0.703568 0.351784 0.936081i \(-0.385575\pi\)
0.351784 + 0.936081i \(0.385575\pi\)
\(840\) 0 0
\(841\) −1.26444e7 −0.616463
\(842\) 2.68811e7 1.30667
\(843\) −1.36657e7 −0.662313
\(844\) 3.23422e6 0.156284
\(845\) −6.98181e6 −0.336377
\(846\) −7.21103e6 −0.346395
\(847\) 0 0
\(848\) 6.69292e6 0.319614
\(849\) 1.55888e7 0.742239
\(850\) −1.48327e7 −0.704162
\(851\) −5.09865e6 −0.241341
\(852\) 1.53567e6 0.0724766
\(853\) 1.41859e7 0.667551 0.333776 0.942653i \(-0.391677\pi\)
0.333776 + 0.942653i \(0.391677\pi\)
\(854\) 0 0
\(855\) −1.48922e7 −0.696698
\(856\) −7.76238e6 −0.362085
\(857\) −2.41394e7 −1.12273 −0.561363 0.827570i \(-0.689723\pi\)
−0.561363 + 0.827570i \(0.689723\pi\)
\(858\) 2.66274e6 0.123484
\(859\) −1.37343e7 −0.635071 −0.317536 0.948246i \(-0.602855\pi\)
−0.317536 + 0.948246i \(0.602855\pi\)
\(860\) 3.38956e7 1.56278
\(861\) 0 0
\(862\) 1.88919e7 0.865981
\(863\) 1.74905e7 0.799419 0.399709 0.916642i \(-0.369111\pi\)
0.399709 + 0.916642i \(0.369111\pi\)
\(864\) −4.08152e6 −0.186010
\(865\) 5.45945e6 0.248090
\(866\) 2.31254e7 1.04784
\(867\) −1.30609e7 −0.590101
\(868\) 0 0
\(869\) 675534. 0.0303458
\(870\) −1.28283e7 −0.574609
\(871\) 3.94418e7 1.76162
\(872\) −3.92793e6 −0.174933
\(873\) −2.95872e6 −0.131392
\(874\) −3.31171e6 −0.146647
\(875\) 0 0
\(876\) 1.80709e6 0.0795644
\(877\) −3.51221e7 −1.54199 −0.770995 0.636842i \(-0.780241\pi\)
−0.770995 + 0.636842i \(0.780241\pi\)
\(878\) −2.14749e7 −0.940146
\(879\) −3.95510e6 −0.172658
\(880\) 2.53797e6 0.110479
\(881\) 8.78528e6 0.381343 0.190672 0.981654i \(-0.438933\pi\)
0.190672 + 0.981654i \(0.438933\pi\)
\(882\) 0 0
\(883\) 1.87501e7 0.809287 0.404643 0.914475i \(-0.367396\pi\)
0.404643 + 0.914475i \(0.367396\pi\)
\(884\) 4.82276e6 0.207570
\(885\) 5.60781e6 0.240677
\(886\) 1.72605e7 0.738700
\(887\) 2.72434e7 1.16266 0.581330 0.813668i \(-0.302532\pi\)
0.581330 + 0.813668i \(0.302532\pi\)
\(888\) −4.69873e6 −0.199962
\(889\) 0 0
\(890\) 8.51892e6 0.360504
\(891\) 1.13279e6 0.0478030
\(892\) −1.11094e7 −0.467498
\(893\) −1.57197e7 −0.659654
\(894\) −1.26439e7 −0.529099
\(895\) 5.28124e7 2.20383
\(896\) 0 0
\(897\) −5.33198e6 −0.221262
\(898\) 1.90117e7 0.786737
\(899\) 1.00775e6 0.0415868
\(900\) −1.65101e7 −0.679426
\(901\) −1.19197e7 −0.489161
\(902\) 866847. 0.0354753
\(903\) 0 0
\(904\) −1.55481e7 −0.632785
\(905\) −2.40987e7 −0.978076
\(906\) −8.81406e6 −0.356743
\(907\) 2.90420e7 1.17222 0.586110 0.810232i \(-0.300659\pi\)
0.586110 + 0.810232i \(0.300659\pi\)
\(908\) −2.02716e7 −0.815968
\(909\) −8.75071e6 −0.351264
\(910\) 0 0
\(911\) 4.12057e7 1.64498 0.822491 0.568778i \(-0.192583\pi\)
0.822491 + 0.568778i \(0.192583\pi\)
\(912\) −3.05195e6 −0.121504
\(913\) −9.38655e6 −0.372674
\(914\) 8.54910e6 0.338497
\(915\) −1.50971e7 −0.596130
\(916\) −1.37036e7 −0.539631
\(917\) 0 0
\(918\) 7.26892e6 0.284684
\(919\) 3.04768e7 1.19037 0.595184 0.803589i \(-0.297079\pi\)
0.595184 + 0.803589i \(0.297079\pi\)
\(920\) −5.08214e6 −0.197960
\(921\) 1.41473e6 0.0549574
\(922\) 6.91679e6 0.267964
\(923\) −5.88831e6 −0.227503
\(924\) 0 0
\(925\) −5.54114e7 −2.12934
\(926\) −2.61747e7 −1.00312
\(927\) 1.44283e7 0.551460
\(928\) 2.87210e6 0.109479
\(929\) 3.60640e7 1.37099 0.685495 0.728077i \(-0.259586\pi\)
0.685495 + 0.728077i \(0.259586\pi\)
\(930\) −1.64334e6 −0.0623045
\(931\) 0 0
\(932\) −4.54972e6 −0.171571
\(933\) 2.51598e7 0.946243
\(934\) 7.17676e6 0.269191
\(935\) −4.51996e6 −0.169085
\(936\) 5.36815e6 0.200279
\(937\) −4.80602e7 −1.78828 −0.894141 0.447785i \(-0.852213\pi\)
−0.894141 + 0.447785i \(0.852213\pi\)
\(938\) 0 0
\(939\) 8.32800e6 0.308231
\(940\) −2.41234e7 −0.890469
\(941\) 4.28577e7 1.57781 0.788906 0.614514i \(-0.210648\pi\)
0.788906 + 0.614514i \(0.210648\pi\)
\(942\) −2.18077e7 −0.800725
\(943\) −1.73581e6 −0.0635657
\(944\) −1.25551e6 −0.0458555
\(945\) 0 0
\(946\) 7.46197e6 0.271098
\(947\) 4.32432e7 1.56690 0.783452 0.621452i \(-0.213457\pi\)
0.783452 + 0.621452i \(0.213457\pi\)
\(948\) −1.24662e6 −0.0450517
\(949\) −6.92904e6 −0.249751
\(950\) −3.59912e7 −1.29386
\(951\) 5.65045e6 0.202596
\(952\) 0 0
\(953\) −2.81115e7 −1.00265 −0.501327 0.865258i \(-0.667155\pi\)
−0.501327 + 0.865258i \(0.667155\pi\)
\(954\) −1.32676e7 −0.471978
\(955\) −5.33476e7 −1.89281
\(956\) −6.84706e6 −0.242303
\(957\) −2.82410e6 −0.0996783
\(958\) −1.63761e7 −0.576497
\(959\) 0 0
\(960\) −4.68351e6 −0.164019
\(961\) −2.85001e7 −0.995491
\(962\) 1.80167e7 0.627678
\(963\) 1.53876e7 0.534695
\(964\) −1.29533e7 −0.448940
\(965\) −1.48890e7 −0.514691
\(966\) 0 0
\(967\) 3.70437e7 1.27394 0.636968 0.770890i \(-0.280188\pi\)
0.636968 + 0.770890i \(0.280188\pi\)
\(968\) −9.74854e6 −0.334388
\(969\) 5.43533e6 0.185959
\(970\) −9.89793e6 −0.337765
\(971\) 4.58140e7 1.55937 0.779686 0.626170i \(-0.215379\pi\)
0.779686 + 0.626170i \(0.215379\pi\)
\(972\) 1.34066e7 0.455148
\(973\) 0 0
\(974\) −1.78084e7 −0.601489
\(975\) −5.79471e7 −1.95218
\(976\) 3.38004e6 0.113579
\(977\) 1.17497e6 0.0393812 0.0196906 0.999806i \(-0.493732\pi\)
0.0196906 + 0.999806i \(0.493732\pi\)
\(978\) −1.22506e7 −0.409553
\(979\) 1.87540e6 0.0625372
\(980\) 0 0
\(981\) 7.78647e6 0.258326
\(982\) 2.83870e7 0.939377
\(983\) 2.63520e7 0.869822 0.434911 0.900474i \(-0.356780\pi\)
0.434911 + 0.900474i \(0.356780\pi\)
\(984\) −1.59966e6 −0.0526671
\(985\) −4.02132e7 −1.32062
\(986\) −5.11502e6 −0.167554
\(987\) 0 0
\(988\) 1.17023e7 0.381399
\(989\) −1.49422e7 −0.485761
\(990\) −5.03111e6 −0.163146
\(991\) 3.82424e7 1.23697 0.618487 0.785795i \(-0.287746\pi\)
0.618487 + 0.785795i \(0.287746\pi\)
\(992\) 367922. 0.0118707
\(993\) 6.80674e6 0.219062
\(994\) 0 0
\(995\) −4.89170e7 −1.56640
\(996\) 1.73217e7 0.553277
\(997\) −4.36919e7 −1.39208 −0.696038 0.718005i \(-0.745055\pi\)
−0.696038 + 0.718005i \(0.745055\pi\)
\(998\) 3.76761e7 1.19740
\(999\) 2.71549e7 0.860865
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.6.a.g.1.2 2
3.2 odd 2 882.6.a.bi.1.2 2
4.3 odd 2 784.6.a.bb.1.1 2
7.2 even 3 98.6.c.e.67.1 4
7.3 odd 6 14.6.c.a.9.2 4
7.4 even 3 98.6.c.e.79.1 4
7.5 odd 6 14.6.c.a.11.2 yes 4
7.6 odd 2 98.6.a.h.1.1 2
21.5 even 6 126.6.g.j.109.2 4
21.17 even 6 126.6.g.j.37.2 4
21.20 even 2 882.6.a.ba.1.1 2
28.3 even 6 112.6.i.d.65.1 4
28.19 even 6 112.6.i.d.81.1 4
28.27 even 2 784.6.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.a.9.2 4 7.3 odd 6
14.6.c.a.11.2 yes 4 7.5 odd 6
98.6.a.g.1.2 2 1.1 even 1 trivial
98.6.a.h.1.1 2 7.6 odd 2
98.6.c.e.67.1 4 7.2 even 3
98.6.c.e.79.1 4 7.4 even 3
112.6.i.d.65.1 4 28.3 even 6
112.6.i.d.81.1 4 28.19 even 6
126.6.g.j.37.2 4 21.17 even 6
126.6.g.j.109.2 4 21.5 even 6
784.6.a.s.1.2 2 28.27 even 2
784.6.a.bb.1.1 2 4.3 odd 2
882.6.a.ba.1.1 2 21.20 even 2
882.6.a.bi.1.2 2 3.2 odd 2