Properties

Label 98.6.a.g.1.1
Level $98$
Weight $6$
Character 98.1
Self dual yes
Analytic conductor $15.718$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,6,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8,-14,32,-70,-56,0,128,244] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.7176143417\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{79}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 79 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-8.88819\) of defining polynomial
Character \(\chi\) \(=\) 98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -24.7764 q^{3} +16.0000 q^{4} +36.1056 q^{5} -99.1056 q^{6} +64.0000 q^{8} +370.869 q^{9} +144.422 q^{10} +155.435 q^{11} -396.422 q^{12} -1158.87 q^{13} -894.565 q^{15} +256.000 q^{16} -1238.08 q^{17} +1483.48 q^{18} +280.279 q^{19} +577.689 q^{20} +621.739 q^{22} -3482.39 q^{23} -1585.69 q^{24} -1821.39 q^{25} -4635.48 q^{26} -3168.14 q^{27} -5656.78 q^{29} -3578.26 q^{30} +2314.70 q^{31} +1024.00 q^{32} -3851.11 q^{33} -4952.32 q^{34} +5933.91 q^{36} -2333.18 q^{37} +1121.12 q^{38} +28712.6 q^{39} +2310.76 q^{40} -3812.61 q^{41} +3925.73 q^{43} +2486.96 q^{44} +13390.4 q^{45} -13929.6 q^{46} +11116.5 q^{47} -6342.76 q^{48} -7285.56 q^{50} +30675.2 q^{51} -18541.9 q^{52} -11186.2 q^{53} -12672.6 q^{54} +5612.06 q^{55} -6944.31 q^{57} -22627.1 q^{58} +6010.35 q^{59} -14313.0 q^{60} +14838.7 q^{61} +9258.81 q^{62} +4096.00 q^{64} -41841.6 q^{65} -15404.4 q^{66} -42983.9 q^{67} -19809.3 q^{68} +86281.1 q^{69} -19962.4 q^{71} +23735.6 q^{72} -45550.6 q^{73} -9332.70 q^{74} +45127.4 q^{75} +4484.47 q^{76} +114850. q^{78} +108992. q^{79} +9243.02 q^{80} -11626.1 q^{81} -15250.4 q^{82} -55829.0 q^{83} -44701.6 q^{85} +15702.9 q^{86} +140155. q^{87} +9947.82 q^{88} +95545.8 q^{89} +53561.8 q^{90} -55718.2 q^{92} -57349.9 q^{93} +44465.8 q^{94} +10119.6 q^{95} -25371.0 q^{96} -15004.9 q^{97} +57646.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 14 q^{3} + 32 q^{4} - 70 q^{5} - 56 q^{6} + 128 q^{8} + 244 q^{9} - 280 q^{10} + 62 q^{11} - 224 q^{12} - 1820 q^{13} - 2038 q^{15} + 512 q^{16} - 1694 q^{17} + 976 q^{18} - 826 q^{19} - 1120 q^{20}+ \cdots + 69500 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −24.7764 −1.58941 −0.794703 0.606998i \(-0.792373\pi\)
−0.794703 + 0.606998i \(0.792373\pi\)
\(4\) 16.0000 0.500000
\(5\) 36.1056 0.645876 0.322938 0.946420i \(-0.395329\pi\)
0.322938 + 0.946420i \(0.395329\pi\)
\(6\) −99.1056 −1.12388
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 370.869 1.52621
\(10\) 144.422 0.456703
\(11\) 155.435 0.387317 0.193658 0.981069i \(-0.437965\pi\)
0.193658 + 0.981069i \(0.437965\pi\)
\(12\) −396.422 −0.794703
\(13\) −1158.87 −1.90185 −0.950925 0.309422i \(-0.899864\pi\)
−0.950925 + 0.309422i \(0.899864\pi\)
\(14\) 0 0
\(15\) −894.565 −1.02656
\(16\) 256.000 0.250000
\(17\) −1238.08 −1.03903 −0.519513 0.854462i \(-0.673887\pi\)
−0.519513 + 0.854462i \(0.673887\pi\)
\(18\) 1483.48 1.07919
\(19\) 280.279 0.178118 0.0890588 0.996026i \(-0.471614\pi\)
0.0890588 + 0.996026i \(0.471614\pi\)
\(20\) 577.689 0.322938
\(21\) 0 0
\(22\) 621.739 0.273874
\(23\) −3482.39 −1.37264 −0.686322 0.727298i \(-0.740776\pi\)
−0.686322 + 0.727298i \(0.740776\pi\)
\(24\) −1585.69 −0.561940
\(25\) −1821.39 −0.582844
\(26\) −4635.48 −1.34481
\(27\) −3168.14 −0.836364
\(28\) 0 0
\(29\) −5656.78 −1.24903 −0.624517 0.781011i \(-0.714704\pi\)
−0.624517 + 0.781011i \(0.714704\pi\)
\(30\) −3578.26 −0.725887
\(31\) 2314.70 0.432604 0.216302 0.976326i \(-0.430600\pi\)
0.216302 + 0.976326i \(0.430600\pi\)
\(32\) 1024.00 0.176777
\(33\) −3851.11 −0.615604
\(34\) −4952.32 −0.734703
\(35\) 0 0
\(36\) 5933.91 0.763106
\(37\) −2333.18 −0.280184 −0.140092 0.990139i \(-0.544740\pi\)
−0.140092 + 0.990139i \(0.544740\pi\)
\(38\) 1121.12 0.125948
\(39\) 28712.6 3.02281
\(40\) 2310.76 0.228352
\(41\) −3812.61 −0.354211 −0.177106 0.984192i \(-0.556673\pi\)
−0.177106 + 0.984192i \(0.556673\pi\)
\(42\) 0 0
\(43\) 3925.73 0.323780 0.161890 0.986809i \(-0.448241\pi\)
0.161890 + 0.986809i \(0.448241\pi\)
\(44\) 2486.96 0.193658
\(45\) 13390.4 0.985743
\(46\) −13929.6 −0.970606
\(47\) 11116.5 0.734043 0.367022 0.930212i \(-0.380378\pi\)
0.367022 + 0.930212i \(0.380378\pi\)
\(48\) −6342.76 −0.397352
\(49\) 0 0
\(50\) −7285.56 −0.412133
\(51\) 30675.2 1.65143
\(52\) −18541.9 −0.950925
\(53\) −11186.2 −0.547007 −0.273504 0.961871i \(-0.588183\pi\)
−0.273504 + 0.961871i \(0.588183\pi\)
\(54\) −12672.6 −0.591399
\(55\) 5612.06 0.250159
\(56\) 0 0
\(57\) −6944.31 −0.283101
\(58\) −22627.1 −0.883201
\(59\) 6010.35 0.224786 0.112393 0.993664i \(-0.464148\pi\)
0.112393 + 0.993664i \(0.464148\pi\)
\(60\) −14313.0 −0.513279
\(61\) 14838.7 0.510589 0.255295 0.966863i \(-0.417828\pi\)
0.255295 + 0.966863i \(0.417828\pi\)
\(62\) 9258.81 0.305897
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −41841.6 −1.22836
\(66\) −15404.4 −0.435298
\(67\) −42983.9 −1.16982 −0.584909 0.811099i \(-0.698870\pi\)
−0.584909 + 0.811099i \(0.698870\pi\)
\(68\) −19809.3 −0.519513
\(69\) 86281.1 2.18169
\(70\) 0 0
\(71\) −19962.4 −0.469967 −0.234984 0.971999i \(-0.575504\pi\)
−0.234984 + 0.971999i \(0.575504\pi\)
\(72\) 23735.6 0.539597
\(73\) −45550.6 −1.00043 −0.500215 0.865901i \(-0.666746\pi\)
−0.500215 + 0.865901i \(0.666746\pi\)
\(74\) −9332.70 −0.198120
\(75\) 45127.4 0.926376
\(76\) 4484.47 0.0890588
\(77\) 0 0
\(78\) 114850. 2.13745
\(79\) 108992. 1.96484 0.982419 0.186687i \(-0.0597750\pi\)
0.982419 + 0.186687i \(0.0597750\pi\)
\(80\) 9243.02 0.161469
\(81\) −11626.1 −0.196890
\(82\) −15250.4 −0.250465
\(83\) −55829.0 −0.889538 −0.444769 0.895645i \(-0.646714\pi\)
−0.444769 + 0.895645i \(0.646714\pi\)
\(84\) 0 0
\(85\) −44701.6 −0.671082
\(86\) 15702.9 0.228947
\(87\) 140155. 1.98522
\(88\) 9947.82 0.136937
\(89\) 95545.8 1.27861 0.639303 0.768955i \(-0.279223\pi\)
0.639303 + 0.768955i \(0.279223\pi\)
\(90\) 53561.8 0.697026
\(91\) 0 0
\(92\) −55718.2 −0.686322
\(93\) −57349.9 −0.687584
\(94\) 44465.8 0.519047
\(95\) 10119.6 0.115042
\(96\) −25371.0 −0.280970
\(97\) −15004.9 −0.161922 −0.0809609 0.996717i \(-0.525799\pi\)
−0.0809609 + 0.996717i \(0.525799\pi\)
\(98\) 0 0
\(99\) 57646.0 0.591127
\(100\) −29142.2 −0.291422
\(101\) −26876.1 −0.262158 −0.131079 0.991372i \(-0.541844\pi\)
−0.131079 + 0.991372i \(0.541844\pi\)
\(102\) 122701. 1.16774
\(103\) 51915.2 0.482171 0.241086 0.970504i \(-0.422497\pi\)
0.241086 + 0.970504i \(0.422497\pi\)
\(104\) −74167.6 −0.672405
\(105\) 0 0
\(106\) −44744.8 −0.386793
\(107\) −24974.8 −0.210883 −0.105442 0.994425i \(-0.533626\pi\)
−0.105442 + 0.994425i \(0.533626\pi\)
\(108\) −50690.3 −0.418182
\(109\) −3636.14 −0.0293140 −0.0146570 0.999893i \(-0.504666\pi\)
−0.0146570 + 0.999893i \(0.504666\pi\)
\(110\) 22448.2 0.176889
\(111\) 57807.7 0.445326
\(112\) 0 0
\(113\) 62175.0 0.458057 0.229028 0.973420i \(-0.426445\pi\)
0.229028 + 0.973420i \(0.426445\pi\)
\(114\) −27777.2 −0.200183
\(115\) −125734. −0.886557
\(116\) −90508.5 −0.624517
\(117\) −429789. −2.90262
\(118\) 24041.4 0.158948
\(119\) 0 0
\(120\) −57252.2 −0.362943
\(121\) −136891. −0.849986
\(122\) 59354.9 0.361041
\(123\) 94462.7 0.562986
\(124\) 37035.2 0.216302
\(125\) −178592. −1.02232
\(126\) 0 0
\(127\) 63550.3 0.349630 0.174815 0.984601i \(-0.444067\pi\)
0.174815 + 0.984601i \(0.444067\pi\)
\(128\) 16384.0 0.0883883
\(129\) −97265.5 −0.514617
\(130\) −167366. −0.868581
\(131\) −136297. −0.693918 −0.346959 0.937880i \(-0.612786\pi\)
−0.346959 + 0.937880i \(0.612786\pi\)
\(132\) −61617.8 −0.307802
\(133\) 0 0
\(134\) −171935. −0.827187
\(135\) −114388. −0.540187
\(136\) −79237.2 −0.367351
\(137\) 335303. 1.52629 0.763144 0.646228i \(-0.223655\pi\)
0.763144 + 0.646228i \(0.223655\pi\)
\(138\) 345124. 1.54269
\(139\) −58195.2 −0.255476 −0.127738 0.991808i \(-0.540772\pi\)
−0.127738 + 0.991808i \(0.540772\pi\)
\(140\) 0 0
\(141\) −275426. −1.16669
\(142\) −79849.7 −0.332317
\(143\) −180129. −0.736618
\(144\) 94942.6 0.381553
\(145\) −204241. −0.806721
\(146\) −182202. −0.707411
\(147\) 0 0
\(148\) −37330.8 −0.140092
\(149\) 283058. 1.04450 0.522251 0.852792i \(-0.325092\pi\)
0.522251 + 0.852792i \(0.325092\pi\)
\(150\) 180510. 0.655047
\(151\) −241558. −0.862142 −0.431071 0.902318i \(-0.641864\pi\)
−0.431071 + 0.902318i \(0.641864\pi\)
\(152\) 17937.9 0.0629741
\(153\) −459166. −1.58577
\(154\) 0 0
\(155\) 83573.6 0.279409
\(156\) 459402. 1.51141
\(157\) 214029. 0.692984 0.346492 0.938053i \(-0.387373\pi\)
0.346492 + 0.938053i \(0.387373\pi\)
\(158\) 435968. 1.38935
\(159\) 277154. 0.869417
\(160\) 36972.1 0.114176
\(161\) 0 0
\(162\) −46504.5 −0.139222
\(163\) 64466.0 0.190047 0.0950237 0.995475i \(-0.469707\pi\)
0.0950237 + 0.995475i \(0.469707\pi\)
\(164\) −61001.7 −0.177106
\(165\) −139047. −0.397604
\(166\) −223316. −0.628999
\(167\) 442694. 1.22832 0.614162 0.789180i \(-0.289494\pi\)
0.614162 + 0.789180i \(0.289494\pi\)
\(168\) 0 0
\(169\) 971685. 2.61703
\(170\) −178806. −0.474527
\(171\) 103947. 0.271845
\(172\) 62811.7 0.161890
\(173\) 78599.0 0.199665 0.0998325 0.995004i \(-0.468169\pi\)
0.0998325 + 0.995004i \(0.468169\pi\)
\(174\) 560618. 1.40376
\(175\) 0 0
\(176\) 39791.3 0.0968292
\(177\) −148915. −0.357277
\(178\) 382183. 0.904111
\(179\) −510427. −1.19070 −0.595348 0.803468i \(-0.702986\pi\)
−0.595348 + 0.803468i \(0.702986\pi\)
\(180\) 214247. 0.492872
\(181\) 22051.8 0.0500319 0.0250160 0.999687i \(-0.492036\pi\)
0.0250160 + 0.999687i \(0.492036\pi\)
\(182\) 0 0
\(183\) −367650. −0.811534
\(184\) −222873. −0.485303
\(185\) −84240.6 −0.180964
\(186\) −229400. −0.486195
\(187\) −192441. −0.402432
\(188\) 177863. 0.367022
\(189\) 0 0
\(190\) 40478.5 0.0813469
\(191\) −558152. −1.10706 −0.553528 0.832831i \(-0.686719\pi\)
−0.553528 + 0.832831i \(0.686719\pi\)
\(192\) −101484. −0.198676
\(193\) −49316.3 −0.0953009 −0.0476504 0.998864i \(-0.515173\pi\)
−0.0476504 + 0.998864i \(0.515173\pi\)
\(194\) −60019.8 −0.114496
\(195\) 1.03668e6 1.95236
\(196\) 0 0
\(197\) −941509. −1.72846 −0.864229 0.503099i \(-0.832193\pi\)
−0.864229 + 0.503099i \(0.832193\pi\)
\(198\) 230584. 0.417990
\(199\) −640012. −1.14566 −0.572830 0.819675i \(-0.694154\pi\)
−0.572830 + 0.819675i \(0.694154\pi\)
\(200\) −116569. −0.206067
\(201\) 1.06499e6 1.85932
\(202\) −107505. −0.185374
\(203\) 0 0
\(204\) 490803. 0.825717
\(205\) −137656. −0.228777
\(206\) 207661. 0.340947
\(207\) −1.29151e6 −2.09495
\(208\) −296671. −0.475462
\(209\) 43565.1 0.0689879
\(210\) 0 0
\(211\) 921869. 1.42549 0.712743 0.701425i \(-0.247452\pi\)
0.712743 + 0.701425i \(0.247452\pi\)
\(212\) −178979. −0.273504
\(213\) 494597. 0.746969
\(214\) −99899.1 −0.149117
\(215\) 141741. 0.209121
\(216\) −202761. −0.295699
\(217\) 0 0
\(218\) −14544.6 −0.0207281
\(219\) 1.12858e6 1.59009
\(220\) 89792.9 0.125079
\(221\) 1.43477e6 1.97607
\(222\) 231231. 0.314893
\(223\) 837700. 1.12805 0.564023 0.825759i \(-0.309253\pi\)
0.564023 + 0.825759i \(0.309253\pi\)
\(224\) 0 0
\(225\) −675497. −0.889544
\(226\) 248700. 0.323895
\(227\) 1.33069e6 1.71400 0.857002 0.515313i \(-0.172324\pi\)
0.857002 + 0.515313i \(0.172324\pi\)
\(228\) −111109. −0.141551
\(229\) −1.01063e6 −1.27352 −0.636759 0.771063i \(-0.719725\pi\)
−0.636759 + 0.771063i \(0.719725\pi\)
\(230\) −502935. −0.626891
\(231\) 0 0
\(232\) −362034. −0.441600
\(233\) 1.48610e6 1.79332 0.896661 0.442718i \(-0.145986\pi\)
0.896661 + 0.442718i \(0.145986\pi\)
\(234\) −1.71916e6 −2.05247
\(235\) 401366. 0.474101
\(236\) 96165.6 0.112393
\(237\) −2.70043e6 −3.12293
\(238\) 0 0
\(239\) 875637. 0.991584 0.495792 0.868441i \(-0.334878\pi\)
0.495792 + 0.868441i \(0.334878\pi\)
\(240\) −229009. −0.256640
\(241\) −1.45294e6 −1.61141 −0.805706 0.592316i \(-0.798214\pi\)
−0.805706 + 0.592316i \(0.798214\pi\)
\(242\) −547564. −0.601031
\(243\) 1.05791e6 1.14930
\(244\) 237419. 0.255295
\(245\) 0 0
\(246\) 377851. 0.398091
\(247\) −324807. −0.338753
\(248\) 148141. 0.152949
\(249\) 1.38324e6 1.41384
\(250\) −714368. −0.722890
\(251\) 198384. 0.198757 0.0993786 0.995050i \(-0.468315\pi\)
0.0993786 + 0.995050i \(0.468315\pi\)
\(252\) 0 0
\(253\) −541284. −0.531648
\(254\) 254201. 0.247226
\(255\) 1.10754e6 1.06662
\(256\) 65536.0 0.0625000
\(257\) −479572. −0.452919 −0.226460 0.974021i \(-0.572715\pi\)
−0.226460 + 0.974021i \(0.572715\pi\)
\(258\) −389062. −0.363890
\(259\) 0 0
\(260\) −669466. −0.614179
\(261\) −2.09793e6 −1.90629
\(262\) −545188. −0.490674
\(263\) 454943. 0.405572 0.202786 0.979223i \(-0.435000\pi\)
0.202786 + 0.979223i \(0.435000\pi\)
\(264\) −246471. −0.217649
\(265\) −403884. −0.353299
\(266\) 0 0
\(267\) −2.36728e6 −2.03222
\(268\) −687742. −0.584909
\(269\) 860136. 0.724747 0.362374 0.932033i \(-0.381966\pi\)
0.362374 + 0.932033i \(0.381966\pi\)
\(270\) −457550. −0.381970
\(271\) −1.30558e6 −1.07989 −0.539946 0.841700i \(-0.681555\pi\)
−0.539946 + 0.841700i \(0.681555\pi\)
\(272\) −316949. −0.259757
\(273\) 0 0
\(274\) 1.34121e6 1.07925
\(275\) −283107. −0.225745
\(276\) 1.38050e6 1.09084
\(277\) −543109. −0.425292 −0.212646 0.977129i \(-0.568208\pi\)
−0.212646 + 0.977129i \(0.568208\pi\)
\(278\) −232781. −0.180649
\(279\) 858452. 0.660246
\(280\) 0 0
\(281\) 998089. 0.754055 0.377028 0.926202i \(-0.376946\pi\)
0.377028 + 0.926202i \(0.376946\pi\)
\(282\) −1.10170e6 −0.824976
\(283\) −1.77732e6 −1.31917 −0.659583 0.751632i \(-0.729267\pi\)
−0.659583 + 0.751632i \(0.729267\pi\)
\(284\) −319399. −0.234984
\(285\) −250728. −0.182848
\(286\) −720514. −0.520868
\(287\) 0 0
\(288\) 379770. 0.269799
\(289\) 112986. 0.0795759
\(290\) −816965. −0.570438
\(291\) 371768. 0.257359
\(292\) −728809. −0.500215
\(293\) 1.63987e6 1.11594 0.557969 0.829862i \(-0.311581\pi\)
0.557969 + 0.829862i \(0.311581\pi\)
\(294\) 0 0
\(295\) 217007. 0.145184
\(296\) −149323. −0.0990599
\(297\) −492439. −0.323938
\(298\) 1.13223e6 0.738575
\(299\) 4.03564e6 2.61056
\(300\) 722039. 0.463188
\(301\) 0 0
\(302\) −966231. −0.609626
\(303\) 665894. 0.416676
\(304\) 71751.5 0.0445294
\(305\) 535760. 0.329777
\(306\) −1.83666e6 −1.12131
\(307\) −2.38130e6 −1.44201 −0.721006 0.692928i \(-0.756320\pi\)
−0.721006 + 0.692928i \(0.756320\pi\)
\(308\) 0 0
\(309\) −1.28627e6 −0.766366
\(310\) 334294. 0.197572
\(311\) 1.24513e6 0.729983 0.364992 0.931011i \(-0.381072\pi\)
0.364992 + 0.931011i \(0.381072\pi\)
\(312\) 1.83761e6 1.06873
\(313\) −1.66299e6 −0.959465 −0.479732 0.877415i \(-0.659266\pi\)
−0.479732 + 0.877415i \(0.659266\pi\)
\(314\) 856115. 0.490014
\(315\) 0 0
\(316\) 1.74387e6 0.982419
\(317\) −2.62486e6 −1.46709 −0.733547 0.679639i \(-0.762136\pi\)
−0.733547 + 0.679639i \(0.762136\pi\)
\(318\) 1.10862e6 0.614771
\(319\) −879260. −0.483772
\(320\) 147888. 0.0807345
\(321\) 618784. 0.335179
\(322\) 0 0
\(323\) −347008. −0.185069
\(324\) −186018. −0.0984448
\(325\) 2.11075e6 1.10848
\(326\) 257864. 0.134384
\(327\) 90090.5 0.0465918
\(328\) −244007. −0.125233
\(329\) 0 0
\(330\) −556186. −0.281148
\(331\) 1.73886e6 0.872355 0.436178 0.899861i \(-0.356332\pi\)
0.436178 + 0.899861i \(0.356332\pi\)
\(332\) −893264. −0.444769
\(333\) −865303. −0.427620
\(334\) 1.77078e6 0.868556
\(335\) −1.55196e6 −0.755558
\(336\) 0 0
\(337\) 853564. 0.409413 0.204706 0.978823i \(-0.434376\pi\)
0.204706 + 0.978823i \(0.434376\pi\)
\(338\) 3.88674e6 1.85052
\(339\) −1.54047e6 −0.728038
\(340\) −715225. −0.335541
\(341\) 359785. 0.167555
\(342\) 415788. 0.192224
\(343\) 0 0
\(344\) 251247. 0.114473
\(345\) 3.11523e6 1.40910
\(346\) 314396. 0.141184
\(347\) −2.98500e6 −1.33082 −0.665411 0.746477i \(-0.731744\pi\)
−0.665411 + 0.746477i \(0.731744\pi\)
\(348\) 2.24247e6 0.992611
\(349\) −2.87467e6 −1.26335 −0.631676 0.775233i \(-0.717633\pi\)
−0.631676 + 0.775233i \(0.717633\pi\)
\(350\) 0 0
\(351\) 3.67146e6 1.59064
\(352\) 159165. 0.0684686
\(353\) −1.47109e6 −0.628352 −0.314176 0.949365i \(-0.601728\pi\)
−0.314176 + 0.949365i \(0.601728\pi\)
\(354\) −595659. −0.252633
\(355\) −720755. −0.303540
\(356\) 1.52873e6 0.639303
\(357\) 0 0
\(358\) −2.04171e6 −0.841950
\(359\) 3.07799e6 1.26047 0.630233 0.776406i \(-0.282959\pi\)
0.630233 + 0.776406i \(0.282959\pi\)
\(360\) 856989. 0.348513
\(361\) −2.39754e6 −0.968274
\(362\) 88207.2 0.0353779
\(363\) 3.39167e6 1.35097
\(364\) 0 0
\(365\) −1.64463e6 −0.646154
\(366\) −1.47060e6 −0.573841
\(367\) −1.61670e6 −0.626561 −0.313281 0.949661i \(-0.601428\pi\)
−0.313281 + 0.949661i \(0.601428\pi\)
\(368\) −891492. −0.343161
\(369\) −1.41398e6 −0.540602
\(370\) −336962. −0.127961
\(371\) 0 0
\(372\) −917599. −0.343792
\(373\) −4.76119e6 −1.77192 −0.885958 0.463766i \(-0.846498\pi\)
−0.885958 + 0.463766i \(0.846498\pi\)
\(374\) −769763. −0.284563
\(375\) 4.42487e6 1.62488
\(376\) 711453. 0.259523
\(377\) 6.55547e6 2.37548
\(378\) 0 0
\(379\) 1.00193e6 0.358294 0.179147 0.983822i \(-0.442666\pi\)
0.179147 + 0.983822i \(0.442666\pi\)
\(380\) 161914. 0.0575209
\(381\) −1.57455e6 −0.555704
\(382\) −2.23261e6 −0.782806
\(383\) 2.82152e6 0.982849 0.491424 0.870920i \(-0.336476\pi\)
0.491424 + 0.870920i \(0.336476\pi\)
\(384\) −405936. −0.140485
\(385\) 0 0
\(386\) −197265. −0.0673879
\(387\) 1.45593e6 0.494156
\(388\) −240079. −0.0809609
\(389\) −1.24240e6 −0.416281 −0.208140 0.978099i \(-0.566741\pi\)
−0.208140 + 0.978099i \(0.566741\pi\)
\(390\) 4.14674e6 1.38053
\(391\) 4.31148e6 1.42621
\(392\) 0 0
\(393\) 3.37695e6 1.10292
\(394\) −3.76603e6 −1.22220
\(395\) 3.93522e6 1.26904
\(396\) 922336. 0.295564
\(397\) −2.74562e6 −0.874308 −0.437154 0.899387i \(-0.644014\pi\)
−0.437154 + 0.899387i \(0.644014\pi\)
\(398\) −2.56005e6 −0.810103
\(399\) 0 0
\(400\) −466276. −0.145711
\(401\) −3.71335e6 −1.15320 −0.576601 0.817026i \(-0.695621\pi\)
−0.576601 + 0.817026i \(0.695621\pi\)
\(402\) 4.25994e6 1.31474
\(403\) −2.68244e6 −0.822748
\(404\) −430018. −0.131079
\(405\) −419768. −0.127166
\(406\) 0 0
\(407\) −362656. −0.108520
\(408\) 1.96321e6 0.583870
\(409\) −3.75940e6 −1.11125 −0.555623 0.831434i \(-0.687520\pi\)
−0.555623 + 0.831434i \(0.687520\pi\)
\(410\) −550625. −0.161769
\(411\) −8.30761e6 −2.42589
\(412\) 830643. 0.241086
\(413\) 0 0
\(414\) −5.16605e6 −1.48135
\(415\) −2.01574e6 −0.574531
\(416\) −1.18668e6 −0.336203
\(417\) 1.44187e6 0.406055
\(418\) 174260. 0.0487818
\(419\) −4.60027e6 −1.28011 −0.640056 0.768328i \(-0.721089\pi\)
−0.640056 + 0.768328i \(0.721089\pi\)
\(420\) 0 0
\(421\) −404864. −0.111328 −0.0556639 0.998450i \(-0.517728\pi\)
−0.0556639 + 0.998450i \(0.517728\pi\)
\(422\) 3.68748e6 1.00797
\(423\) 4.12275e6 1.12031
\(424\) −715917. −0.193396
\(425\) 2.25503e6 0.605591
\(426\) 1.97839e6 0.528187
\(427\) 0 0
\(428\) −399596. −0.105442
\(429\) 4.46293e6 1.17079
\(430\) 566963. 0.147871
\(431\) 94758.5 0.0245711 0.0122856 0.999925i \(-0.496089\pi\)
0.0122856 + 0.999925i \(0.496089\pi\)
\(432\) −811045. −0.209091
\(433\) −4.31727e6 −1.10660 −0.553298 0.832983i \(-0.686631\pi\)
−0.553298 + 0.832983i \(0.686631\pi\)
\(434\) 0 0
\(435\) 5.06036e6 1.28221
\(436\) −58178.3 −0.0146570
\(437\) −976041. −0.244492
\(438\) 4.51432e6 1.12436
\(439\) 2.22367e6 0.550693 0.275346 0.961345i \(-0.411207\pi\)
0.275346 + 0.961345i \(0.411207\pi\)
\(440\) 359172. 0.0884444
\(441\) 0 0
\(442\) 5.73909e6 1.39729
\(443\) −4.68425e6 −1.13405 −0.567024 0.823701i \(-0.691905\pi\)
−0.567024 + 0.823701i \(0.691905\pi\)
\(444\) 924922. 0.222663
\(445\) 3.44973e6 0.825821
\(446\) 3.35080e6 0.797648
\(447\) −7.01315e6 −1.66014
\(448\) 0 0
\(449\) 897932. 0.210198 0.105099 0.994462i \(-0.466484\pi\)
0.105099 + 0.994462i \(0.466484\pi\)
\(450\) −2.70199e6 −0.629003
\(451\) −592612. −0.137192
\(452\) 994800. 0.229028
\(453\) 5.98493e6 1.37029
\(454\) 5.32276e6 1.21198
\(455\) 0 0
\(456\) −444436. −0.100091
\(457\) 5.98181e6 1.33981 0.669903 0.742448i \(-0.266336\pi\)
0.669903 + 0.742448i \(0.266336\pi\)
\(458\) −4.04253e6 −0.900513
\(459\) 3.92242e6 0.869004
\(460\) −2.01174e6 −0.443279
\(461\) −1.62507e6 −0.356138 −0.178069 0.984018i \(-0.556985\pi\)
−0.178069 + 0.984018i \(0.556985\pi\)
\(462\) 0 0
\(463\) −8.46295e6 −1.83472 −0.917359 0.398060i \(-0.869683\pi\)
−0.917359 + 0.398060i \(0.869683\pi\)
\(464\) −1.44814e6 −0.312259
\(465\) −2.07065e6 −0.444094
\(466\) 5.94440e6 1.26807
\(467\) −7.66594e6 −1.62657 −0.813286 0.581864i \(-0.802324\pi\)
−0.813286 + 0.581864i \(0.802324\pi\)
\(468\) −6.87663e6 −1.45131
\(469\) 0 0
\(470\) 1.60546e6 0.335240
\(471\) −5.30286e6 −1.10143
\(472\) 384662. 0.0794740
\(473\) 610195. 0.125405
\(474\) −1.08017e7 −2.20824
\(475\) −510497. −0.103815
\(476\) 0 0
\(477\) −4.14862e6 −0.834849
\(478\) 3.50255e6 0.701156
\(479\) 2.40292e6 0.478521 0.239261 0.970955i \(-0.423095\pi\)
0.239261 + 0.970955i \(0.423095\pi\)
\(480\) −916035. −0.181472
\(481\) 2.70385e6 0.532867
\(482\) −5.81178e6 −1.13944
\(483\) 0 0
\(484\) −2.19026e6 −0.424993
\(485\) −541762. −0.104581
\(486\) 4.23165e6 0.812679
\(487\) −170302. −0.0325384 −0.0162692 0.999868i \(-0.505179\pi\)
−0.0162692 + 0.999868i \(0.505179\pi\)
\(488\) 949678. 0.180521
\(489\) −1.59724e6 −0.302063
\(490\) 0 0
\(491\) −5.77628e6 −1.08130 −0.540648 0.841249i \(-0.681821\pi\)
−0.540648 + 0.841249i \(0.681821\pi\)
\(492\) 1.51140e6 0.281493
\(493\) 7.00355e6 1.29778
\(494\) −1.29923e6 −0.239534
\(495\) 2.08134e6 0.381795
\(496\) 592564. 0.108151
\(497\) 0 0
\(498\) 5.53296e6 0.999734
\(499\) 543602. 0.0977303 0.0488652 0.998805i \(-0.484440\pi\)
0.0488652 + 0.998805i \(0.484440\pi\)
\(500\) −2.85747e6 −0.511160
\(501\) −1.09684e7 −1.95230
\(502\) 793537. 0.140543
\(503\) 5.40086e6 0.951794 0.475897 0.879501i \(-0.342124\pi\)
0.475897 + 0.879501i \(0.342124\pi\)
\(504\) 0 0
\(505\) −970378. −0.169322
\(506\) −2.16514e6 −0.375932
\(507\) −2.40749e7 −4.15953
\(508\) 1.01680e6 0.174815
\(509\) −8.34418e6 −1.42754 −0.713772 0.700378i \(-0.753015\pi\)
−0.713772 + 0.700378i \(0.753015\pi\)
\(510\) 4.43018e6 0.754216
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) −887964. −0.148971
\(514\) −1.91829e6 −0.320262
\(515\) 1.87443e6 0.311423
\(516\) −1.55625e6 −0.257309
\(517\) 1.72788e6 0.284307
\(518\) 0 0
\(519\) −1.94740e6 −0.317349
\(520\) −2.67786e6 −0.434290
\(521\) 1.14784e7 1.85262 0.926310 0.376762i \(-0.122963\pi\)
0.926310 + 0.376762i \(0.122963\pi\)
\(522\) −8.39171e6 −1.34795
\(523\) 4.38734e6 0.701370 0.350685 0.936494i \(-0.385949\pi\)
0.350685 + 0.936494i \(0.385949\pi\)
\(524\) −2.18075e6 −0.346959
\(525\) 0 0
\(526\) 1.81977e6 0.286782
\(527\) −2.86579e6 −0.449487
\(528\) −985884. −0.153901
\(529\) 5.69070e6 0.884151
\(530\) −1.61554e6 −0.249820
\(531\) 2.22906e6 0.343071
\(532\) 0 0
\(533\) 4.41832e6 0.673657
\(534\) −9.46912e6 −1.43700
\(535\) −901728. −0.136204
\(536\) −2.75097e6 −0.413593
\(537\) 1.26465e7 1.89250
\(538\) 3.44055e6 0.512474
\(539\) 0 0
\(540\) −1.83020e6 −0.270094
\(541\) 7.22306e6 1.06103 0.530515 0.847675i \(-0.321998\pi\)
0.530515 + 0.847675i \(0.321998\pi\)
\(542\) −5.22232e6 −0.763599
\(543\) −546364. −0.0795211
\(544\) −1.26779e6 −0.183676
\(545\) −131285. −0.0189332
\(546\) 0 0
\(547\) 3.54529e6 0.506622 0.253311 0.967385i \(-0.418480\pi\)
0.253311 + 0.967385i \(0.418480\pi\)
\(548\) 5.36486e6 0.763144
\(549\) 5.50323e6 0.779267
\(550\) −1.13243e6 −0.159626
\(551\) −1.58548e6 −0.222475
\(552\) 5.52199e6 0.771343
\(553\) 0 0
\(554\) −2.17243e6 −0.300727
\(555\) 2.08718e6 0.287625
\(556\) −931124. −0.127738
\(557\) 1.03663e7 1.41575 0.707873 0.706340i \(-0.249655\pi\)
0.707873 + 0.706340i \(0.249655\pi\)
\(558\) 3.43381e6 0.466864
\(559\) −4.54941e6 −0.615780
\(560\) 0 0
\(561\) 4.76799e6 0.639628
\(562\) 3.99235e6 0.533198
\(563\) 4.48282e6 0.596047 0.298023 0.954559i \(-0.403673\pi\)
0.298023 + 0.954559i \(0.403673\pi\)
\(564\) −4.40681e6 −0.583346
\(565\) 2.24486e6 0.295848
\(566\) −7.10928e6 −0.932792
\(567\) 0 0
\(568\) −1.27760e6 −0.166158
\(569\) 6.49335e6 0.840792 0.420396 0.907341i \(-0.361891\pi\)
0.420396 + 0.907341i \(0.361891\pi\)
\(570\) −1.00291e6 −0.129293
\(571\) −497508. −0.0638571 −0.0319286 0.999490i \(-0.510165\pi\)
−0.0319286 + 0.999490i \(0.510165\pi\)
\(572\) −2.88206e6 −0.368309
\(573\) 1.38290e7 1.75956
\(574\) 0 0
\(575\) 6.34279e6 0.800038
\(576\) 1.51908e6 0.190776
\(577\) 6.55123e6 0.819187 0.409594 0.912268i \(-0.365670\pi\)
0.409594 + 0.912268i \(0.365670\pi\)
\(578\) 451946. 0.0562687
\(579\) 1.22188e6 0.151472
\(580\) −3.26786e6 −0.403360
\(581\) 0 0
\(582\) 1.48707e6 0.181981
\(583\) −1.73873e6 −0.211865
\(584\) −2.91524e6 −0.353706
\(585\) −1.55178e7 −1.87474
\(586\) 6.55947e6 0.789087
\(587\) 30793.5 0.00368862 0.00184431 0.999998i \(-0.499413\pi\)
0.00184431 + 0.999998i \(0.499413\pi\)
\(588\) 0 0
\(589\) 648763. 0.0770544
\(590\) 868028. 0.102661
\(591\) 2.33272e7 2.74722
\(592\) −597293. −0.0700459
\(593\) −570937. −0.0666732 −0.0333366 0.999444i \(-0.510613\pi\)
−0.0333366 + 0.999444i \(0.510613\pi\)
\(594\) −1.96976e6 −0.229059
\(595\) 0 0
\(596\) 4.52893e6 0.522251
\(597\) 1.58572e7 1.82092
\(598\) 1.61425e7 1.84595
\(599\) 9.07111e6 1.03298 0.516492 0.856292i \(-0.327238\pi\)
0.516492 + 0.856292i \(0.327238\pi\)
\(600\) 2.88816e6 0.327524
\(601\) 1.36309e7 1.53936 0.769679 0.638431i \(-0.220416\pi\)
0.769679 + 0.638431i \(0.220416\pi\)
\(602\) 0 0
\(603\) −1.59414e7 −1.78539
\(604\) −3.86492e6 −0.431071
\(605\) −4.94253e6 −0.548985
\(606\) 2.66358e6 0.294634
\(607\) 3.95651e6 0.435853 0.217927 0.975965i \(-0.430071\pi\)
0.217927 + 0.975965i \(0.430071\pi\)
\(608\) 287006. 0.0314870
\(609\) 0 0
\(610\) 2.14304e6 0.233188
\(611\) −1.28825e7 −1.39604
\(612\) −7.34666e6 −0.792887
\(613\) 1.32310e6 0.142214 0.0711070 0.997469i \(-0.477347\pi\)
0.0711070 + 0.997469i \(0.477347\pi\)
\(614\) −9.52522e6 −1.01966
\(615\) 3.41063e6 0.363619
\(616\) 0 0
\(617\) 9.26370e6 0.979651 0.489826 0.871820i \(-0.337060\pi\)
0.489826 + 0.871820i \(0.337060\pi\)
\(618\) −5.14508e6 −0.541903
\(619\) −669385. −0.0702182 −0.0351091 0.999383i \(-0.511178\pi\)
−0.0351091 + 0.999383i \(0.511178\pi\)
\(620\) 1.33718e6 0.139704
\(621\) 1.10327e7 1.14803
\(622\) 4.98051e6 0.516176
\(623\) 0 0
\(624\) 7.35043e6 0.755703
\(625\) −756327. −0.0774479
\(626\) −6.65196e6 −0.678444
\(627\) −1.07939e6 −0.109650
\(628\) 3.42446e6 0.346492
\(629\) 2.88866e6 0.291118
\(630\) 0 0
\(631\) −666246. −0.0666133 −0.0333067 0.999445i \(-0.510604\pi\)
−0.0333067 + 0.999445i \(0.510604\pi\)
\(632\) 6.97549e6 0.694675
\(633\) −2.28406e7 −2.26568
\(634\) −1.04994e7 −1.03739
\(635\) 2.29452e6 0.225817
\(636\) 4.43446e6 0.434708
\(637\) 0 0
\(638\) −3.51704e6 −0.342078
\(639\) −7.40345e6 −0.717269
\(640\) 591553. 0.0570879
\(641\) −2.10877e6 −0.202714 −0.101357 0.994850i \(-0.532318\pi\)
−0.101357 + 0.994850i \(0.532318\pi\)
\(642\) 2.47514e6 0.237007
\(643\) −1.25977e7 −1.20161 −0.600806 0.799395i \(-0.705154\pi\)
−0.600806 + 0.799395i \(0.705154\pi\)
\(644\) 0 0
\(645\) −3.51182e6 −0.332379
\(646\) −1.38803e6 −0.130863
\(647\) −1.71299e7 −1.60877 −0.804386 0.594107i \(-0.797506\pi\)
−0.804386 + 0.594107i \(0.797506\pi\)
\(648\) −744072. −0.0696110
\(649\) 934217. 0.0870635
\(650\) 8.44301e6 0.783815
\(651\) 0 0
\(652\) 1.03146e6 0.0950237
\(653\) −8.25525e6 −0.757613 −0.378806 0.925476i \(-0.623665\pi\)
−0.378806 + 0.925476i \(0.623665\pi\)
\(654\) 360362. 0.0329454
\(655\) −4.92108e6 −0.448185
\(656\) −976028. −0.0885529
\(657\) −1.68933e7 −1.52687
\(658\) 0 0
\(659\) −1.05417e7 −0.945581 −0.472790 0.881175i \(-0.656753\pi\)
−0.472790 + 0.881175i \(0.656753\pi\)
\(660\) −2.22474e6 −0.198802
\(661\) −4.47640e6 −0.398498 −0.199249 0.979949i \(-0.563850\pi\)
−0.199249 + 0.979949i \(0.563850\pi\)
\(662\) 6.95542e6 0.616848
\(663\) −3.55485e7 −3.14078
\(664\) −3.57306e6 −0.314499
\(665\) 0 0
\(666\) −3.46121e6 −0.302373
\(667\) 1.96991e7 1.71448
\(668\) 7.08311e6 0.614162
\(669\) −2.07552e7 −1.79292
\(670\) −6.20783e6 −0.534260
\(671\) 2.30645e6 0.197760
\(672\) 0 0
\(673\) −1.87165e7 −1.59289 −0.796447 0.604708i \(-0.793290\pi\)
−0.796447 + 0.604708i \(0.793290\pi\)
\(674\) 3.41426e6 0.289498
\(675\) 5.77042e6 0.487470
\(676\) 1.55470e7 1.30852
\(677\) −4.16232e6 −0.349031 −0.174515 0.984654i \(-0.555836\pi\)
−0.174515 + 0.984654i \(0.555836\pi\)
\(678\) −6.16188e6 −0.514801
\(679\) 0 0
\(680\) −2.86090e6 −0.237263
\(681\) −3.29697e7 −2.72425
\(682\) 1.43914e6 0.118479
\(683\) −1.28691e7 −1.05559 −0.527796 0.849371i \(-0.676981\pi\)
−0.527796 + 0.849371i \(0.676981\pi\)
\(684\) 1.66315e6 0.135923
\(685\) 1.21063e7 0.985793
\(686\) 0 0
\(687\) 2.50398e7 2.02414
\(688\) 1.00499e6 0.0809449
\(689\) 1.29634e7 1.04033
\(690\) 1.24609e7 0.996384
\(691\) 9.29037e6 0.740181 0.370090 0.928996i \(-0.379327\pi\)
0.370090 + 0.928996i \(0.379327\pi\)
\(692\) 1.25758e6 0.0998325
\(693\) 0 0
\(694\) −1.19400e7 −0.941033
\(695\) −2.10117e6 −0.165006
\(696\) 8.96989e6 0.701882
\(697\) 4.72032e6 0.368035
\(698\) −1.14987e7 −0.893325
\(699\) −3.68202e7 −2.85032
\(700\) 0 0
\(701\) 2.50809e7 1.92774 0.963870 0.266375i \(-0.0858258\pi\)
0.963870 + 0.266375i \(0.0858258\pi\)
\(702\) 1.46859e7 1.12475
\(703\) −653940. −0.0499057
\(704\) 636661. 0.0484146
\(705\) −9.94439e6 −0.753539
\(706\) −5.88437e6 −0.444312
\(707\) 0 0
\(708\) −2.38264e6 −0.178638
\(709\) 9.93780e6 0.742463 0.371231 0.928540i \(-0.378936\pi\)
0.371231 + 0.928540i \(0.378936\pi\)
\(710\) −2.88302e6 −0.214635
\(711\) 4.04218e7 2.99876
\(712\) 6.11493e6 0.452055
\(713\) −8.06069e6 −0.593811
\(714\) 0 0
\(715\) −6.50364e6 −0.475764
\(716\) −8.16683e6 −0.595348
\(717\) −2.16951e7 −1.57603
\(718\) 1.23120e7 0.891285
\(719\) 1.40009e7 1.01003 0.505016 0.863110i \(-0.331487\pi\)
0.505016 + 0.863110i \(0.331487\pi\)
\(720\) 3.42795e6 0.246436
\(721\) 0 0
\(722\) −9.59017e6 −0.684673
\(723\) 3.59987e7 2.56119
\(724\) 352829. 0.0250160
\(725\) 1.03032e7 0.727993
\(726\) 1.35667e7 0.955282
\(727\) −8.27315e6 −0.580544 −0.290272 0.956944i \(-0.593746\pi\)
−0.290272 + 0.956944i \(0.593746\pi\)
\(728\) 0 0
\(729\) −2.33861e7 −1.62982
\(730\) −6.57852e6 −0.456900
\(731\) −4.86037e6 −0.336416
\(732\) −5.88240e6 −0.405767
\(733\) 3.28591e6 0.225889 0.112945 0.993601i \(-0.463972\pi\)
0.112945 + 0.993601i \(0.463972\pi\)
\(734\) −6.46679e6 −0.443046
\(735\) 0 0
\(736\) −3.56597e6 −0.242651
\(737\) −6.68119e6 −0.453090
\(738\) −5.65592e6 −0.382263
\(739\) 1.00913e7 0.679728 0.339864 0.940475i \(-0.389619\pi\)
0.339864 + 0.940475i \(0.389619\pi\)
\(740\) −1.34785e6 −0.0904820
\(741\) 8.04754e6 0.538416
\(742\) 0 0
\(743\) 1.73443e7 1.15261 0.576307 0.817233i \(-0.304493\pi\)
0.576307 + 0.817233i \(0.304493\pi\)
\(744\) −3.67040e6 −0.243098
\(745\) 1.02200e7 0.674619
\(746\) −1.90447e7 −1.25293
\(747\) −2.07053e7 −1.35762
\(748\) −3.07905e6 −0.201216
\(749\) 0 0
\(750\) 1.76995e7 1.14897
\(751\) −1.75971e7 −1.13852 −0.569262 0.822156i \(-0.692771\pi\)
−0.569262 + 0.822156i \(0.692771\pi\)
\(752\) 2.84581e6 0.183511
\(753\) −4.91525e6 −0.315906
\(754\) 2.62219e7 1.67971
\(755\) −8.72158e6 −0.556836
\(756\) 0 0
\(757\) −4.66480e6 −0.295865 −0.147932 0.988997i \(-0.547262\pi\)
−0.147932 + 0.988997i \(0.547262\pi\)
\(758\) 4.00772e6 0.253352
\(759\) 1.34111e7 0.845005
\(760\) 647657. 0.0406734
\(761\) −1.82717e7 −1.14371 −0.571857 0.820353i \(-0.693777\pi\)
−0.571857 + 0.820353i \(0.693777\pi\)
\(762\) −6.29819e6 −0.392942
\(763\) 0 0
\(764\) −8.93044e6 −0.553528
\(765\) −1.65785e7 −1.02421
\(766\) 1.12861e7 0.694979
\(767\) −6.96521e6 −0.427510
\(768\) −1.62375e6 −0.0993379
\(769\) 2.31895e7 1.41409 0.707043 0.707171i \(-0.250029\pi\)
0.707043 + 0.707171i \(0.250029\pi\)
\(770\) 0 0
\(771\) 1.18821e7 0.719873
\(772\) −789060. −0.0476504
\(773\) −2.02149e6 −0.121681 −0.0608405 0.998148i \(-0.519378\pi\)
−0.0608405 + 0.998148i \(0.519378\pi\)
\(774\) 5.82374e6 0.349421
\(775\) −4.21597e6 −0.252141
\(776\) −960317. −0.0572480
\(777\) 0 0
\(778\) −4.96959e6 −0.294355
\(779\) −1.06859e6 −0.0630913
\(780\) 1.65869e7 0.976180
\(781\) −3.10285e6 −0.182026
\(782\) 1.72459e7 1.00849
\(783\) 1.79215e7 1.04465
\(784\) 0 0
\(785\) 7.72763e6 0.447582
\(786\) 1.35078e7 0.779880
\(787\) −1.57744e7 −0.907856 −0.453928 0.891038i \(-0.649978\pi\)
−0.453928 + 0.891038i \(0.649978\pi\)
\(788\) −1.50641e7 −0.864229
\(789\) −1.12718e7 −0.644618
\(790\) 1.57409e7 0.897348
\(791\) 0 0
\(792\) 3.68934e6 0.208995
\(793\) −1.71961e7 −0.971064
\(794\) −1.09825e7 −0.618229
\(795\) 1.00068e7 0.561535
\(796\) −1.02402e7 −0.572830
\(797\) −1.22436e6 −0.0682750 −0.0341375 0.999417i \(-0.510868\pi\)
−0.0341375 + 0.999417i \(0.510868\pi\)
\(798\) 0 0
\(799\) −1.37631e7 −0.762690
\(800\) −1.86510e6 −0.103033
\(801\) 3.54350e7 1.95142
\(802\) −1.48534e7 −0.815437
\(803\) −7.08014e6 −0.387483
\(804\) 1.70398e7 0.929658
\(805\) 0 0
\(806\) −1.07297e7 −0.581771
\(807\) −2.13111e7 −1.15192
\(808\) −1.72007e6 −0.0926869
\(809\) −2.77325e7 −1.48976 −0.744882 0.667196i \(-0.767494\pi\)
−0.744882 + 0.667196i \(0.767494\pi\)
\(810\) −1.67907e6 −0.0899201
\(811\) 1.19246e7 0.636636 0.318318 0.947984i \(-0.396882\pi\)
0.318318 + 0.947984i \(0.396882\pi\)
\(812\) 0 0
\(813\) 3.23476e7 1.71639
\(814\) −1.45063e6 −0.0767351
\(815\) 2.32758e6 0.122747
\(816\) 7.85284e6 0.412859
\(817\) 1.10030e6 0.0576709
\(818\) −1.50376e7 −0.785770
\(819\) 0 0
\(820\) −2.20250e6 −0.114388
\(821\) 1.60462e7 0.830836 0.415418 0.909631i \(-0.363635\pi\)
0.415418 + 0.909631i \(0.363635\pi\)
\(822\) −3.32304e7 −1.71536
\(823\) −1.12307e7 −0.577970 −0.288985 0.957334i \(-0.593318\pi\)
−0.288985 + 0.957334i \(0.593318\pi\)
\(824\) 3.32257e6 0.170473
\(825\) 7.01437e6 0.358801
\(826\) 0 0
\(827\) −2.68427e7 −1.36478 −0.682389 0.730989i \(-0.739059\pi\)
−0.682389 + 0.730989i \(0.739059\pi\)
\(828\) −2.06642e7 −1.04747
\(829\) −2.80419e7 −1.41717 −0.708584 0.705626i \(-0.750666\pi\)
−0.708584 + 0.705626i \(0.750666\pi\)
\(830\) −8.06295e6 −0.406255
\(831\) 1.34563e7 0.675962
\(832\) −4.74673e6 −0.237731
\(833\) 0 0
\(834\) 5.76747e6 0.287125
\(835\) 1.59837e7 0.793344
\(836\) 697042. 0.0344940
\(837\) −7.33331e6 −0.361815
\(838\) −1.84011e7 −0.905176
\(839\) 3.30603e7 1.62145 0.810723 0.585430i \(-0.199074\pi\)
0.810723 + 0.585430i \(0.199074\pi\)
\(840\) 0 0
\(841\) 1.14880e7 0.560086
\(842\) −1.61946e6 −0.0787207
\(843\) −2.47290e7 −1.19850
\(844\) 1.47499e7 0.712743
\(845\) 3.50832e7 1.69028
\(846\) 1.64910e7 0.792176
\(847\) 0 0
\(848\) −2.86367e6 −0.136752
\(849\) 4.40356e7 2.09669
\(850\) 9.02010e6 0.428217
\(851\) 8.12503e6 0.384593
\(852\) 7.91355e6 0.373484
\(853\) −2.73897e7 −1.28889 −0.644444 0.764652i \(-0.722911\pi\)
−0.644444 + 0.764652i \(0.722911\pi\)
\(854\) 0 0
\(855\) 3.75306e6 0.175578
\(856\) −1.59838e6 −0.0745585
\(857\) 2.96721e6 0.138005 0.0690027 0.997616i \(-0.478018\pi\)
0.0690027 + 0.997616i \(0.478018\pi\)
\(858\) 1.78517e7 0.827870
\(859\) 3.97960e7 1.84016 0.920081 0.391729i \(-0.128123\pi\)
0.920081 + 0.391729i \(0.128123\pi\)
\(860\) 2.26785e6 0.104561
\(861\) 0 0
\(862\) 379034. 0.0173744
\(863\) 7.19597e6 0.328899 0.164450 0.986385i \(-0.447415\pi\)
0.164450 + 0.986385i \(0.447415\pi\)
\(864\) −3.24418e6 −0.147850
\(865\) 2.83786e6 0.128959
\(866\) −1.72691e7 −0.782482
\(867\) −2.79940e6 −0.126478
\(868\) 0 0
\(869\) 1.69411e7 0.761015
\(870\) 2.02414e7 0.906657
\(871\) 4.98127e7 2.22482
\(872\) −232713. −0.0103641
\(873\) −5.56488e6 −0.247127
\(874\) −3.90417e6 −0.172882
\(875\) 0 0
\(876\) 1.80573e7 0.795045
\(877\) 2.51242e7 1.10305 0.551523 0.834160i \(-0.314047\pi\)
0.551523 + 0.834160i \(0.314047\pi\)
\(878\) 8.89469e6 0.389399
\(879\) −4.06300e7 −1.77368
\(880\) 1.43669e6 0.0625396
\(881\) −120262. −0.00522022 −0.00261011 0.999997i \(-0.500831\pi\)
−0.00261011 + 0.999997i \(0.500831\pi\)
\(882\) 0 0
\(883\) 2.43497e7 1.05097 0.525487 0.850802i \(-0.323883\pi\)
0.525487 + 0.850802i \(0.323883\pi\)
\(884\) 2.29564e7 0.988036
\(885\) −5.37665e6 −0.230756
\(886\) −1.87370e7 −0.801893
\(887\) 2.82766e7 1.20675 0.603377 0.797456i \(-0.293821\pi\)
0.603377 + 0.797456i \(0.293821\pi\)
\(888\) 3.69969e6 0.157446
\(889\) 0 0
\(890\) 1.37989e7 0.583943
\(891\) −1.80710e6 −0.0762586
\(892\) 1.34032e7 0.564023
\(893\) 3.11571e6 0.130746
\(894\) −2.80526e7 −1.17390
\(895\) −1.84293e7 −0.769042
\(896\) 0 0
\(897\) −9.99885e7 −4.14924
\(898\) 3.59173e6 0.148632
\(899\) −1.30938e7 −0.540337
\(900\) −1.08080e7 −0.444772
\(901\) 1.38494e7 0.568355
\(902\) −2.37045e6 −0.0970094
\(903\) 0 0
\(904\) 3.97920e6 0.161948
\(905\) 796192. 0.0323144
\(906\) 2.39397e7 0.968944
\(907\) −2.43168e7 −0.981496 −0.490748 0.871302i \(-0.663276\pi\)
−0.490748 + 0.871302i \(0.663276\pi\)
\(908\) 2.12910e7 0.857002
\(909\) −9.96754e6 −0.400109
\(910\) 0 0
\(911\) −3.36224e7 −1.34225 −0.671123 0.741346i \(-0.734188\pi\)
−0.671123 + 0.741346i \(0.734188\pi\)
\(912\) −1.77774e6 −0.0707753
\(913\) −8.67777e6 −0.344533
\(914\) 2.39272e7 0.947386
\(915\) −1.32742e7 −0.524150
\(916\) −1.61701e7 −0.636759
\(917\) 0 0
\(918\) 1.56897e7 0.614479
\(919\) −8.13749e6 −0.317835 −0.158917 0.987292i \(-0.550800\pi\)
−0.158917 + 0.987292i \(0.550800\pi\)
\(920\) −8.04695e6 −0.313445
\(921\) 5.90001e7 2.29194
\(922\) −6.50026e6 −0.251828
\(923\) 2.31338e7 0.893807
\(924\) 0 0
\(925\) 4.24962e6 0.163304
\(926\) −3.38518e7 −1.29734
\(927\) 1.92538e7 0.735896
\(928\) −5.79254e6 −0.220800
\(929\) −3.58054e7 −1.36116 −0.680580 0.732674i \(-0.738272\pi\)
−0.680580 + 0.732674i \(0.738272\pi\)
\(930\) −8.28261e6 −0.314022
\(931\) 0 0
\(932\) 2.37776e7 0.896661
\(933\) −3.08498e7 −1.16024
\(934\) −3.06638e7 −1.15016
\(935\) −6.94818e6 −0.259921
\(936\) −2.75065e7 −1.02623
\(937\) −4.65849e7 −1.73339 −0.866694 0.498840i \(-0.833759\pi\)
−0.866694 + 0.498840i \(0.833759\pi\)
\(938\) 0 0
\(939\) 4.12029e7 1.52498
\(940\) 6.42185e6 0.237050
\(941\) 2.06725e6 0.0761059 0.0380529 0.999276i \(-0.487884\pi\)
0.0380529 + 0.999276i \(0.487884\pi\)
\(942\) −2.12115e7 −0.778831
\(943\) 1.32770e7 0.486206
\(944\) 1.53865e6 0.0561966
\(945\) 0 0
\(946\) 2.44078e6 0.0886750
\(947\) 2.36773e7 0.857940 0.428970 0.903319i \(-0.358877\pi\)
0.428970 + 0.903319i \(0.358877\pi\)
\(948\) −4.32069e7 −1.56146
\(949\) 5.27872e7 1.90267
\(950\) −2.04199e6 −0.0734082
\(951\) 6.50345e7 2.33181
\(952\) 0 0
\(953\) −3.40521e6 −0.121454 −0.0607270 0.998154i \(-0.519342\pi\)
−0.0607270 + 0.998154i \(0.519342\pi\)
\(954\) −1.65945e7 −0.590327
\(955\) −2.01524e7 −0.715020
\(956\) 1.40102e7 0.495792
\(957\) 2.17849e7 0.768910
\(958\) 9.61170e6 0.338366
\(959\) 0 0
\(960\) −3.66414e6 −0.128320
\(961\) −2.32713e7 −0.812854
\(962\) 1.08154e7 0.376794
\(963\) −9.26238e6 −0.321852
\(964\) −2.32471e7 −0.805706
\(965\) −1.78059e6 −0.0615525
\(966\) 0 0
\(967\) 1.44238e6 0.0496036 0.0248018 0.999692i \(-0.492105\pi\)
0.0248018 + 0.999692i \(0.492105\pi\)
\(968\) −8.76103e6 −0.300515
\(969\) 8.59761e6 0.294150
\(970\) −2.16705e6 −0.0739502
\(971\) 5.15954e6 0.175616 0.0878078 0.996137i \(-0.472014\pi\)
0.0878078 + 0.996137i \(0.472014\pi\)
\(972\) 1.69266e7 0.574651
\(973\) 0 0
\(974\) −681206. −0.0230081
\(975\) −5.22968e7 −1.76183
\(976\) 3.79871e6 0.127647
\(977\) −6.97650e6 −0.233831 −0.116915 0.993142i \(-0.537301\pi\)
−0.116915 + 0.993142i \(0.537301\pi\)
\(978\) −6.38894e6 −0.213590
\(979\) 1.48511e7 0.495225
\(980\) 0 0
\(981\) −1.34853e6 −0.0447394
\(982\) −2.31051e7 −0.764592
\(983\) 2.81568e7 0.929393 0.464696 0.885470i \(-0.346163\pi\)
0.464696 + 0.885470i \(0.346163\pi\)
\(984\) 6.04561e6 0.199046
\(985\) −3.39937e7 −1.11637
\(986\) 2.80142e7 0.917669
\(987\) 0 0
\(988\) −5.19691e6 −0.169376
\(989\) −1.36709e7 −0.444434
\(990\) 8.32536e6 0.269970
\(991\) −2.34043e7 −0.757028 −0.378514 0.925596i \(-0.623565\pi\)
−0.378514 + 0.925596i \(0.623565\pi\)
\(992\) 2.37025e6 0.0764743
\(993\) −4.30825e7 −1.38653
\(994\) 0 0
\(995\) −2.31080e7 −0.739954
\(996\) 2.21319e7 0.706919
\(997\) 4.30284e7 1.37094 0.685468 0.728103i \(-0.259598\pi\)
0.685468 + 0.728103i \(0.259598\pi\)
\(998\) 2.17441e6 0.0691058
\(999\) 7.39183e6 0.234336
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.6.a.g.1.1 2
3.2 odd 2 882.6.a.bi.1.1 2
4.3 odd 2 784.6.a.bb.1.2 2
7.2 even 3 98.6.c.e.67.2 4
7.3 odd 6 14.6.c.a.9.1 4
7.4 even 3 98.6.c.e.79.2 4
7.5 odd 6 14.6.c.a.11.1 yes 4
7.6 odd 2 98.6.a.h.1.2 2
21.5 even 6 126.6.g.j.109.1 4
21.17 even 6 126.6.g.j.37.1 4
21.20 even 2 882.6.a.ba.1.2 2
28.3 even 6 112.6.i.d.65.2 4
28.19 even 6 112.6.i.d.81.2 4
28.27 even 2 784.6.a.s.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.a.9.1 4 7.3 odd 6
14.6.c.a.11.1 yes 4 7.5 odd 6
98.6.a.g.1.1 2 1.1 even 1 trivial
98.6.a.h.1.2 2 7.6 odd 2
98.6.c.e.67.2 4 7.2 even 3
98.6.c.e.79.2 4 7.4 even 3
112.6.i.d.65.2 4 28.3 even 6
112.6.i.d.81.2 4 28.19 even 6
126.6.g.j.37.1 4 21.17 even 6
126.6.g.j.109.1 4 21.5 even 6
784.6.a.s.1.1 2 28.27 even 2
784.6.a.bb.1.2 2 4.3 odd 2
882.6.a.ba.1.2 2 21.20 even 2
882.6.a.bi.1.1 2 3.2 odd 2