Properties

Label 98.6.a.f.1.2
Level $98$
Weight $6$
Character 98.1
Self dual yes
Analytic conductor $15.718$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,6,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,14,32,42,-56,0,-128,652] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.7176143417\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{130}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 130 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(11.4018\) of defining polynomial
Character \(\chi\) \(=\) 98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +29.8035 q^{3} +16.0000 q^{4} +21.0000 q^{5} -119.214 q^{6} -64.0000 q^{8} +645.249 q^{9} -84.0000 q^{10} +331.874 q^{11} +476.856 q^{12} -66.8211 q^{13} +625.874 q^{15} +256.000 q^{16} -240.537 q^{17} -2581.00 q^{18} -441.979 q^{19} +336.000 q^{20} -1327.49 q^{22} -1071.37 q^{23} -1907.42 q^{24} -2684.00 q^{25} +267.284 q^{26} +11988.4 q^{27} +1791.75 q^{29} -2503.49 q^{30} +5688.74 q^{31} -1024.00 q^{32} +9891.00 q^{33} +962.147 q^{34} +10324.0 q^{36} +11210.7 q^{37} +1767.92 q^{38} -1991.50 q^{39} -1344.00 q^{40} -12077.9 q^{41} -9921.98 q^{43} +5309.98 q^{44} +13550.2 q^{45} +4285.47 q^{46} +16869.2 q^{47} +7629.70 q^{48} +10736.0 q^{50} -7168.84 q^{51} -1069.14 q^{52} +5298.77 q^{53} -47953.7 q^{54} +6969.35 q^{55} -13172.5 q^{57} -7166.99 q^{58} -41384.8 q^{59} +10014.0 q^{60} +21523.3 q^{61} -22754.9 q^{62} +4096.00 q^{64} -1403.24 q^{65} -39564.0 q^{66} -26618.8 q^{67} -3848.59 q^{68} -31930.5 q^{69} -58096.5 q^{71} -41295.9 q^{72} +39987.5 q^{73} -44842.9 q^{74} -79992.6 q^{75} -7071.66 q^{76} +7966.01 q^{78} -43949.8 q^{79} +5376.00 q^{80} +200502. q^{81} +48311.4 q^{82} -22421.4 q^{83} -5051.27 q^{85} +39687.9 q^{86} +53400.4 q^{87} -21239.9 q^{88} -24062.0 q^{89} -54200.9 q^{90} -17141.9 q^{92} +169544. q^{93} -67477.0 q^{94} -9281.56 q^{95} -30518.8 q^{96} -71896.4 q^{97} +214141. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 14 q^{3} + 32 q^{4} + 42 q^{5} - 56 q^{6} - 128 q^{8} + 652 q^{9} - 168 q^{10} - 294 q^{11} + 224 q^{12} + 140 q^{13} + 294 q^{15} + 512 q^{16} - 1302 q^{17} - 2608 q^{18} + 1442 q^{19}+ \cdots + 209916 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 29.8035 1.91190 0.955948 0.293536i \(-0.0948321\pi\)
0.955948 + 0.293536i \(0.0948321\pi\)
\(4\) 16.0000 0.500000
\(5\) 21.0000 0.375659 0.187830 0.982202i \(-0.439855\pi\)
0.187830 + 0.982202i \(0.439855\pi\)
\(6\) −119.214 −1.35191
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 645.249 2.65535
\(10\) −84.0000 −0.265631
\(11\) 331.874 0.826973 0.413486 0.910510i \(-0.364311\pi\)
0.413486 + 0.910510i \(0.364311\pi\)
\(12\) 476.856 0.955948
\(13\) −66.8211 −0.109662 −0.0548308 0.998496i \(-0.517462\pi\)
−0.0548308 + 0.998496i \(0.517462\pi\)
\(14\) 0 0
\(15\) 625.874 0.718222
\(16\) 256.000 0.250000
\(17\) −240.537 −0.201864 −0.100932 0.994893i \(-0.532182\pi\)
−0.100932 + 0.994893i \(0.532182\pi\)
\(18\) −2581.00 −1.87761
\(19\) −441.979 −0.280878 −0.140439 0.990089i \(-0.544851\pi\)
−0.140439 + 0.990089i \(0.544851\pi\)
\(20\) 336.000 0.187830
\(21\) 0 0
\(22\) −1327.49 −0.584758
\(23\) −1071.37 −0.422298 −0.211149 0.977454i \(-0.567721\pi\)
−0.211149 + 0.977454i \(0.567721\pi\)
\(24\) −1907.42 −0.675957
\(25\) −2684.00 −0.858880
\(26\) 267.284 0.0775425
\(27\) 11988.4 3.16485
\(28\) 0 0
\(29\) 1791.75 0.395623 0.197812 0.980240i \(-0.436617\pi\)
0.197812 + 0.980240i \(0.436617\pi\)
\(30\) −2503.49 −0.507859
\(31\) 5688.74 1.06319 0.531596 0.846998i \(-0.321593\pi\)
0.531596 + 0.846998i \(0.321593\pi\)
\(32\) −1024.00 −0.176777
\(33\) 9891.00 1.58109
\(34\) 962.147 0.142740
\(35\) 0 0
\(36\) 10324.0 1.32767
\(37\) 11210.7 1.34626 0.673131 0.739523i \(-0.264949\pi\)
0.673131 + 0.739523i \(0.264949\pi\)
\(38\) 1767.92 0.198611
\(39\) −1991.50 −0.209662
\(40\) −1344.00 −0.132816
\(41\) −12077.9 −1.12210 −0.561048 0.827783i \(-0.689602\pi\)
−0.561048 + 0.827783i \(0.689602\pi\)
\(42\) 0 0
\(43\) −9921.98 −0.818328 −0.409164 0.912461i \(-0.634180\pi\)
−0.409164 + 0.912461i \(0.634180\pi\)
\(44\) 5309.98 0.413486
\(45\) 13550.2 0.997506
\(46\) 4285.47 0.298610
\(47\) 16869.2 1.11391 0.556956 0.830542i \(-0.311969\pi\)
0.556956 + 0.830542i \(0.311969\pi\)
\(48\) 7629.70 0.477974
\(49\) 0 0
\(50\) 10736.0 0.607320
\(51\) −7168.84 −0.385943
\(52\) −1069.14 −0.0548308
\(53\) 5298.77 0.259111 0.129555 0.991572i \(-0.458645\pi\)
0.129555 + 0.991572i \(0.458645\pi\)
\(54\) −47953.7 −2.23789
\(55\) 6969.35 0.310660
\(56\) 0 0
\(57\) −13172.5 −0.537009
\(58\) −7166.99 −0.279748
\(59\) −41384.8 −1.54778 −0.773892 0.633317i \(-0.781693\pi\)
−0.773892 + 0.633317i \(0.781693\pi\)
\(60\) 10014.0 0.359111
\(61\) 21523.3 0.740601 0.370300 0.928912i \(-0.379255\pi\)
0.370300 + 0.928912i \(0.379255\pi\)
\(62\) −22754.9 −0.751790
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −1403.24 −0.0411954
\(66\) −39564.0 −1.11800
\(67\) −26618.8 −0.724437 −0.362219 0.932093i \(-0.617981\pi\)
−0.362219 + 0.932093i \(0.617981\pi\)
\(68\) −3848.59 −0.100932
\(69\) −31930.5 −0.807390
\(70\) 0 0
\(71\) −58096.5 −1.36774 −0.683870 0.729603i \(-0.739705\pi\)
−0.683870 + 0.729603i \(0.739705\pi\)
\(72\) −41295.9 −0.938807
\(73\) 39987.5 0.878248 0.439124 0.898426i \(-0.355289\pi\)
0.439124 + 0.898426i \(0.355289\pi\)
\(74\) −44842.9 −0.951951
\(75\) −79992.6 −1.64209
\(76\) −7071.66 −0.140439
\(77\) 0 0
\(78\) 7966.01 0.148253
\(79\) −43949.8 −0.792299 −0.396150 0.918186i \(-0.629654\pi\)
−0.396150 + 0.918186i \(0.629654\pi\)
\(80\) 5376.00 0.0939149
\(81\) 200502. 3.39552
\(82\) 48311.4 0.793442
\(83\) −22421.4 −0.357246 −0.178623 0.983918i \(-0.557164\pi\)
−0.178623 + 0.983918i \(0.557164\pi\)
\(84\) 0 0
\(85\) −5051.27 −0.0758322
\(86\) 39687.9 0.578645
\(87\) 53400.4 0.756390
\(88\) −21239.9 −0.292379
\(89\) −24062.0 −0.322001 −0.161001 0.986954i \(-0.551472\pi\)
−0.161001 + 0.986954i \(0.551472\pi\)
\(90\) −54200.9 −0.705343
\(91\) 0 0
\(92\) −17141.9 −0.211149
\(93\) 169544. 2.03271
\(94\) −67477.0 −0.787655
\(95\) −9281.56 −0.105514
\(96\) −30518.8 −0.337979
\(97\) −71896.4 −0.775850 −0.387925 0.921691i \(-0.626808\pi\)
−0.387925 + 0.921691i \(0.626808\pi\)
\(98\) 0 0
\(99\) 214141. 2.19590
\(100\) −42944.0 −0.429440
\(101\) 15865.5 0.154757 0.0773783 0.997002i \(-0.475345\pi\)
0.0773783 + 0.997002i \(0.475345\pi\)
\(102\) 28675.4 0.272903
\(103\) 160574. 1.49135 0.745677 0.666307i \(-0.232126\pi\)
0.745677 + 0.666307i \(0.232126\pi\)
\(104\) 4276.55 0.0387713
\(105\) 0 0
\(106\) −21195.1 −0.183219
\(107\) −205047. −1.73139 −0.865693 0.500575i \(-0.833122\pi\)
−0.865693 + 0.500575i \(0.833122\pi\)
\(108\) 191815. 1.58242
\(109\) −112544. −0.907313 −0.453657 0.891177i \(-0.649881\pi\)
−0.453657 + 0.891177i \(0.649881\pi\)
\(110\) −27877.4 −0.219670
\(111\) 334119. 2.57391
\(112\) 0 0
\(113\) −118332. −0.871782 −0.435891 0.900000i \(-0.643567\pi\)
−0.435891 + 0.900000i \(0.643567\pi\)
\(114\) 52690.1 0.379723
\(115\) −22498.7 −0.158640
\(116\) 28668.0 0.197812
\(117\) −43116.2 −0.291190
\(118\) 165539. 1.09445
\(119\) 0 0
\(120\) −40055.9 −0.253930
\(121\) −50910.9 −0.316116
\(122\) −86093.2 −0.523684
\(123\) −359962. −2.14533
\(124\) 91019.8 0.531596
\(125\) −121989. −0.698306
\(126\) 0 0
\(127\) −245195. −1.34897 −0.674485 0.738289i \(-0.735634\pi\)
−0.674485 + 0.738289i \(0.735634\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −295710. −1.56456
\(130\) 5612.97 0.0291296
\(131\) −69993.7 −0.356353 −0.178177 0.983999i \(-0.557020\pi\)
−0.178177 + 0.983999i \(0.557020\pi\)
\(132\) 158256. 0.790543
\(133\) 0 0
\(134\) 106475. 0.512254
\(135\) 251757. 1.18891
\(136\) 15394.4 0.0713698
\(137\) −187664. −0.854239 −0.427119 0.904195i \(-0.640472\pi\)
−0.427119 + 0.904195i \(0.640472\pi\)
\(138\) 127722. 0.570911
\(139\) 78272.7 0.343616 0.171808 0.985130i \(-0.445039\pi\)
0.171808 + 0.985130i \(0.445039\pi\)
\(140\) 0 0
\(141\) 502763. 2.12968
\(142\) 232386. 0.967139
\(143\) −22176.1 −0.0906872
\(144\) 165184. 0.663837
\(145\) 37626.7 0.148620
\(146\) −159950. −0.621015
\(147\) 0 0
\(148\) 179372. 0.673131
\(149\) −92166.4 −0.340100 −0.170050 0.985435i \(-0.554393\pi\)
−0.170050 + 0.985435i \(0.554393\pi\)
\(150\) 319970. 1.16113
\(151\) 53416.0 0.190646 0.0953232 0.995446i \(-0.469612\pi\)
0.0953232 + 0.995446i \(0.469612\pi\)
\(152\) 28286.7 0.0993053
\(153\) −155206. −0.536019
\(154\) 0 0
\(155\) 119463. 0.399398
\(156\) −31864.0 −0.104831
\(157\) 280501. 0.908206 0.454103 0.890949i \(-0.349960\pi\)
0.454103 + 0.890949i \(0.349960\pi\)
\(158\) 175799. 0.560240
\(159\) 157922. 0.495393
\(160\) −21504.0 −0.0664078
\(161\) 0 0
\(162\) −802008. −2.40099
\(163\) 626810. 1.84785 0.923925 0.382574i \(-0.124962\pi\)
0.923925 + 0.382574i \(0.124962\pi\)
\(164\) −193246. −0.561048
\(165\) 207711. 0.593950
\(166\) 89685.6 0.252611
\(167\) −293997. −0.815741 −0.407870 0.913040i \(-0.633728\pi\)
−0.407870 + 0.913040i \(0.633728\pi\)
\(168\) 0 0
\(169\) −366828. −0.987974
\(170\) 20205.1 0.0536215
\(171\) −285187. −0.745828
\(172\) −158752. −0.409164
\(173\) −714187. −1.81425 −0.907124 0.420864i \(-0.861727\pi\)
−0.907124 + 0.420864i \(0.861727\pi\)
\(174\) −213601. −0.534849
\(175\) 0 0
\(176\) 84959.7 0.206743
\(177\) −1.23341e6 −2.95920
\(178\) 96248.1 0.227689
\(179\) 580050. 1.35311 0.676554 0.736393i \(-0.263472\pi\)
0.676554 + 0.736393i \(0.263472\pi\)
\(180\) 216804. 0.498753
\(181\) 308046. 0.698907 0.349454 0.936954i \(-0.386367\pi\)
0.349454 + 0.936954i \(0.386367\pi\)
\(182\) 0 0
\(183\) 641470. 1.41595
\(184\) 68567.6 0.149305
\(185\) 235425. 0.505736
\(186\) −678177. −1.43734
\(187\) −79827.8 −0.166936
\(188\) 269908. 0.556956
\(189\) 0 0
\(190\) 37126.2 0.0746100
\(191\) −202789. −0.402218 −0.201109 0.979569i \(-0.564455\pi\)
−0.201109 + 0.979569i \(0.564455\pi\)
\(192\) 122075. 0.238987
\(193\) 605988. 1.17104 0.585519 0.810659i \(-0.300891\pi\)
0.585519 + 0.810659i \(0.300891\pi\)
\(194\) 287586. 0.548609
\(195\) −41821.5 −0.0787614
\(196\) 0 0
\(197\) −310.819 −0.000570614 0 −0.000285307 1.00000i \(-0.500091\pi\)
−0.000285307 1.00000i \(0.500091\pi\)
\(198\) −856565. −1.55273
\(199\) 409666. 0.733327 0.366664 0.930354i \(-0.380500\pi\)
0.366664 + 0.930354i \(0.380500\pi\)
\(200\) 171776. 0.303660
\(201\) −793332. −1.38505
\(202\) −63461.9 −0.109429
\(203\) 0 0
\(204\) −114701. −0.192972
\(205\) −253635. −0.421526
\(206\) −642294. −1.05455
\(207\) −691300. −1.12135
\(208\) −17106.2 −0.0274154
\(209\) −146681. −0.232278
\(210\) 0 0
\(211\) −441339. −0.682442 −0.341221 0.939983i \(-0.610840\pi\)
−0.341221 + 0.939983i \(0.610840\pi\)
\(212\) 84780.3 0.129555
\(213\) −1.73148e6 −2.61498
\(214\) 820188. 1.22427
\(215\) −208362. −0.307412
\(216\) −767260. −1.11894
\(217\) 0 0
\(218\) 450177. 0.641567
\(219\) 1.19177e6 1.67912
\(220\) 111510. 0.155330
\(221\) 16072.9 0.0221368
\(222\) −1.33648e6 −1.82003
\(223\) −265133. −0.357028 −0.178514 0.983937i \(-0.557129\pi\)
−0.178514 + 0.983937i \(0.557129\pi\)
\(224\) 0 0
\(225\) −1.73185e6 −2.28062
\(226\) 473330. 0.616443
\(227\) 1.43044e6 1.84249 0.921244 0.388985i \(-0.127174\pi\)
0.921244 + 0.388985i \(0.127174\pi\)
\(228\) −210760. −0.268505
\(229\) 1.25805e6 1.58529 0.792646 0.609682i \(-0.208703\pi\)
0.792646 + 0.609682i \(0.208703\pi\)
\(230\) 89994.9 0.112176
\(231\) 0 0
\(232\) −114672. −0.139874
\(233\) 224723. 0.271180 0.135590 0.990765i \(-0.456707\pi\)
0.135590 + 0.990765i \(0.456707\pi\)
\(234\) 172465. 0.205902
\(235\) 354254. 0.418452
\(236\) −662156. −0.773892
\(237\) −1.30986e6 −1.51479
\(238\) 0 0
\(239\) 1.28193e6 1.45167 0.725837 0.687867i \(-0.241453\pi\)
0.725837 + 0.687867i \(0.241453\pi\)
\(240\) 160224. 0.179555
\(241\) 576125. 0.638961 0.319480 0.947593i \(-0.396492\pi\)
0.319480 + 0.947593i \(0.396492\pi\)
\(242\) 203643. 0.223528
\(243\) 3.06247e6 3.32703
\(244\) 344373. 0.370300
\(245\) 0 0
\(246\) 1.43985e6 1.51698
\(247\) 29533.5 0.0308015
\(248\) −364079. −0.375895
\(249\) −668236. −0.683017
\(250\) 487956. 0.493777
\(251\) 609040. 0.610185 0.305092 0.952323i \(-0.401313\pi\)
0.305092 + 0.952323i \(0.401313\pi\)
\(252\) 0 0
\(253\) −355559. −0.349229
\(254\) 980780. 0.953865
\(255\) −150546. −0.144983
\(256\) 65536.0 0.0625000
\(257\) −1.03067e6 −0.973389 −0.486695 0.873572i \(-0.661798\pi\)
−0.486695 + 0.873572i \(0.661798\pi\)
\(258\) 1.18284e6 1.10631
\(259\) 0 0
\(260\) −22451.9 −0.0205977
\(261\) 1.15612e6 1.05052
\(262\) 279975. 0.251980
\(263\) −910585. −0.811767 −0.405883 0.913925i \(-0.633036\pi\)
−0.405883 + 0.913925i \(0.633036\pi\)
\(264\) −633024. −0.558998
\(265\) 111274. 0.0973374
\(266\) 0 0
\(267\) −717133. −0.615633
\(268\) −425900. −0.362219
\(269\) −1.42100e6 −1.19733 −0.598663 0.801001i \(-0.704301\pi\)
−0.598663 + 0.801001i \(0.704301\pi\)
\(270\) −1.00703e6 −0.840683
\(271\) 297530. 0.246097 0.123049 0.992401i \(-0.460733\pi\)
0.123049 + 0.992401i \(0.460733\pi\)
\(272\) −61577.4 −0.0504661
\(273\) 0 0
\(274\) 750655. 0.604038
\(275\) −890749. −0.710270
\(276\) −510889. −0.403695
\(277\) 849612. 0.665305 0.332653 0.943049i \(-0.392056\pi\)
0.332653 + 0.943049i \(0.392056\pi\)
\(278\) −313091. −0.242973
\(279\) 3.67065e6 2.82314
\(280\) 0 0
\(281\) −7680.49 −0.00580261 −0.00290130 0.999996i \(-0.500924\pi\)
−0.00290130 + 0.999996i \(0.500924\pi\)
\(282\) −2.01105e6 −1.50591
\(283\) 985368. 0.731362 0.365681 0.930740i \(-0.380836\pi\)
0.365681 + 0.930740i \(0.380836\pi\)
\(284\) −929543. −0.683870
\(285\) −276623. −0.201733
\(286\) 88704.6 0.0641255
\(287\) 0 0
\(288\) −660735. −0.469403
\(289\) −1.36200e6 −0.959251
\(290\) −150507. −0.105090
\(291\) −2.14277e6 −1.48335
\(292\) 639800. 0.439124
\(293\) 2.16934e6 1.47625 0.738124 0.674665i \(-0.235712\pi\)
0.738124 + 0.674665i \(0.235712\pi\)
\(294\) 0 0
\(295\) −869080. −0.581440
\(296\) −717486. −0.475975
\(297\) 3.97865e6 2.61724
\(298\) 368666. 0.240487
\(299\) 71590.0 0.0463099
\(300\) −1.27988e6 −0.821045
\(301\) 0 0
\(302\) −213664. −0.134807
\(303\) 472846. 0.295879
\(304\) −113147. −0.0702195
\(305\) 451989. 0.278214
\(306\) 620825. 0.379023
\(307\) 1.39093e6 0.842287 0.421143 0.906994i \(-0.361629\pi\)
0.421143 + 0.906994i \(0.361629\pi\)
\(308\) 0 0
\(309\) 4.78566e6 2.85132
\(310\) −477854. −0.282417
\(311\) −2.03794e6 −1.19479 −0.597394 0.801948i \(-0.703797\pi\)
−0.597394 + 0.801948i \(0.703797\pi\)
\(312\) 127456. 0.0741266
\(313\) 1.16958e6 0.674789 0.337395 0.941363i \(-0.390454\pi\)
0.337395 + 0.941363i \(0.390454\pi\)
\(314\) −1.12200e6 −0.642199
\(315\) 0 0
\(316\) −703197. −0.396150
\(317\) 801137. 0.447774 0.223887 0.974615i \(-0.428125\pi\)
0.223887 + 0.974615i \(0.428125\pi\)
\(318\) −631688. −0.350295
\(319\) 594634. 0.327170
\(320\) 86016.0 0.0469574
\(321\) −6.11112e6 −3.31023
\(322\) 0 0
\(323\) 106312. 0.0566992
\(324\) 3.20803e6 1.69776
\(325\) 179348. 0.0941862
\(326\) −2.50724e6 −1.30663
\(327\) −3.35421e6 −1.73469
\(328\) 772983. 0.396721
\(329\) 0 0
\(330\) −830844. −0.419986
\(331\) 2.64951e6 1.32922 0.664608 0.747192i \(-0.268598\pi\)
0.664608 + 0.747192i \(0.268598\pi\)
\(332\) −358742. −0.178623
\(333\) 7.23371e6 3.57479
\(334\) 1.17599e6 0.576816
\(335\) −558994. −0.272142
\(336\) 0 0
\(337\) −3.40056e6 −1.63108 −0.815541 0.578699i \(-0.803560\pi\)
−0.815541 + 0.578699i \(0.803560\pi\)
\(338\) 1.46731e6 0.698603
\(339\) −3.52672e6 −1.66676
\(340\) −80820.4 −0.0379161
\(341\) 1.88794e6 0.879230
\(342\) 1.14075e6 0.527380
\(343\) 0 0
\(344\) 635007. 0.289322
\(345\) −670541. −0.303304
\(346\) 2.85675e6 1.28287
\(347\) −617709. −0.275398 −0.137699 0.990474i \(-0.543971\pi\)
−0.137699 + 0.990474i \(0.543971\pi\)
\(348\) 854406. 0.378195
\(349\) −2.70539e6 −1.18896 −0.594479 0.804111i \(-0.702642\pi\)
−0.594479 + 0.804111i \(0.702642\pi\)
\(350\) 0 0
\(351\) −801080. −0.347063
\(352\) −339839. −0.146189
\(353\) 3.18064e6 1.35856 0.679279 0.733880i \(-0.262293\pi\)
0.679279 + 0.733880i \(0.262293\pi\)
\(354\) 4.93365e6 2.09247
\(355\) −1.22003e6 −0.513805
\(356\) −384993. −0.161001
\(357\) 0 0
\(358\) −2.32020e6 −0.956792
\(359\) −4.45970e6 −1.82629 −0.913145 0.407635i \(-0.866354\pi\)
−0.913145 + 0.407635i \(0.866354\pi\)
\(360\) −867215. −0.352672
\(361\) −2.28075e6 −0.921108
\(362\) −1.23219e6 −0.494202
\(363\) −1.51732e6 −0.604382
\(364\) 0 0
\(365\) 839738. 0.329922
\(366\) −2.56588e6 −1.00123
\(367\) −461247. −0.178759 −0.0893795 0.995998i \(-0.528488\pi\)
−0.0893795 + 0.995998i \(0.528488\pi\)
\(368\) −274270. −0.105575
\(369\) −7.79322e6 −2.97955
\(370\) −941701. −0.357609
\(371\) 0 0
\(372\) 2.71271e6 1.01636
\(373\) 3.41954e6 1.27261 0.636305 0.771437i \(-0.280462\pi\)
0.636305 + 0.771437i \(0.280462\pi\)
\(374\) 319311. 0.118042
\(375\) −3.63570e6 −1.33509
\(376\) −1.07963e6 −0.393827
\(377\) −119726. −0.0433847
\(378\) 0 0
\(379\) 16355.6 0.00584882 0.00292441 0.999996i \(-0.499069\pi\)
0.00292441 + 0.999996i \(0.499069\pi\)
\(380\) −148505. −0.0527572
\(381\) −7.30767e6 −2.57909
\(382\) 811158. 0.284411
\(383\) 3.43643e6 1.19705 0.598523 0.801105i \(-0.295754\pi\)
0.598523 + 0.801105i \(0.295754\pi\)
\(384\) −488301. −0.168989
\(385\) 0 0
\(386\) −2.42395e6 −0.828048
\(387\) −6.40215e6 −2.17294
\(388\) −1.15034e6 −0.387925
\(389\) −4.81052e6 −1.61183 −0.805914 0.592033i \(-0.798325\pi\)
−0.805914 + 0.592033i \(0.798325\pi\)
\(390\) 167286. 0.0556927
\(391\) 257704. 0.0852469
\(392\) 0 0
\(393\) −2.08606e6 −0.681310
\(394\) 1243.28 0.000403485 0
\(395\) −922946. −0.297635
\(396\) 3.42626e6 1.09795
\(397\) 3.29848e6 1.05036 0.525180 0.850991i \(-0.323998\pi\)
0.525180 + 0.850991i \(0.323998\pi\)
\(398\) −1.63867e6 −0.518540
\(399\) 0 0
\(400\) −687104. −0.214720
\(401\) 136164. 0.0422865 0.0211432 0.999776i \(-0.493269\pi\)
0.0211432 + 0.999776i \(0.493269\pi\)
\(402\) 3.17333e6 0.979377
\(403\) −380127. −0.116591
\(404\) 253847. 0.0773783
\(405\) 4.21054e6 1.27556
\(406\) 0 0
\(407\) 3.72054e6 1.11332
\(408\) 458806. 0.136452
\(409\) −2.74869e6 −0.812490 −0.406245 0.913764i \(-0.633162\pi\)
−0.406245 + 0.913764i \(0.633162\pi\)
\(410\) 1.01454e6 0.298064
\(411\) −5.59304e6 −1.63322
\(412\) 2.56918e6 0.745677
\(413\) 0 0
\(414\) 2.76520e6 0.792913
\(415\) −470849. −0.134203
\(416\) 68424.8 0.0193856
\(417\) 2.33280e6 0.656958
\(418\) 586725. 0.164246
\(419\) 1.87219e6 0.520973 0.260486 0.965478i \(-0.416117\pi\)
0.260486 + 0.965478i \(0.416117\pi\)
\(420\) 0 0
\(421\) 655225. 0.180171 0.0900856 0.995934i \(-0.471286\pi\)
0.0900856 + 0.995934i \(0.471286\pi\)
\(422\) 1.76535e6 0.482559
\(423\) 1.08849e7 2.95782
\(424\) −339121. −0.0916095
\(425\) 645601. 0.173377
\(426\) 6.92591e6 1.84907
\(427\) 0 0
\(428\) −3.28075e6 −0.865693
\(429\) −660927. −0.173385
\(430\) 833446. 0.217373
\(431\) 6.37690e6 1.65355 0.826773 0.562535i \(-0.190174\pi\)
0.826773 + 0.562535i \(0.190174\pi\)
\(432\) 3.06904e6 0.791212
\(433\) −4.80003e6 −1.23034 −0.615168 0.788396i \(-0.710912\pi\)
−0.615168 + 0.788396i \(0.710912\pi\)
\(434\) 0 0
\(435\) 1.12141e6 0.284145
\(436\) −1.80071e6 −0.453657
\(437\) 473522. 0.118614
\(438\) −4.76707e6 −1.18732
\(439\) 5.59508e6 1.38562 0.692811 0.721119i \(-0.256372\pi\)
0.692811 + 0.721119i \(0.256372\pi\)
\(440\) −446038. −0.109835
\(441\) 0 0
\(442\) −64291.7 −0.0156531
\(443\) 4.14010e6 1.00231 0.501154 0.865358i \(-0.332909\pi\)
0.501154 + 0.865358i \(0.332909\pi\)
\(444\) 5.34590e6 1.28696
\(445\) −505303. −0.120963
\(446\) 1.06053e6 0.252457
\(447\) −2.74688e6 −0.650237
\(448\) 0 0
\(449\) −305966. −0.0716239 −0.0358119 0.999359i \(-0.511402\pi\)
−0.0358119 + 0.999359i \(0.511402\pi\)
\(450\) 6.92739e6 1.61264
\(451\) −4.00832e6 −0.927943
\(452\) −1.89332e6 −0.435891
\(453\) 1.59198e6 0.364496
\(454\) −5.72176e6 −1.30284
\(455\) 0 0
\(456\) 843041. 0.189861
\(457\) 892608. 0.199926 0.0999632 0.994991i \(-0.468127\pi\)
0.0999632 + 0.994991i \(0.468127\pi\)
\(458\) −5.03220e6 −1.12097
\(459\) −2.88366e6 −0.638870
\(460\) −359980. −0.0793202
\(461\) 3.01465e6 0.660670 0.330335 0.943864i \(-0.392838\pi\)
0.330335 + 0.943864i \(0.392838\pi\)
\(462\) 0 0
\(463\) 3.45497e6 0.749017 0.374508 0.927224i \(-0.377812\pi\)
0.374508 + 0.927224i \(0.377812\pi\)
\(464\) 458687. 0.0989058
\(465\) 3.56043e6 0.763607
\(466\) −898893. −0.191753
\(467\) −2.83776e6 −0.602120 −0.301060 0.953605i \(-0.597340\pi\)
−0.301060 + 0.953605i \(0.597340\pi\)
\(468\) −689860. −0.145595
\(469\) 0 0
\(470\) −1.41702e6 −0.295890
\(471\) 8.35990e6 1.73640
\(472\) 2.64863e6 0.547225
\(473\) −3.29284e6 −0.676734
\(474\) 5.23943e6 1.07112
\(475\) 1.18627e6 0.241240
\(476\) 0 0
\(477\) 3.41903e6 0.688028
\(478\) −5.12772e6 −1.02649
\(479\) 4.70442e6 0.936845 0.468422 0.883505i \(-0.344823\pi\)
0.468422 + 0.883505i \(0.344823\pi\)
\(480\) −640895. −0.126965
\(481\) −749113. −0.147633
\(482\) −2.30450e6 −0.451813
\(483\) 0 0
\(484\) −814574. −0.158058
\(485\) −1.50982e6 −0.291455
\(486\) −1.22499e7 −2.35256
\(487\) 4.16634e6 0.796036 0.398018 0.917378i \(-0.369698\pi\)
0.398018 + 0.917378i \(0.369698\pi\)
\(488\) −1.37749e6 −0.261842
\(489\) 1.86811e7 3.53290
\(490\) 0 0
\(491\) 1.57876e6 0.295537 0.147768 0.989022i \(-0.452791\pi\)
0.147768 + 0.989022i \(0.452791\pi\)
\(492\) −5.75940e6 −1.07267
\(493\) −430981. −0.0798622
\(494\) −118134. −0.0217800
\(495\) 4.49697e6 0.824910
\(496\) 1.45632e6 0.265798
\(497\) 0 0
\(498\) 2.67294e6 0.482966
\(499\) 1.55712e6 0.279943 0.139972 0.990156i \(-0.455299\pi\)
0.139972 + 0.990156i \(0.455299\pi\)
\(500\) −1.95182e6 −0.349153
\(501\) −8.76215e6 −1.55961
\(502\) −2.43616e6 −0.431466
\(503\) 1.19459e6 0.210523 0.105261 0.994445i \(-0.466432\pi\)
0.105261 + 0.994445i \(0.466432\pi\)
\(504\) 0 0
\(505\) 333175. 0.0581358
\(506\) 1.42224e6 0.246942
\(507\) −1.09328e7 −1.88890
\(508\) −3.92312e6 −0.674485
\(509\) −3.16857e6 −0.542087 −0.271043 0.962567i \(-0.587369\pi\)
−0.271043 + 0.962567i \(0.587369\pi\)
\(510\) 602183. 0.102519
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) −5.29864e6 −0.888936
\(514\) 4.12268e6 0.688290
\(515\) 3.37204e6 0.560241
\(516\) −4.73136e6 −0.782279
\(517\) 5.59846e6 0.921175
\(518\) 0 0
\(519\) −2.12853e7 −3.46865
\(520\) 89807.5 0.0145648
\(521\) 1.00658e6 0.162462 0.0812312 0.996695i \(-0.474115\pi\)
0.0812312 + 0.996695i \(0.474115\pi\)
\(522\) −4.62449e6 −0.742827
\(523\) −8.78985e6 −1.40517 −0.702583 0.711602i \(-0.747970\pi\)
−0.702583 + 0.711602i \(0.747970\pi\)
\(524\) −1.11990e6 −0.178177
\(525\) 0 0
\(526\) 3.64234e6 0.574006
\(527\) −1.36835e6 −0.214620
\(528\) 2.53210e6 0.395271
\(529\) −5.28851e6 −0.821664
\(530\) −445097. −0.0688279
\(531\) −2.67035e7 −4.10990
\(532\) 0 0
\(533\) 807055. 0.123051
\(534\) 2.86853e6 0.435318
\(535\) −4.30599e6 −0.650412
\(536\) 1.70360e6 0.256127
\(537\) 1.72875e7 2.58700
\(538\) 5.68399e6 0.846638
\(539\) 0 0
\(540\) 4.02811e6 0.594453
\(541\) −3.54864e6 −0.521277 −0.260639 0.965436i \(-0.583933\pi\)
−0.260639 + 0.965436i \(0.583933\pi\)
\(542\) −1.19012e6 −0.174017
\(543\) 9.18086e6 1.33624
\(544\) 246310. 0.0356849
\(545\) −2.36343e6 −0.340841
\(546\) 0 0
\(547\) 4.68179e6 0.669027 0.334513 0.942391i \(-0.391428\pi\)
0.334513 + 0.942391i \(0.391428\pi\)
\(548\) −3.00262e6 −0.427119
\(549\) 1.38879e7 1.96655
\(550\) 3.56300e6 0.502237
\(551\) −791915. −0.111122
\(552\) 2.04355e6 0.285456
\(553\) 0 0
\(554\) −3.39845e6 −0.470442
\(555\) 7.01650e6 0.966914
\(556\) 1.25236e6 0.171808
\(557\) 5.79507e6 0.791445 0.395723 0.918370i \(-0.370494\pi\)
0.395723 + 0.918370i \(0.370494\pi\)
\(558\) −1.46826e7 −1.99626
\(559\) 662997. 0.0897392
\(560\) 0 0
\(561\) −2.37915e6 −0.319165
\(562\) 30722.0 0.00410306
\(563\) 7.59703e6 1.01012 0.505060 0.863084i \(-0.331470\pi\)
0.505060 + 0.863084i \(0.331470\pi\)
\(564\) 8.04420e6 1.06484
\(565\) −2.48498e6 −0.327493
\(566\) −3.94147e6 −0.517151
\(567\) 0 0
\(568\) 3.71817e6 0.483569
\(569\) −9.81699e6 −1.27115 −0.635576 0.772038i \(-0.719237\pi\)
−0.635576 + 0.772038i \(0.719237\pi\)
\(570\) 1.10649e6 0.142646
\(571\) 5.25888e6 0.674999 0.337499 0.941326i \(-0.390419\pi\)
0.337499 + 0.941326i \(0.390419\pi\)
\(572\) −354818. −0.0453436
\(573\) −6.04384e6 −0.769000
\(574\) 0 0
\(575\) 2.87555e6 0.362703
\(576\) 2.64294e6 0.331918
\(577\) −8.63468e6 −1.07971 −0.539855 0.841758i \(-0.681521\pi\)
−0.539855 + 0.841758i \(0.681521\pi\)
\(578\) 5.44800e6 0.678293
\(579\) 1.80606e7 2.23890
\(580\) 602027. 0.0743098
\(581\) 0 0
\(582\) 8.57106e6 1.04888
\(583\) 1.75852e6 0.214277
\(584\) −2.55920e6 −0.310508
\(585\) −905441. −0.109388
\(586\) −8.67737e6 −1.04386
\(587\) 3.32014e6 0.397705 0.198852 0.980029i \(-0.436279\pi\)
0.198852 + 0.980029i \(0.436279\pi\)
\(588\) 0 0
\(589\) −2.51430e6 −0.298627
\(590\) 3.47632e6 0.411140
\(591\) −9263.50 −0.00109095
\(592\) 2.86995e6 0.336565
\(593\) 6.40001e6 0.747384 0.373692 0.927553i \(-0.378092\pi\)
0.373692 + 0.927553i \(0.378092\pi\)
\(594\) −1.59146e7 −1.85067
\(595\) 0 0
\(596\) −1.47466e6 −0.170050
\(597\) 1.22095e7 1.40204
\(598\) −286360. −0.0327461
\(599\) 7.49862e6 0.853915 0.426957 0.904272i \(-0.359585\pi\)
0.426957 + 0.904272i \(0.359585\pi\)
\(600\) 5.11953e6 0.580566
\(601\) 227052. 0.0256412 0.0128206 0.999918i \(-0.495919\pi\)
0.0128206 + 0.999918i \(0.495919\pi\)
\(602\) 0 0
\(603\) −1.71757e7 −1.92363
\(604\) 854656. 0.0953232
\(605\) −1.06913e6 −0.118752
\(606\) −1.89139e6 −0.209218
\(607\) −1.63037e7 −1.79603 −0.898015 0.439965i \(-0.854991\pi\)
−0.898015 + 0.439965i \(0.854991\pi\)
\(608\) 452586. 0.0496527
\(609\) 0 0
\(610\) −1.80796e6 −0.196727
\(611\) −1.12722e6 −0.122153
\(612\) −2.48330e6 −0.268010
\(613\) −1.04062e7 −1.11852 −0.559259 0.828993i \(-0.688914\pi\)
−0.559259 + 0.828993i \(0.688914\pi\)
\(614\) −5.56373e6 −0.595587
\(615\) −7.55921e6 −0.805914
\(616\) 0 0
\(617\) 4.74140e6 0.501411 0.250705 0.968063i \(-0.419337\pi\)
0.250705 + 0.968063i \(0.419337\pi\)
\(618\) −1.91426e7 −2.01618
\(619\) 1.08534e7 1.13851 0.569256 0.822160i \(-0.307231\pi\)
0.569256 + 0.822160i \(0.307231\pi\)
\(620\) 1.91142e6 0.199699
\(621\) −1.28440e7 −1.33651
\(622\) 8.15177e6 0.844843
\(623\) 0 0
\(624\) −509824. −0.0524154
\(625\) 5.82573e6 0.596555
\(626\) −4.67831e6 −0.477148
\(627\) −4.37161e6 −0.444092
\(628\) 4.48801e6 0.454103
\(629\) −2.69659e6 −0.271762
\(630\) 0 0
\(631\) 1.58978e7 1.58951 0.794757 0.606928i \(-0.207598\pi\)
0.794757 + 0.606928i \(0.207598\pi\)
\(632\) 2.81279e6 0.280120
\(633\) −1.31534e7 −1.30476
\(634\) −3.20455e6 −0.316624
\(635\) −5.14909e6 −0.506753
\(636\) 2.52675e6 0.247696
\(637\) 0 0
\(638\) −2.37854e6 −0.231344
\(639\) −3.74867e7 −3.63183
\(640\) −344064. −0.0332039
\(641\) 1.11828e7 1.07499 0.537496 0.843267i \(-0.319371\pi\)
0.537496 + 0.843267i \(0.319371\pi\)
\(642\) 2.44445e7 2.34069
\(643\) −1.55983e6 −0.148782 −0.0743909 0.997229i \(-0.523701\pi\)
−0.0743909 + 0.997229i \(0.523701\pi\)
\(644\) 0 0
\(645\) −6.20991e6 −0.587741
\(646\) −425249. −0.0400924
\(647\) 1.54824e7 1.45404 0.727020 0.686616i \(-0.240905\pi\)
0.727020 + 0.686616i \(0.240905\pi\)
\(648\) −1.28321e7 −1.20050
\(649\) −1.37345e7 −1.27998
\(650\) −717391. −0.0665997
\(651\) 0 0
\(652\) 1.00290e7 0.923925
\(653\) 614752. 0.0564179 0.0282090 0.999602i \(-0.491020\pi\)
0.0282090 + 0.999602i \(0.491020\pi\)
\(654\) 1.34169e7 1.22661
\(655\) −1.46987e6 −0.133867
\(656\) −3.09193e6 −0.280524
\(657\) 2.58019e7 2.33205
\(658\) 0 0
\(659\) −1.32697e7 −1.19028 −0.595139 0.803623i \(-0.702903\pi\)
−0.595139 + 0.803623i \(0.702903\pi\)
\(660\) 3.32338e6 0.296975
\(661\) −5.03584e6 −0.448299 −0.224150 0.974555i \(-0.571960\pi\)
−0.224150 + 0.974555i \(0.571960\pi\)
\(662\) −1.05980e7 −0.939898
\(663\) 479030. 0.0423232
\(664\) 1.43497e6 0.126306
\(665\) 0 0
\(666\) −2.89348e7 −2.52776
\(667\) −1.91962e6 −0.167071
\(668\) −4.70396e6 −0.407870
\(669\) −7.90190e6 −0.682600
\(670\) 2.23598e6 0.192433
\(671\) 7.14301e6 0.612457
\(672\) 0 0
\(673\) 8.28068e6 0.704739 0.352369 0.935861i \(-0.385376\pi\)
0.352369 + 0.935861i \(0.385376\pi\)
\(674\) 1.36022e7 1.15335
\(675\) −3.21770e7 −2.71823
\(676\) −5.86925e6 −0.493987
\(677\) 1.52513e7 1.27889 0.639446 0.768836i \(-0.279164\pi\)
0.639446 + 0.768836i \(0.279164\pi\)
\(678\) 1.41069e7 1.17857
\(679\) 0 0
\(680\) 323282. 0.0268107
\(681\) 4.26321e7 3.52265
\(682\) −7.55177e6 −0.621710
\(683\) 7.88673e6 0.646912 0.323456 0.946243i \(-0.395155\pi\)
0.323456 + 0.946243i \(0.395155\pi\)
\(684\) −4.56298e6 −0.372914
\(685\) −3.94094e6 −0.320903
\(686\) 0 0
\(687\) 3.74943e7 3.03091
\(688\) −2.54003e6 −0.204582
\(689\) −354069. −0.0284145
\(690\) 2.68217e6 0.214468
\(691\) 1.66190e6 0.132407 0.0662033 0.997806i \(-0.478911\pi\)
0.0662033 + 0.997806i \(0.478911\pi\)
\(692\) −1.14270e7 −0.907124
\(693\) 0 0
\(694\) 2.47084e6 0.194736
\(695\) 1.64373e6 0.129083
\(696\) −3.41762e6 −0.267424
\(697\) 2.90517e6 0.226511
\(698\) 1.08216e7 0.840721
\(699\) 6.69754e6 0.518469
\(700\) 0 0
\(701\) −1.39364e7 −1.07117 −0.535583 0.844483i \(-0.679908\pi\)
−0.535583 + 0.844483i \(0.679908\pi\)
\(702\) 3.20432e6 0.245410
\(703\) −4.95490e6 −0.378135
\(704\) 1.35935e6 0.103372
\(705\) 1.05580e7 0.800036
\(706\) −1.27226e7 −0.960646
\(707\) 0 0
\(708\) −1.97346e7 −1.47960
\(709\) −1.01874e7 −0.761108 −0.380554 0.924759i \(-0.624267\pi\)
−0.380554 + 0.924759i \(0.624267\pi\)
\(710\) 4.88010e6 0.363315
\(711\) −2.83586e7 −2.10383
\(712\) 1.53997e6 0.113845
\(713\) −6.09473e6 −0.448984
\(714\) 0 0
\(715\) −465699. −0.0340675
\(716\) 9.28079e6 0.676554
\(717\) 3.82060e7 2.77545
\(718\) 1.78388e7 1.29138
\(719\) −1.39169e7 −1.00397 −0.501983 0.864877i \(-0.667396\pi\)
−0.501983 + 0.864877i \(0.667396\pi\)
\(720\) 3.46886e6 0.249376
\(721\) 0 0
\(722\) 9.12301e6 0.651321
\(723\) 1.71705e7 1.22163
\(724\) 4.92874e6 0.349454
\(725\) −4.80905e6 −0.339793
\(726\) 6.06929e6 0.427362
\(727\) −3.42063e6 −0.240033 −0.120016 0.992772i \(-0.538295\pi\)
−0.120016 + 0.992772i \(0.538295\pi\)
\(728\) 0 0
\(729\) 4.25504e7 2.96541
\(730\) −3.35895e6 −0.233290
\(731\) 2.38660e6 0.165191
\(732\) 1.02635e7 0.707976
\(733\) 1.03162e7 0.709186 0.354593 0.935021i \(-0.384619\pi\)
0.354593 + 0.935021i \(0.384619\pi\)
\(734\) 1.84499e6 0.126402
\(735\) 0 0
\(736\) 1.09708e6 0.0746525
\(737\) −8.83406e6 −0.599090
\(738\) 3.11729e7 2.10686
\(739\) −1.03890e7 −0.699779 −0.349889 0.936791i \(-0.613781\pi\)
−0.349889 + 0.936791i \(0.613781\pi\)
\(740\) 3.76680e6 0.252868
\(741\) 880202. 0.0588893
\(742\) 0 0
\(743\) −1.04738e7 −0.696035 −0.348018 0.937488i \(-0.613145\pi\)
−0.348018 + 0.937488i \(0.613145\pi\)
\(744\) −1.08508e7 −0.718672
\(745\) −1.93550e6 −0.127762
\(746\) −1.36782e7 −0.899872
\(747\) −1.44674e7 −0.948612
\(748\) −1.27725e6 −0.0834681
\(749\) 0 0
\(750\) 1.45428e7 0.944050
\(751\) −9.40445e6 −0.608462 −0.304231 0.952598i \(-0.598400\pi\)
−0.304231 + 0.952598i \(0.598400\pi\)
\(752\) 4.31853e6 0.278478
\(753\) 1.81515e7 1.16661
\(754\) 478906. 0.0306776
\(755\) 1.12174e6 0.0716181
\(756\) 0 0
\(757\) −1.33677e7 −0.847848 −0.423924 0.905698i \(-0.639348\pi\)
−0.423924 + 0.905698i \(0.639348\pi\)
\(758\) −65422.4 −0.00413574
\(759\) −1.05969e7 −0.667690
\(760\) 594020. 0.0373050
\(761\) 2.22623e7 1.39350 0.696752 0.717312i \(-0.254628\pi\)
0.696752 + 0.717312i \(0.254628\pi\)
\(762\) 2.92307e7 1.82369
\(763\) 0 0
\(764\) −3.24463e6 −0.201109
\(765\) −3.25933e6 −0.201361
\(766\) −1.37457e7 −0.846440
\(767\) 2.76537e6 0.169733
\(768\) 1.95320e6 0.119493
\(769\) −9.65833e6 −0.588961 −0.294480 0.955658i \(-0.595147\pi\)
−0.294480 + 0.955658i \(0.595147\pi\)
\(770\) 0 0
\(771\) −3.07176e7 −1.86102
\(772\) 9.69581e6 0.585519
\(773\) 5.10951e6 0.307561 0.153780 0.988105i \(-0.450855\pi\)
0.153780 + 0.988105i \(0.450855\pi\)
\(774\) 2.56086e7 1.53650
\(775\) −1.52686e7 −0.913154
\(776\) 4.60137e6 0.274305
\(777\) 0 0
\(778\) 1.92421e7 1.13973
\(779\) 5.33816e6 0.315172
\(780\) −669145. −0.0393807
\(781\) −1.92807e7 −1.13108
\(782\) −1.03081e6 −0.0602787
\(783\) 2.14802e7 1.25209
\(784\) 0 0
\(785\) 5.89051e6 0.341176
\(786\) 8.34423e6 0.481759
\(787\) −2.51592e7 −1.44797 −0.723984 0.689816i \(-0.757691\pi\)
−0.723984 + 0.689816i \(0.757691\pi\)
\(788\) −4973.11 −0.000285307 0
\(789\) −2.71386e7 −1.55201
\(790\) 3.69178e6 0.210460
\(791\) 0 0
\(792\) −1.37050e7 −0.776367
\(793\) −1.43821e6 −0.0812155
\(794\) −1.31939e7 −0.742716
\(795\) 3.31636e6 0.186099
\(796\) 6.55466e6 0.366664
\(797\) 3.35976e6 0.187354 0.0936768 0.995603i \(-0.470138\pi\)
0.0936768 + 0.995603i \(0.470138\pi\)
\(798\) 0 0
\(799\) −4.05767e6 −0.224859
\(800\) 2.74842e6 0.151830
\(801\) −1.55260e7 −0.855024
\(802\) −544656. −0.0299010
\(803\) 1.32708e7 0.726287
\(804\) −1.26933e7 −0.692524
\(805\) 0 0
\(806\) 1.52051e6 0.0824426
\(807\) −4.23507e7 −2.28916
\(808\) −1.01539e6 −0.0547147
\(809\) −2.97050e7 −1.59572 −0.797862 0.602840i \(-0.794036\pi\)
−0.797862 + 0.602840i \(0.794036\pi\)
\(810\) −1.68422e7 −0.901956
\(811\) −1.26386e7 −0.674757 −0.337379 0.941369i \(-0.609540\pi\)
−0.337379 + 0.941369i \(0.609540\pi\)
\(812\) 0 0
\(813\) 8.86743e6 0.470513
\(814\) −1.48822e7 −0.787237
\(815\) 1.31630e7 0.694162
\(816\) −1.83522e6 −0.0964858
\(817\) 4.38531e6 0.229850
\(818\) 1.09948e7 0.574517
\(819\) 0 0
\(820\) −4.05816e6 −0.210763
\(821\) −2.61760e7 −1.35533 −0.677666 0.735370i \(-0.737008\pi\)
−0.677666 + 0.735370i \(0.737008\pi\)
\(822\) 2.23722e7 1.15486
\(823\) −7.29843e6 −0.375604 −0.187802 0.982207i \(-0.560136\pi\)
−0.187802 + 0.982207i \(0.560136\pi\)
\(824\) −1.02767e7 −0.527274
\(825\) −2.65474e7 −1.35796
\(826\) 0 0
\(827\) 1.18681e7 0.603418 0.301709 0.953400i \(-0.402443\pi\)
0.301709 + 0.953400i \(0.402443\pi\)
\(828\) −1.10608e7 −0.560674
\(829\) 1.04338e7 0.527298 0.263649 0.964619i \(-0.415074\pi\)
0.263649 + 0.964619i \(0.415074\pi\)
\(830\) 1.88340e6 0.0948957
\(831\) 2.53214e7 1.27199
\(832\) −273699. −0.0137077
\(833\) 0 0
\(834\) −9.33120e6 −0.464539
\(835\) −6.17394e6 −0.306441
\(836\) −2.34690e6 −0.116139
\(837\) 6.81991e7 3.36484
\(838\) −7.48876e6 −0.368383
\(839\) 2.91444e7 1.42939 0.714695 0.699436i \(-0.246565\pi\)
0.714695 + 0.699436i \(0.246565\pi\)
\(840\) 0 0
\(841\) −1.73008e7 −0.843482
\(842\) −2.62090e6 −0.127400
\(843\) −228906. −0.0110940
\(844\) −7.06142e6 −0.341221
\(845\) −7.70339e6 −0.371142
\(846\) −4.35395e7 −2.09150
\(847\) 0 0
\(848\) 1.35648e6 0.0647777
\(849\) 2.93674e7 1.39829
\(850\) −2.58240e6 −0.122596
\(851\) −1.20108e7 −0.568524
\(852\) −2.77037e7 −1.30749
\(853\) −2.63032e7 −1.23776 −0.618879 0.785487i \(-0.712413\pi\)
−0.618879 + 0.785487i \(0.712413\pi\)
\(854\) 0 0
\(855\) −5.98892e6 −0.280177
\(856\) 1.31230e7 0.612137
\(857\) −3.43598e6 −0.159808 −0.0799040 0.996803i \(-0.525461\pi\)
−0.0799040 + 0.996803i \(0.525461\pi\)
\(858\) 2.64371e6 0.122601
\(859\) −1.09139e7 −0.504659 −0.252329 0.967641i \(-0.581197\pi\)
−0.252329 + 0.967641i \(0.581197\pi\)
\(860\) −3.33378e6 −0.153706
\(861\) 0 0
\(862\) −2.55076e7 −1.16923
\(863\) 2.19058e7 1.00123 0.500614 0.865671i \(-0.333108\pi\)
0.500614 + 0.865671i \(0.333108\pi\)
\(864\) −1.22762e7 −0.559472
\(865\) −1.49979e7 −0.681539
\(866\) 1.92001e7 0.869979
\(867\) −4.05923e7 −1.83399
\(868\) 0 0
\(869\) −1.45858e7 −0.655210
\(870\) −4.48563e6 −0.200921
\(871\) 1.77869e6 0.0794430
\(872\) 7.20283e6 0.320784
\(873\) −4.63911e7 −2.06015
\(874\) −1.89409e6 −0.0838729
\(875\) 0 0
\(876\) 1.90683e7 0.839560
\(877\) 6.46927e6 0.284025 0.142012 0.989865i \(-0.454643\pi\)
0.142012 + 0.989865i \(0.454643\pi\)
\(878\) −2.23803e7 −0.979782
\(879\) 6.46540e7 2.82243
\(880\) 1.78415e6 0.0776650
\(881\) −2.03983e7 −0.885430 −0.442715 0.896662i \(-0.645985\pi\)
−0.442715 + 0.896662i \(0.645985\pi\)
\(882\) 0 0
\(883\) 1.62381e7 0.700862 0.350431 0.936589i \(-0.386035\pi\)
0.350431 + 0.936589i \(0.386035\pi\)
\(884\) 257167. 0.0110684
\(885\) −2.59016e7 −1.11165
\(886\) −1.65604e7 −0.708739
\(887\) 6.79027e6 0.289786 0.144893 0.989447i \(-0.453716\pi\)
0.144893 + 0.989447i \(0.453716\pi\)
\(888\) −2.13836e7 −0.910015
\(889\) 0 0
\(890\) 2.02121e6 0.0855336
\(891\) 6.65413e7 2.80800
\(892\) −4.24213e6 −0.178514
\(893\) −7.45585e6 −0.312873
\(894\) 1.09875e7 0.459787
\(895\) 1.21810e7 0.508308
\(896\) 0 0
\(897\) 2.13363e6 0.0885398
\(898\) 1.22387e6 0.0506457
\(899\) 1.01928e7 0.420623
\(900\) −2.77096e7 −1.14031
\(901\) −1.27455e6 −0.0523052
\(902\) 1.60333e7 0.656155
\(903\) 0 0
\(904\) 7.57328e6 0.308221
\(905\) 6.46897e6 0.262551
\(906\) −6.36793e6 −0.257738
\(907\) 3.42142e7 1.38098 0.690492 0.723340i \(-0.257394\pi\)
0.690492 + 0.723340i \(0.257394\pi\)
\(908\) 2.28870e7 0.921244
\(909\) 1.02372e7 0.410932
\(910\) 0 0
\(911\) −4.47390e6 −0.178604 −0.0893019 0.996005i \(-0.528464\pi\)
−0.0893019 + 0.996005i \(0.528464\pi\)
\(912\) −3.37217e6 −0.134252
\(913\) −7.44107e6 −0.295433
\(914\) −3.57043e6 −0.141369
\(915\) 1.34709e7 0.531916
\(916\) 2.01288e7 0.792646
\(917\) 0 0
\(918\) 1.15346e7 0.451749
\(919\) −537900. −0.0210094 −0.0105047 0.999945i \(-0.503344\pi\)
−0.0105047 + 0.999945i \(0.503344\pi\)
\(920\) 1.43992e6 0.0560878
\(921\) 4.14547e7 1.61036
\(922\) −1.20586e7 −0.467164
\(923\) 3.88207e6 0.149989
\(924\) 0 0
\(925\) −3.00896e7 −1.15628
\(926\) −1.38199e7 −0.529635
\(927\) 1.03610e8 3.96006
\(928\) −1.83475e6 −0.0699370
\(929\) 1.77241e7 0.673792 0.336896 0.941542i \(-0.390623\pi\)
0.336896 + 0.941542i \(0.390623\pi\)
\(930\) −1.42417e7 −0.539952
\(931\) 0 0
\(932\) 3.59557e6 0.135590
\(933\) −6.07379e7 −2.28431
\(934\) 1.13510e7 0.425763
\(935\) −1.67638e6 −0.0627111
\(936\) 2.75944e6 0.102951
\(937\) 3.32444e7 1.23700 0.618499 0.785786i \(-0.287741\pi\)
0.618499 + 0.785786i \(0.287741\pi\)
\(938\) 0 0
\(939\) 3.48575e7 1.29013
\(940\) 5.66807e6 0.209226
\(941\) −2.78480e7 −1.02523 −0.512613 0.858620i \(-0.671322\pi\)
−0.512613 + 0.858620i \(0.671322\pi\)
\(942\) −3.34396e7 −1.22782
\(943\) 1.29398e7 0.473859
\(944\) −1.05945e7 −0.386946
\(945\) 0 0
\(946\) 1.31714e7 0.478523
\(947\) −2.30569e7 −0.835459 −0.417729 0.908571i \(-0.637174\pi\)
−0.417729 + 0.908571i \(0.637174\pi\)
\(948\) −2.09577e7 −0.757397
\(949\) −2.67201e6 −0.0963102
\(950\) −4.74509e6 −0.170583
\(951\) 2.38767e7 0.856097
\(952\) 0 0
\(953\) 2.85536e7 1.01843 0.509213 0.860641i \(-0.329937\pi\)
0.509213 + 0.860641i \(0.329937\pi\)
\(954\) −1.36761e7 −0.486510
\(955\) −4.25858e6 −0.151097
\(956\) 2.05109e7 0.725837
\(957\) 1.77222e7 0.625514
\(958\) −1.88177e7 −0.662449
\(959\) 0 0
\(960\) 2.56358e6 0.0897777
\(961\) 3.73258e6 0.130377
\(962\) 2.99645e6 0.104393
\(963\) −1.32306e8 −4.59743
\(964\) 9.21800e6 0.319480
\(965\) 1.27257e7 0.439911
\(966\) 0 0
\(967\) −3.45310e7 −1.18753 −0.593763 0.804640i \(-0.702358\pi\)
−0.593763 + 0.804640i \(0.702358\pi\)
\(968\) 3.25830e6 0.111764
\(969\) 3.16848e6 0.108403
\(970\) 6.03930e6 0.206090
\(971\) −1.24933e7 −0.425236 −0.212618 0.977135i \(-0.568199\pi\)
−0.212618 + 0.977135i \(0.568199\pi\)
\(972\) 4.89995e7 1.66351
\(973\) 0 0
\(974\) −1.66654e7 −0.562883
\(975\) 5.34519e6 0.180074
\(976\) 5.50996e6 0.185150
\(977\) −3.89440e7 −1.30528 −0.652641 0.757667i \(-0.726339\pi\)
−0.652641 + 0.757667i \(0.726339\pi\)
\(978\) −7.47245e7 −2.49813
\(979\) −7.98556e6 −0.266286
\(980\) 0 0
\(981\) −7.26191e7 −2.40923
\(982\) −6.31503e6 −0.208976
\(983\) −279901. −0.00923889 −0.00461945 0.999989i \(-0.501470\pi\)
−0.00461945 + 0.999989i \(0.501470\pi\)
\(984\) 2.30376e7 0.758489
\(985\) −6527.20 −0.000214356 0
\(986\) 1.72393e6 0.0564711
\(987\) 0 0
\(988\) 472536. 0.0154008
\(989\) 1.06301e7 0.345578
\(990\) −1.79879e7 −0.583299
\(991\) 1.96343e7 0.635084 0.317542 0.948244i \(-0.397142\pi\)
0.317542 + 0.948244i \(0.397142\pi\)
\(992\) −5.82527e6 −0.187948
\(993\) 7.89647e7 2.54132
\(994\) 0 0
\(995\) 8.60299e6 0.275481
\(996\) −1.06918e7 −0.341509
\(997\) 3.73374e7 1.18961 0.594807 0.803868i \(-0.297228\pi\)
0.594807 + 0.803868i \(0.297228\pi\)
\(998\) −6.22847e6 −0.197950
\(999\) 1.34399e8 4.26072
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.6.a.f.1.2 2
3.2 odd 2 882.6.a.bl.1.1 2
4.3 odd 2 784.6.a.r.1.1 2
7.2 even 3 98.6.c.f.67.1 4
7.3 odd 6 14.6.c.b.9.2 4
7.4 even 3 98.6.c.f.79.1 4
7.5 odd 6 14.6.c.b.11.2 yes 4
7.6 odd 2 98.6.a.c.1.1 2
21.5 even 6 126.6.g.e.109.1 4
21.17 even 6 126.6.g.e.37.1 4
21.20 even 2 882.6.a.bt.1.1 2
28.3 even 6 112.6.i.b.65.1 4
28.19 even 6 112.6.i.b.81.1 4
28.27 even 2 784.6.a.bc.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.b.9.2 4 7.3 odd 6
14.6.c.b.11.2 yes 4 7.5 odd 6
98.6.a.c.1.1 2 7.6 odd 2
98.6.a.f.1.2 2 1.1 even 1 trivial
98.6.c.f.67.1 4 7.2 even 3
98.6.c.f.79.1 4 7.4 even 3
112.6.i.b.65.1 4 28.3 even 6
112.6.i.b.81.1 4 28.19 even 6
126.6.g.e.37.1 4 21.17 even 6
126.6.g.e.109.1 4 21.5 even 6
784.6.a.r.1.1 2 4.3 odd 2
784.6.a.bc.1.2 2 28.27 even 2
882.6.a.bl.1.1 2 3.2 odd 2
882.6.a.bt.1.1 2 21.20 even 2