Properties

Label 98.6.a.f.1.1
Level $98$
Weight $6$
Character 98.1
Self dual yes
Analytic conductor $15.718$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,6,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,14,32,42,-56,0,-128,652] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.7176143417\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{130}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 130 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-11.4018\) of defining polynomial
Character \(\chi\) \(=\) 98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -15.8035 q^{3} +16.0000 q^{4} +21.0000 q^{5} +63.2140 q^{6} -64.0000 q^{8} +6.75088 q^{9} -84.0000 q^{10} -625.874 q^{11} -252.856 q^{12} +206.821 q^{13} -331.874 q^{15} +256.000 q^{16} -1061.46 q^{17} -27.0035 q^{18} +1883.98 q^{19} +336.000 q^{20} +2503.49 q^{22} +3717.37 q^{23} +1011.42 q^{24} -2684.00 q^{25} -827.284 q^{26} +3733.56 q^{27} -123.747 q^{29} +1327.49 q^{30} +9109.26 q^{31} -1024.00 q^{32} +9891.00 q^{33} +4245.85 q^{34} +108.014 q^{36} -6028.73 q^{37} -7535.92 q^{38} -3268.50 q^{39} -1344.00 q^{40} +17201.9 q^{41} +5401.98 q^{43} -10014.0 q^{44} +141.769 q^{45} -14869.5 q^{46} -1875.24 q^{47} -4045.70 q^{48} +10736.0 q^{50} +16774.8 q^{51} +3309.14 q^{52} +18707.2 q^{53} -14934.3 q^{54} -13143.3 q^{55} -29773.5 q^{57} +494.989 q^{58} +2534.78 q^{59} -5309.98 q^{60} +2094.71 q^{61} -36437.1 q^{62} +4096.00 q^{64} +4343.24 q^{65} -39564.0 q^{66} +58620.8 q^{67} -16983.4 q^{68} -58747.5 q^{69} -31279.5 q^{71} -432.056 q^{72} +7150.47 q^{73} +24114.9 q^{74} +42416.6 q^{75} +30143.7 q^{76} +13074.0 q^{78} +2979.81 q^{79} +5376.00 q^{80} -60643.9 q^{81} -68807.4 q^{82} -45954.6 q^{83} -22290.7 q^{85} -21607.9 q^{86} +1955.64 q^{87} +40055.9 q^{88} -99040.0 q^{89} -567.074 q^{90} +59477.9 q^{92} -143958. q^{93} +7500.97 q^{94} +39563.6 q^{95} +16182.8 q^{96} +115548. q^{97} -4225.20 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 14 q^{3} + 32 q^{4} + 42 q^{5} - 56 q^{6} - 128 q^{8} + 652 q^{9} - 168 q^{10} - 294 q^{11} + 224 q^{12} + 140 q^{13} + 294 q^{15} + 512 q^{16} - 1302 q^{17} - 2608 q^{18} + 1442 q^{19}+ \cdots + 209916 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −15.8035 −1.01380 −0.506898 0.862006i \(-0.669208\pi\)
−0.506898 + 0.862006i \(0.669208\pi\)
\(4\) 16.0000 0.500000
\(5\) 21.0000 0.375659 0.187830 0.982202i \(-0.439855\pi\)
0.187830 + 0.982202i \(0.439855\pi\)
\(6\) 63.2140 0.716862
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 6.75088 0.0277814
\(10\) −84.0000 −0.265631
\(11\) −625.874 −1.55957 −0.779785 0.626047i \(-0.784672\pi\)
−0.779785 + 0.626047i \(0.784672\pi\)
\(12\) −252.856 −0.506898
\(13\) 206.821 0.339419 0.169710 0.985494i \(-0.445717\pi\)
0.169710 + 0.985494i \(0.445717\pi\)
\(14\) 0 0
\(15\) −331.874 −0.380842
\(16\) 256.000 0.250000
\(17\) −1061.46 −0.890805 −0.445402 0.895330i \(-0.646939\pi\)
−0.445402 + 0.895330i \(0.646939\pi\)
\(18\) −27.0035 −0.0196444
\(19\) 1883.98 1.19727 0.598635 0.801022i \(-0.295710\pi\)
0.598635 + 0.801022i \(0.295710\pi\)
\(20\) 336.000 0.187830
\(21\) 0 0
\(22\) 2503.49 1.10278
\(23\) 3717.37 1.46526 0.732632 0.680625i \(-0.238292\pi\)
0.732632 + 0.680625i \(0.238292\pi\)
\(24\) 1011.42 0.358431
\(25\) −2684.00 −0.858880
\(26\) −827.284 −0.240006
\(27\) 3733.56 0.985631
\(28\) 0 0
\(29\) −123.747 −0.0273238 −0.0136619 0.999907i \(-0.504349\pi\)
−0.0136619 + 0.999907i \(0.504349\pi\)
\(30\) 1327.49 0.269296
\(31\) 9109.26 1.70247 0.851234 0.524786i \(-0.175855\pi\)
0.851234 + 0.524786i \(0.175855\pi\)
\(32\) −1024.00 −0.176777
\(33\) 9891.00 1.58109
\(34\) 4245.85 0.629894
\(35\) 0 0
\(36\) 108.014 0.0138907
\(37\) −6028.73 −0.723971 −0.361986 0.932184i \(-0.617901\pi\)
−0.361986 + 0.932184i \(0.617901\pi\)
\(38\) −7535.92 −0.846598
\(39\) −3268.50 −0.344102
\(40\) −1344.00 −0.132816
\(41\) 17201.9 1.59814 0.799071 0.601236i \(-0.205325\pi\)
0.799071 + 0.601236i \(0.205325\pi\)
\(42\) 0 0
\(43\) 5401.98 0.445535 0.222767 0.974872i \(-0.428491\pi\)
0.222767 + 0.974872i \(0.428491\pi\)
\(44\) −10014.0 −0.779785
\(45\) 141.769 0.0104363
\(46\) −14869.5 −1.03610
\(47\) −1875.24 −0.123826 −0.0619131 0.998082i \(-0.519720\pi\)
−0.0619131 + 0.998082i \(0.519720\pi\)
\(48\) −4045.70 −0.253449
\(49\) 0 0
\(50\) 10736.0 0.607320
\(51\) 16774.8 0.903094
\(52\) 3309.14 0.169710
\(53\) 18707.2 0.914787 0.457393 0.889264i \(-0.348783\pi\)
0.457393 + 0.889264i \(0.348783\pi\)
\(54\) −14934.3 −0.696946
\(55\) −13143.3 −0.585867
\(56\) 0 0
\(57\) −29773.5 −1.21379
\(58\) 494.989 0.0193208
\(59\) 2534.78 0.0948004 0.0474002 0.998876i \(-0.484906\pi\)
0.0474002 + 0.998876i \(0.484906\pi\)
\(60\) −5309.98 −0.190421
\(61\) 2094.71 0.0720773 0.0360386 0.999350i \(-0.488526\pi\)
0.0360386 + 0.999350i \(0.488526\pi\)
\(62\) −36437.1 −1.20383
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 4343.24 0.127506
\(66\) −39564.0 −1.11800
\(67\) 58620.8 1.59538 0.797691 0.603067i \(-0.206055\pi\)
0.797691 + 0.603067i \(0.206055\pi\)
\(68\) −16983.4 −0.445402
\(69\) −58747.5 −1.48548
\(70\) 0 0
\(71\) −31279.5 −0.736401 −0.368201 0.929746i \(-0.620026\pi\)
−0.368201 + 0.929746i \(0.620026\pi\)
\(72\) −432.056 −0.00982221
\(73\) 7150.47 0.157046 0.0785231 0.996912i \(-0.474980\pi\)
0.0785231 + 0.996912i \(0.474980\pi\)
\(74\) 24114.9 0.511925
\(75\) 42416.6 0.870729
\(76\) 30143.7 0.598635
\(77\) 0 0
\(78\) 13074.0 0.243317
\(79\) 2979.81 0.0537181 0.0268591 0.999639i \(-0.491449\pi\)
0.0268591 + 0.999639i \(0.491449\pi\)
\(80\) 5376.00 0.0939149
\(81\) −60643.9 −1.02701
\(82\) −68807.4 −1.13006
\(83\) −45954.6 −0.732207 −0.366103 0.930574i \(-0.619308\pi\)
−0.366103 + 0.930574i \(0.619308\pi\)
\(84\) 0 0
\(85\) −22290.7 −0.334639
\(86\) −21607.9 −0.315041
\(87\) 1955.64 0.0277007
\(88\) 40055.9 0.551391
\(89\) −99040.0 −1.32536 −0.662682 0.748900i \(-0.730582\pi\)
−0.662682 + 0.748900i \(0.730582\pi\)
\(90\) −567.074 −0.00737961
\(91\) 0 0
\(92\) 59477.9 0.732632
\(93\) −143958. −1.72595
\(94\) 7500.97 0.0875584
\(95\) 39563.6 0.449766
\(96\) 16182.8 0.179215
\(97\) 115548. 1.24691 0.623454 0.781860i \(-0.285729\pi\)
0.623454 + 0.781860i \(0.285729\pi\)
\(98\) 0 0
\(99\) −4225.20 −0.0433271
\(100\) −42944.0 −0.429440
\(101\) −10951.5 −0.106824 −0.0534120 0.998573i \(-0.517010\pi\)
−0.0534120 + 0.998573i \(0.517010\pi\)
\(102\) −67099.4 −0.638584
\(103\) 137724. 1.27914 0.639570 0.768733i \(-0.279113\pi\)
0.639570 + 0.768733i \(0.279113\pi\)
\(104\) −13236.5 −0.120003
\(105\) 0 0
\(106\) −74828.9 −0.646852
\(107\) 75573.0 0.638127 0.319064 0.947733i \(-0.396632\pi\)
0.319064 + 0.947733i \(0.396632\pi\)
\(108\) 59737.0 0.492815
\(109\) 44526.3 0.358963 0.179482 0.983761i \(-0.442558\pi\)
0.179482 + 0.983761i \(0.442558\pi\)
\(110\) 52573.4 0.414271
\(111\) 95275.0 0.733959
\(112\) 0 0
\(113\) 90456.5 0.666413 0.333207 0.942854i \(-0.391869\pi\)
0.333207 + 0.942854i \(0.391869\pi\)
\(114\) 119094. 0.858277
\(115\) 78064.7 0.550440
\(116\) −1979.96 −0.0136619
\(117\) 1396.22 0.00942954
\(118\) −10139.1 −0.0670340
\(119\) 0 0
\(120\) 21239.9 0.134648
\(121\) 230667. 1.43226
\(122\) −8378.82 −0.0509663
\(123\) −271850. −1.62019
\(124\) 145748. 0.851234
\(125\) −121989. −0.698306
\(126\) 0 0
\(127\) 187707. 1.03269 0.516346 0.856380i \(-0.327292\pi\)
0.516346 + 0.856380i \(0.327292\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −85370.2 −0.451681
\(130\) −17373.0 −0.0901604
\(131\) −154412. −0.786147 −0.393073 0.919507i \(-0.628588\pi\)
−0.393073 + 0.919507i \(0.628588\pi\)
\(132\) 158256. 0.790543
\(133\) 0 0
\(134\) −234483. −1.12810
\(135\) 78404.9 0.370262
\(136\) 67933.6 0.314947
\(137\) 109238. 0.497246 0.248623 0.968600i \(-0.420022\pi\)
0.248623 + 0.968600i \(0.420022\pi\)
\(138\) 234990. 1.05039
\(139\) 204695. 0.898609 0.449305 0.893379i \(-0.351672\pi\)
0.449305 + 0.893379i \(0.351672\pi\)
\(140\) 0 0
\(141\) 29635.4 0.125534
\(142\) 125118. 0.520714
\(143\) −129444. −0.529348
\(144\) 1728.23 0.00694535
\(145\) −2598.69 −0.0102644
\(146\) −28601.9 −0.111048
\(147\) 0 0
\(148\) −96459.6 −0.361986
\(149\) −406308. −1.49930 −0.749651 0.661833i \(-0.769779\pi\)
−0.749651 + 0.661833i \(0.769779\pi\)
\(150\) −169666. −0.615698
\(151\) −416838. −1.48773 −0.743866 0.668328i \(-0.767010\pi\)
−0.743866 + 0.668328i \(0.767010\pi\)
\(152\) −120575. −0.423299
\(153\) −7165.81 −0.0247478
\(154\) 0 0
\(155\) 191295. 0.639548
\(156\) −52296.0 −0.172051
\(157\) −119291. −0.386240 −0.193120 0.981175i \(-0.561861\pi\)
−0.193120 + 0.981175i \(0.561861\pi\)
\(158\) −11919.2 −0.0379845
\(159\) −295640. −0.927407
\(160\) −21504.0 −0.0664078
\(161\) 0 0
\(162\) 242576. 0.726205
\(163\) 47372.4 0.139655 0.0698275 0.997559i \(-0.477755\pi\)
0.0698275 + 0.997559i \(0.477755\pi\)
\(164\) 275230. 0.799071
\(165\) 207711. 0.593950
\(166\) 183818. 0.517749
\(167\) 231669. 0.642802 0.321401 0.946943i \(-0.395846\pi\)
0.321401 + 0.946943i \(0.395846\pi\)
\(168\) 0 0
\(169\) −328518. −0.884795
\(170\) 89162.9 0.236626
\(171\) 12718.5 0.0332618
\(172\) 86431.7 0.222767
\(173\) −134339. −0.341262 −0.170631 0.985335i \(-0.554581\pi\)
−0.170631 + 0.985335i \(0.554581\pi\)
\(174\) −7822.57 −0.0195874
\(175\) 0 0
\(176\) −160224. −0.389893
\(177\) −40058.4 −0.0961082
\(178\) 396160. 0.937175
\(179\) 46584.4 0.108669 0.0543347 0.998523i \(-0.482696\pi\)
0.0543347 + 0.998523i \(0.482696\pi\)
\(180\) 2268.30 0.00521817
\(181\) −829210. −1.88134 −0.940672 0.339317i \(-0.889804\pi\)
−0.940672 + 0.339317i \(0.889804\pi\)
\(182\) 0 0
\(183\) −33103.7 −0.0730716
\(184\) −237912. −0.518049
\(185\) −126603. −0.271967
\(186\) 575833. 1.22043
\(187\) 664342. 1.38927
\(188\) −30003.9 −0.0619131
\(189\) 0 0
\(190\) −158254. −0.318032
\(191\) −471917. −0.936013 −0.468006 0.883725i \(-0.655028\pi\)
−0.468006 + 0.883725i \(0.655028\pi\)
\(192\) −64731.2 −0.126724
\(193\) 688354. 1.33021 0.665103 0.746752i \(-0.268388\pi\)
0.665103 + 0.746752i \(0.268388\pi\)
\(194\) −462194. −0.881698
\(195\) −68638.5 −0.129265
\(196\) 0 0
\(197\) 311915. 0.572625 0.286313 0.958136i \(-0.407570\pi\)
0.286313 + 0.958136i \(0.407570\pi\)
\(198\) 16900.8 0.0306369
\(199\) 287212. 0.514126 0.257063 0.966395i \(-0.417245\pi\)
0.257063 + 0.966395i \(0.417245\pi\)
\(200\) 171776. 0.303660
\(201\) −926414. −1.61739
\(202\) 43805.9 0.0755360
\(203\) 0 0
\(204\) 268397. 0.451547
\(205\) 361239. 0.600357
\(206\) −550898. −0.904488
\(207\) 25095.5 0.0407071
\(208\) 52946.2 0.0848548
\(209\) −1.17913e6 −1.86723
\(210\) 0 0
\(211\) −460493. −0.712061 −0.356031 0.934474i \(-0.615870\pi\)
−0.356031 + 0.934474i \(0.615870\pi\)
\(212\) 299316. 0.457393
\(213\) 494326. 0.746560
\(214\) −302292. −0.451224
\(215\) 113442. 0.167369
\(216\) −238948. −0.348473
\(217\) 0 0
\(218\) −178105. −0.253825
\(219\) −113003. −0.159213
\(220\) −210294. −0.292934
\(221\) −219533. −0.302356
\(222\) −381100. −0.518987
\(223\) 1.19776e6 1.61290 0.806449 0.591304i \(-0.201387\pi\)
0.806449 + 0.591304i \(0.201387\pi\)
\(224\) 0 0
\(225\) −18119.4 −0.0238609
\(226\) −361826. −0.471225
\(227\) −894561. −1.15225 −0.576123 0.817363i \(-0.695435\pi\)
−0.576123 + 0.817363i \(0.695435\pi\)
\(228\) −476376. −0.606893
\(229\) 259256. 0.326693 0.163347 0.986569i \(-0.447771\pi\)
0.163347 + 0.986569i \(0.447771\pi\)
\(230\) −312259. −0.389220
\(231\) 0 0
\(232\) 7919.83 0.00966042
\(233\) 211315. 0.255000 0.127500 0.991839i \(-0.459305\pi\)
0.127500 + 0.991839i \(0.459305\pi\)
\(234\) −5584.90 −0.00666769
\(235\) −39380.1 −0.0465165
\(236\) 40556.5 0.0474002
\(237\) −47091.5 −0.0544592
\(238\) 0 0
\(239\) 463.018 0.000524328 0 0.000262164 1.00000i \(-0.499917\pi\)
0.000262164 1.00000i \(0.499917\pi\)
\(240\) −84959.7 −0.0952105
\(241\) −286395. −0.317631 −0.158815 0.987308i \(-0.550767\pi\)
−0.158815 + 0.987308i \(0.550767\pi\)
\(242\) −922667. −1.01276
\(243\) 51129.9 0.0555469
\(244\) 33515.3 0.0360386
\(245\) 0 0
\(246\) 1.08740e6 1.14565
\(247\) 389647. 0.406376
\(248\) −582993. −0.601913
\(249\) 726244. 0.742308
\(250\) 487956. 0.493777
\(251\) 1.37168e6 1.37426 0.687129 0.726535i \(-0.258870\pi\)
0.687129 + 0.726535i \(0.258870\pi\)
\(252\) 0 0
\(253\) −2.32660e6 −2.28518
\(254\) −750828. −0.730224
\(255\) 352272. 0.339256
\(256\) 65536.0 0.0625000
\(257\) 759223. 0.717029 0.358515 0.933524i \(-0.383283\pi\)
0.358515 + 0.933524i \(0.383283\pi\)
\(258\) 341481. 0.319387
\(259\) 0 0
\(260\) 69491.9 0.0637530
\(261\) −835.404 −0.000759093 0
\(262\) 617649. 0.555890
\(263\) −1.07244e6 −0.956061 −0.478030 0.878343i \(-0.658649\pi\)
−0.478030 + 0.878343i \(0.658649\pi\)
\(264\) −633024. −0.558998
\(265\) 392852. 0.343648
\(266\) 0 0
\(267\) 1.56518e6 1.34365
\(268\) 937932. 0.797691
\(269\) 1.76611e6 1.48812 0.744059 0.668114i \(-0.232898\pi\)
0.744059 + 0.668114i \(0.232898\pi\)
\(270\) −313619. −0.261814
\(271\) 2.05171e6 1.69704 0.848522 0.529160i \(-0.177493\pi\)
0.848522 + 0.529160i \(0.177493\pi\)
\(272\) −271735. −0.222701
\(273\) 0 0
\(274\) −436951. −0.351606
\(275\) 1.67984e6 1.33948
\(276\) −939959. −0.742739
\(277\) 870682. 0.681805 0.340903 0.940099i \(-0.389267\pi\)
0.340903 + 0.940099i \(0.389267\pi\)
\(278\) −818781. −0.635413
\(279\) 61495.6 0.0472970
\(280\) 0 0
\(281\) 2.35412e6 1.77854 0.889270 0.457383i \(-0.151213\pi\)
0.889270 + 0.457383i \(0.151213\pi\)
\(282\) −118542. −0.0887663
\(283\) 2.19035e6 1.62573 0.812863 0.582454i \(-0.197908\pi\)
0.812863 + 0.582454i \(0.197908\pi\)
\(284\) −500473. −0.368201
\(285\) −625243. −0.455970
\(286\) 517775. 0.374306
\(287\) 0 0
\(288\) −6912.90 −0.00491110
\(289\) −293153. −0.206467
\(290\) 10394.8 0.00725805
\(291\) −1.82607e6 −1.26411
\(292\) 114408. 0.0785231
\(293\) 807700. 0.549644 0.274822 0.961495i \(-0.411381\pi\)
0.274822 + 0.961495i \(0.411381\pi\)
\(294\) 0 0
\(295\) 53230.4 0.0356127
\(296\) 385838. 0.255962
\(297\) −2.33674e6 −1.53716
\(298\) 1.62523e6 1.06017
\(299\) 768830. 0.497339
\(300\) 678666. 0.435364
\(301\) 0 0
\(302\) 1.66735e6 1.05199
\(303\) 173072. 0.108298
\(304\) 482299. 0.299317
\(305\) 43988.8 0.0270765
\(306\) 28663.2 0.0174993
\(307\) −211516. −0.128085 −0.0640424 0.997947i \(-0.520399\pi\)
−0.0640424 + 0.997947i \(0.520399\pi\)
\(308\) 0 0
\(309\) −2.17653e6 −1.29679
\(310\) −765178. −0.452229
\(311\) 291709. 0.171021 0.0855104 0.996337i \(-0.472748\pi\)
0.0855104 + 0.996337i \(0.472748\pi\)
\(312\) 209184. 0.121658
\(313\) 1.99598e6 1.15158 0.575791 0.817597i \(-0.304694\pi\)
0.575791 + 0.817597i \(0.304694\pi\)
\(314\) 477162. 0.273113
\(315\) 0 0
\(316\) 47677.0 0.0268591
\(317\) −2.80957e6 −1.57033 −0.785167 0.619285i \(-0.787423\pi\)
−0.785167 + 0.619285i \(0.787423\pi\)
\(318\) 1.18256e6 0.655776
\(319\) 77450.2 0.0426134
\(320\) 86016.0 0.0469574
\(321\) −1.19432e6 −0.646930
\(322\) 0 0
\(323\) −1.99977e6 −1.06653
\(324\) −970302. −0.513505
\(325\) −555108. −0.291520
\(326\) −189490. −0.0987510
\(327\) −703671. −0.363916
\(328\) −1.10092e6 −0.565029
\(329\) 0 0
\(330\) −830844. −0.419986
\(331\) 1.38050e6 0.692572 0.346286 0.938129i \(-0.387443\pi\)
0.346286 + 0.938129i \(0.387443\pi\)
\(332\) −735274. −0.366103
\(333\) −40699.2 −0.0201129
\(334\) −926677. −0.454530
\(335\) 1.23104e6 0.599320
\(336\) 0 0
\(337\) 566429. 0.271688 0.135844 0.990730i \(-0.456625\pi\)
0.135844 + 0.990730i \(0.456625\pi\)
\(338\) 1.31407e6 0.625644
\(339\) −1.42953e6 −0.675607
\(340\) −356652. −0.167320
\(341\) −5.70125e6 −2.65512
\(342\) −50874.1 −0.0235197
\(343\) 0 0
\(344\) −345727. −0.157520
\(345\) −1.23370e6 −0.558034
\(346\) 537357. 0.241308
\(347\) 540207. 0.240845 0.120422 0.992723i \(-0.461575\pi\)
0.120422 + 0.992723i \(0.461575\pi\)
\(348\) 31290.3 0.0138504
\(349\) −1.73807e6 −0.763841 −0.381921 0.924195i \(-0.624737\pi\)
−0.381921 + 0.924195i \(0.624737\pi\)
\(350\) 0 0
\(351\) 772180. 0.334542
\(352\) 640895. 0.275696
\(353\) −1.07422e6 −0.458834 −0.229417 0.973328i \(-0.573682\pi\)
−0.229417 + 0.973328i \(0.573682\pi\)
\(354\) 160234. 0.0679588
\(355\) −656870. −0.276636
\(356\) −1.58464e6 −0.662682
\(357\) 0 0
\(358\) −186337. −0.0768409
\(359\) 121204. 0.0496341 0.0248170 0.999692i \(-0.492100\pi\)
0.0248170 + 0.999692i \(0.492100\pi\)
\(360\) −9073.18 −0.00368981
\(361\) 1.07328e6 0.433455
\(362\) 3.31684e6 1.33031
\(363\) −3.64535e6 −1.45202
\(364\) 0 0
\(365\) 150160. 0.0589959
\(366\) 132415. 0.0516694
\(367\) 553829. 0.214640 0.107320 0.994225i \(-0.465773\pi\)
0.107320 + 0.994225i \(0.465773\pi\)
\(368\) 951646. 0.366316
\(369\) 116128. 0.0443986
\(370\) 506413. 0.192309
\(371\) 0 0
\(372\) −2.30333e6 −0.862977
\(373\) −501478. −0.186629 −0.0933146 0.995637i \(-0.529746\pi\)
−0.0933146 + 0.995637i \(0.529746\pi\)
\(374\) −2.65737e6 −0.982364
\(375\) 1.92785e6 0.707939
\(376\) 120015. 0.0437792
\(377\) −25593.6 −0.00927422
\(378\) 0 0
\(379\) 999004. 0.357248 0.178624 0.983917i \(-0.442835\pi\)
0.178624 + 0.983917i \(0.442835\pi\)
\(380\) 633017. 0.224883
\(381\) −2.96643e6 −1.04694
\(382\) 1.88767e6 0.661861
\(383\) −652464. −0.227279 −0.113640 0.993522i \(-0.536251\pi\)
−0.113640 + 0.993522i \(0.536251\pi\)
\(384\) 258925. 0.0896077
\(385\) 0 0
\(386\) −2.75342e6 −0.940597
\(387\) 36468.1 0.0123776
\(388\) 1.84877e6 0.623454
\(389\) −79253.0 −0.0265547 −0.0132774 0.999912i \(-0.504226\pi\)
−0.0132774 + 0.999912i \(0.504226\pi\)
\(390\) 274554. 0.0914042
\(391\) −3.94585e6 −1.30526
\(392\) 0 0
\(393\) 2.44026e6 0.796992
\(394\) −1.24766e6 −0.404907
\(395\) 62576.0 0.0201797
\(396\) −67603.2 −0.0216635
\(397\) −4.00886e6 −1.27657 −0.638284 0.769801i \(-0.720356\pi\)
−0.638284 + 0.769801i \(0.720356\pi\)
\(398\) −1.14885e6 −0.363542
\(399\) 0 0
\(400\) −687104. −0.214720
\(401\) 674418. 0.209444 0.104722 0.994502i \(-0.466605\pi\)
0.104722 + 0.994502i \(0.466605\pi\)
\(402\) 3.70565e6 1.14367
\(403\) 1.88399e6 0.577850
\(404\) −175223. −0.0534120
\(405\) −1.27352e6 −0.385806
\(406\) 0 0
\(407\) 3.77322e6 1.12908
\(408\) −1.07359e6 −0.319292
\(409\) 2.85413e6 0.843656 0.421828 0.906676i \(-0.361389\pi\)
0.421828 + 0.906676i \(0.361389\pi\)
\(410\) −1.44496e6 −0.424517
\(411\) −1.72634e6 −0.504106
\(412\) 2.20359e6 0.639570
\(413\) 0 0
\(414\) −100382. −0.0287843
\(415\) −965047. −0.275060
\(416\) −211785. −0.0600014
\(417\) −3.23490e6 −0.911006
\(418\) 4.71653e6 1.32033
\(419\) 4.66553e6 1.29827 0.649136 0.760672i \(-0.275130\pi\)
0.649136 + 0.760672i \(0.275130\pi\)
\(420\) 0 0
\(421\) −3.73317e6 −1.02653 −0.513266 0.858229i \(-0.671565\pi\)
−0.513266 + 0.858229i \(0.671565\pi\)
\(422\) 1.84197e6 0.503503
\(423\) −12659.5 −0.00344007
\(424\) −1.19726e6 −0.323426
\(425\) 2.84897e6 0.765095
\(426\) −1.97731e6 −0.527898
\(427\) 0 0
\(428\) 1.20917e6 0.319064
\(429\) 2.04567e6 0.536651
\(430\) −453766. −0.118348
\(431\) 964670. 0.250141 0.125071 0.992148i \(-0.460084\pi\)
0.125071 + 0.992148i \(0.460084\pi\)
\(432\) 955793. 0.246408
\(433\) 6.18096e6 1.58429 0.792147 0.610330i \(-0.208963\pi\)
0.792147 + 0.610330i \(0.208963\pi\)
\(434\) 0 0
\(435\) 41068.5 0.0104060
\(436\) 712421. 0.179482
\(437\) 7.00344e6 1.75432
\(438\) 452010. 0.112580
\(439\) 215135. 0.0532782 0.0266391 0.999645i \(-0.491520\pi\)
0.0266391 + 0.999645i \(0.491520\pi\)
\(440\) 841174. 0.207135
\(441\) 0 0
\(442\) 878132. 0.213798
\(443\) −7.19867e6 −1.74278 −0.871391 0.490589i \(-0.836782\pi\)
−0.871391 + 0.490589i \(0.836782\pi\)
\(444\) 1.52440e6 0.366979
\(445\) −2.07984e6 −0.497886
\(446\) −4.79103e6 −1.14049
\(447\) 6.42109e6 1.51999
\(448\) 0 0
\(449\) 3.92153e6 0.917994 0.458997 0.888438i \(-0.348209\pi\)
0.458997 + 0.888438i \(0.348209\pi\)
\(450\) 72477.5 0.0168722
\(451\) −1.07662e7 −2.49242
\(452\) 1.44730e6 0.333207
\(453\) 6.58750e6 1.50826
\(454\) 3.57824e6 0.814761
\(455\) 0 0
\(456\) 1.90550e6 0.429138
\(457\) 1.32168e6 0.296030 0.148015 0.988985i \(-0.452712\pi\)
0.148015 + 0.988985i \(0.452712\pi\)
\(458\) −1.03702e6 −0.231007
\(459\) −3.96304e6 −0.878005
\(460\) 1.24904e6 0.275220
\(461\) 75459.1 0.0165371 0.00826855 0.999966i \(-0.497368\pi\)
0.00826855 + 0.999966i \(0.497368\pi\)
\(462\) 0 0
\(463\) −3.28757e6 −0.712727 −0.356363 0.934347i \(-0.615984\pi\)
−0.356363 + 0.934347i \(0.615984\pi\)
\(464\) −31679.3 −0.00683095
\(465\) −3.02312e6 −0.648371
\(466\) −845259. −0.180312
\(467\) 643382. 0.136514 0.0682569 0.997668i \(-0.478256\pi\)
0.0682569 + 0.997668i \(0.478256\pi\)
\(468\) 22339.6 0.00471477
\(469\) 0 0
\(470\) 157520. 0.0328921
\(471\) 1.88521e6 0.391568
\(472\) −162226. −0.0335170
\(473\) −3.38096e6 −0.694843
\(474\) 188366. 0.0385085
\(475\) −5.05660e6 −1.02831
\(476\) 0 0
\(477\) 126290. 0.0254141
\(478\) −1852.07 −0.000370756 0
\(479\) 7.42648e6 1.47892 0.739459 0.673202i \(-0.235081\pi\)
0.739459 + 0.673202i \(0.235081\pi\)
\(480\) 339839. 0.0673240
\(481\) −1.24687e6 −0.245730
\(482\) 1.14558e6 0.224599
\(483\) 0 0
\(484\) 3.69067e6 0.716130
\(485\) 2.42652e6 0.468413
\(486\) −204520. −0.0392776
\(487\) −4.17085e6 −0.796896 −0.398448 0.917191i \(-0.630451\pi\)
−0.398448 + 0.917191i \(0.630451\pi\)
\(488\) −134061. −0.0254832
\(489\) −748651. −0.141582
\(490\) 0 0
\(491\) −3.73674e6 −0.699502 −0.349751 0.936843i \(-0.613734\pi\)
−0.349751 + 0.936843i \(0.613734\pi\)
\(492\) −4.34959e6 −0.810095
\(493\) 131353. 0.0243402
\(494\) −1.55859e6 −0.287351
\(495\) −88729.2 −0.0162762
\(496\) 2.33197e6 0.425617
\(497\) 0 0
\(498\) −2.90498e6 −0.524891
\(499\) 8.70862e6 1.56566 0.782831 0.622235i \(-0.213775\pi\)
0.782831 + 0.622235i \(0.213775\pi\)
\(500\) −1.95182e6 −0.349153
\(501\) −3.66119e6 −0.651670
\(502\) −5.48672e6 −0.971748
\(503\) −3.28384e6 −0.578711 −0.289355 0.957222i \(-0.593441\pi\)
−0.289355 + 0.957222i \(0.593441\pi\)
\(504\) 0 0
\(505\) −229981. −0.0401294
\(506\) 9.30641e6 1.61587
\(507\) 5.19174e6 0.897001
\(508\) 3.00331e6 0.516346
\(509\) 9.43703e6 1.61451 0.807255 0.590203i \(-0.200952\pi\)
0.807255 + 0.590203i \(0.200952\pi\)
\(510\) −1.40909e6 −0.239890
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 7.03396e6 1.18007
\(514\) −3.03689e6 −0.507016
\(515\) 2.89221e6 0.480521
\(516\) −1.36592e6 −0.225841
\(517\) 1.17366e6 0.193116
\(518\) 0 0
\(519\) 2.12303e6 0.345970
\(520\) −277967. −0.0450802
\(521\) −5.90726e6 −0.953437 −0.476719 0.879056i \(-0.658174\pi\)
−0.476719 + 0.879056i \(0.658174\pi\)
\(522\) 3341.61 0.000536760 0
\(523\) −654337. −0.104604 −0.0523019 0.998631i \(-0.516656\pi\)
−0.0523019 + 0.998631i \(0.516656\pi\)
\(524\) −2.47060e6 −0.393073
\(525\) 0 0
\(526\) 4.28978e6 0.676037
\(527\) −9.66915e6 −1.51657
\(528\) 2.53210e6 0.395271
\(529\) 7.38248e6 1.14700
\(530\) −1.57141e6 −0.242996
\(531\) 17112.0 0.00263369
\(532\) 0 0
\(533\) 3.55771e6 0.542440
\(534\) −6.26072e6 −0.950103
\(535\) 1.58703e6 0.239718
\(536\) −3.75173e6 −0.564052
\(537\) −736196. −0.110169
\(538\) −7.06445e6 −1.05226
\(539\) 0 0
\(540\) 1.25448e6 0.185131
\(541\) −863115. −0.126787 −0.0633936 0.997989i \(-0.520192\pi\)
−0.0633936 + 0.997989i \(0.520192\pi\)
\(542\) −8.20685e6 −1.19999
\(543\) 1.31044e7 1.90730
\(544\) 1.08694e6 0.157474
\(545\) 935052. 0.134848
\(546\) 0 0
\(547\) −5.45692e6 −0.779794 −0.389897 0.920859i \(-0.627489\pi\)
−0.389897 + 0.920859i \(0.627489\pi\)
\(548\) 1.74781e6 0.248623
\(549\) 14141.1 0.00200241
\(550\) −6.71938e6 −0.947158
\(551\) −233137. −0.0327139
\(552\) 3.75984e6 0.525196
\(553\) 0 0
\(554\) −3.48273e6 −0.482109
\(555\) 2.00078e6 0.275719
\(556\) 3.27513e6 0.449305
\(557\) 1.11776e7 1.52655 0.763275 0.646074i \(-0.223590\pi\)
0.763275 + 0.646074i \(0.223590\pi\)
\(558\) −245982. −0.0334440
\(559\) 1.11724e6 0.151223
\(560\) 0 0
\(561\) −1.04989e7 −1.40844
\(562\) −9.41650e6 −1.25762
\(563\) −880265. −0.117042 −0.0585211 0.998286i \(-0.518638\pi\)
−0.0585211 + 0.998286i \(0.518638\pi\)
\(564\) 474166. 0.0627672
\(565\) 1.89959e6 0.250344
\(566\) −8.76140e6 −1.14956
\(567\) 0 0
\(568\) 2.00189e6 0.260357
\(569\) −1.54972e6 −0.200665 −0.100332 0.994954i \(-0.531991\pi\)
−0.100332 + 0.994954i \(0.531991\pi\)
\(570\) 2.50097e6 0.322420
\(571\) −1.09701e7 −1.40806 −0.704032 0.710168i \(-0.748619\pi\)
−0.704032 + 0.710168i \(0.748619\pi\)
\(572\) −2.07110e6 −0.264674
\(573\) 7.45794e6 0.948926
\(574\) 0 0
\(575\) −9.97742e6 −1.25849
\(576\) 27651.6 0.00347268
\(577\) 1.25868e7 1.57390 0.786948 0.617019i \(-0.211660\pi\)
0.786948 + 0.617019i \(0.211660\pi\)
\(578\) 1.17261e6 0.145994
\(579\) −1.08784e7 −1.34856
\(580\) −41579.1 −0.00513222
\(581\) 0 0
\(582\) 7.30428e6 0.893861
\(583\) −1.17084e7 −1.42667
\(584\) −457630. −0.0555242
\(585\) 29320.7 0.00354230
\(586\) −3.23080e6 −0.388657
\(587\) −1.19962e7 −1.43697 −0.718484 0.695544i \(-0.755164\pi\)
−0.718484 + 0.695544i \(0.755164\pi\)
\(588\) 0 0
\(589\) 1.71617e7 2.03831
\(590\) −212921. −0.0251819
\(591\) −4.92935e6 −0.580525
\(592\) −1.54335e6 −0.180993
\(593\) −5.32309e6 −0.621623 −0.310811 0.950472i \(-0.600601\pi\)
−0.310811 + 0.950472i \(0.600601\pi\)
\(594\) 9.34696e6 1.08694
\(595\) 0 0
\(596\) −6.50092e6 −0.749651
\(597\) −4.53895e6 −0.521218
\(598\) −3.07532e6 −0.351672
\(599\) 7.55513e6 0.860350 0.430175 0.902746i \(-0.358452\pi\)
0.430175 + 0.902746i \(0.358452\pi\)
\(600\) −2.71466e6 −0.307849
\(601\) −4.44758e6 −0.502270 −0.251135 0.967952i \(-0.580804\pi\)
−0.251135 + 0.967952i \(0.580804\pi\)
\(602\) 0 0
\(603\) 395742. 0.0443219
\(604\) −6.66941e6 −0.743866
\(605\) 4.84400e6 0.538042
\(606\) −692286. −0.0765780
\(607\) −5.57320e6 −0.613950 −0.306975 0.951718i \(-0.599317\pi\)
−0.306975 + 0.951718i \(0.599317\pi\)
\(608\) −1.92919e6 −0.211649
\(609\) 0 0
\(610\) −175955. −0.0191460
\(611\) −387840. −0.0420290
\(612\) −114653. −0.0123739
\(613\) −1.11265e7 −1.19593 −0.597965 0.801522i \(-0.704024\pi\)
−0.597965 + 0.801522i \(0.704024\pi\)
\(614\) 846064. 0.0905696
\(615\) −5.70884e6 −0.608640
\(616\) 0 0
\(617\) −1.07454e7 −1.13634 −0.568170 0.822911i \(-0.692349\pi\)
−0.568170 + 0.822911i \(0.692349\pi\)
\(618\) 8.70612e6 0.916966
\(619\) −1.35756e7 −1.42408 −0.712038 0.702141i \(-0.752228\pi\)
−0.712038 + 0.702141i \(0.752228\pi\)
\(620\) 3.06071e6 0.319774
\(621\) 1.38790e7 1.44421
\(622\) −1.16684e6 −0.120930
\(623\) 0 0
\(624\) −836736. −0.0860254
\(625\) 5.82573e6 0.596555
\(626\) −7.98391e6 −0.814291
\(627\) 1.86344e7 1.89299
\(628\) −1.90865e6 −0.193120
\(629\) 6.39927e6 0.644917
\(630\) 0 0
\(631\) 1.27986e7 1.27964 0.639820 0.768525i \(-0.279009\pi\)
0.639820 + 0.768525i \(0.279009\pi\)
\(632\) −190708. −0.0189922
\(633\) 7.27741e6 0.721885
\(634\) 1.12383e7 1.11039
\(635\) 3.94184e6 0.387941
\(636\) −4.73024e6 −0.463703
\(637\) 0 0
\(638\) −309801. −0.0301322
\(639\) −211164. −0.0204583
\(640\) −344064. −0.0332039
\(641\) −884833. −0.0850582 −0.0425291 0.999095i \(-0.513542\pi\)
−0.0425291 + 0.999095i \(0.513542\pi\)
\(642\) 4.77727e6 0.457449
\(643\) −6.66271e6 −0.635511 −0.317756 0.948173i \(-0.602929\pi\)
−0.317756 + 0.948173i \(0.602929\pi\)
\(644\) 0 0
\(645\) −1.79277e6 −0.169678
\(646\) 7.99910e6 0.754153
\(647\) 1.69177e7 1.58885 0.794423 0.607365i \(-0.207773\pi\)
0.794423 + 0.607365i \(0.207773\pi\)
\(648\) 3.88121e6 0.363103
\(649\) −1.58645e6 −0.147848
\(650\) 2.22043e6 0.206136
\(651\) 0 0
\(652\) 757959. 0.0698275
\(653\) 9.49307e6 0.871212 0.435606 0.900137i \(-0.356534\pi\)
0.435606 + 0.900137i \(0.356534\pi\)
\(654\) 2.81469e6 0.257327
\(655\) −3.24266e6 −0.295323
\(656\) 4.40367e6 0.399536
\(657\) 48272.0 0.00436297
\(658\) 0 0
\(659\) −4.97563e6 −0.446308 −0.223154 0.974783i \(-0.571635\pi\)
−0.223154 + 0.974783i \(0.571635\pi\)
\(660\) 3.32338e6 0.296975
\(661\) −2.11531e7 −1.88309 −0.941543 0.336894i \(-0.890624\pi\)
−0.941543 + 0.336894i \(0.890624\pi\)
\(662\) −5.52198e6 −0.489722
\(663\) 3.46939e6 0.306527
\(664\) 2.94110e6 0.258874
\(665\) 0 0
\(666\) 162797. 0.0142220
\(667\) −460015. −0.0400366
\(668\) 3.70671e6 0.321401
\(669\) −1.89288e7 −1.63515
\(670\) −4.92414e6 −0.423783
\(671\) −1.31102e6 −0.112410
\(672\) 0 0
\(673\) 417573. 0.0355382 0.0177691 0.999842i \(-0.494344\pi\)
0.0177691 + 0.999842i \(0.494344\pi\)
\(674\) −2.26572e6 −0.192112
\(675\) −1.00209e7 −0.846539
\(676\) −5.25629e6 −0.442397
\(677\) −2.62468e6 −0.220092 −0.110046 0.993926i \(-0.535100\pi\)
−0.110046 + 0.993926i \(0.535100\pi\)
\(678\) 5.71812e6 0.477726
\(679\) 0 0
\(680\) 1.42661e6 0.118313
\(681\) 1.41372e7 1.16814
\(682\) 2.28050e7 1.87745
\(683\) −8.74455e6 −0.717275 −0.358637 0.933477i \(-0.616759\pi\)
−0.358637 + 0.933477i \(0.616759\pi\)
\(684\) 203496. 0.0166309
\(685\) 2.29399e6 0.186795
\(686\) 0 0
\(687\) −4.09716e6 −0.331200
\(688\) 1.38291e6 0.111384
\(689\) 3.86905e6 0.310496
\(690\) 4.93479e6 0.394590
\(691\) −4.39667e6 −0.350291 −0.175146 0.984543i \(-0.556040\pi\)
−0.175146 + 0.984543i \(0.556040\pi\)
\(692\) −2.14943e6 −0.170631
\(693\) 0 0
\(694\) −2.16083e6 −0.170303
\(695\) 4.29860e6 0.337571
\(696\) −125161. −0.00979369
\(697\) −1.82591e7 −1.42363
\(698\) 6.95227e6 0.540117
\(699\) −3.33951e6 −0.258518
\(700\) 0 0
\(701\) 6.51339e6 0.500624 0.250312 0.968165i \(-0.419467\pi\)
0.250312 + 0.968165i \(0.419467\pi\)
\(702\) −3.08872e6 −0.236557
\(703\) −1.13580e7 −0.866789
\(704\) −2.56358e6 −0.194946
\(705\) 622343. 0.0471582
\(706\) 4.29687e6 0.324445
\(707\) 0 0
\(708\) −640934. −0.0480541
\(709\) −1.04651e7 −0.781859 −0.390929 0.920421i \(-0.627846\pi\)
−0.390929 + 0.920421i \(0.627846\pi\)
\(710\) 2.62748e6 0.195611
\(711\) 20116.3 0.00149237
\(712\) 6.33856e6 0.468587
\(713\) 3.38625e7 2.49457
\(714\) 0 0
\(715\) −2.71832e6 −0.198855
\(716\) 745350. 0.0543347
\(717\) −7317.31 −0.000531562 0
\(718\) −484815. −0.0350966
\(719\) 1.68149e7 1.21303 0.606516 0.795071i \(-0.292567\pi\)
0.606516 + 0.795071i \(0.292567\pi\)
\(720\) 36292.7 0.00260909
\(721\) 0 0
\(722\) −4.29311e6 −0.306499
\(723\) 4.52605e6 0.322013
\(724\) −1.32674e7 −0.940672
\(725\) 332138. 0.0234679
\(726\) 1.45814e7 1.02673
\(727\) 1.71928e7 1.20646 0.603228 0.797569i \(-0.293881\pi\)
0.603228 + 0.797569i \(0.293881\pi\)
\(728\) 0 0
\(729\) 1.39284e7 0.970696
\(730\) −600640. −0.0417164
\(731\) −5.73400e6 −0.396885
\(732\) −529659. −0.0365358
\(733\) −1.97365e7 −1.35679 −0.678393 0.734700i \(-0.737323\pi\)
−0.678393 + 0.734700i \(0.737323\pi\)
\(734\) −2.21531e6 −0.151773
\(735\) 0 0
\(736\) −3.80659e6 −0.259025
\(737\) −3.66892e7 −2.48811
\(738\) −464511. −0.0313946
\(739\) 1.28719e7 0.867022 0.433511 0.901148i \(-0.357275\pi\)
0.433511 + 0.901148i \(0.357275\pi\)
\(740\) −2.02565e6 −0.135983
\(741\) −6.15778e6 −0.411983
\(742\) 0 0
\(743\) 2.45606e7 1.63218 0.816089 0.577927i \(-0.196138\pi\)
0.816089 + 0.577927i \(0.196138\pi\)
\(744\) 9.21333e6 0.610217
\(745\) −8.53246e6 −0.563227
\(746\) 2.00591e6 0.131967
\(747\) −310234. −0.0203417
\(748\) 1.06295e7 0.694636
\(749\) 0 0
\(750\) −7.71142e6 −0.500589
\(751\) −325965. −0.0210898 −0.0105449 0.999944i \(-0.503357\pi\)
−0.0105449 + 0.999944i \(0.503357\pi\)
\(752\) −480062. −0.0309566
\(753\) −2.16774e7 −1.39322
\(754\) 102374. 0.00655786
\(755\) −8.75360e6 −0.558881
\(756\) 0 0
\(757\) 1.84659e7 1.17120 0.585599 0.810601i \(-0.300859\pi\)
0.585599 + 0.810601i \(0.300859\pi\)
\(758\) −3.99602e6 −0.252612
\(759\) 3.67685e7 2.31671
\(760\) −2.53207e6 −0.159016
\(761\) −5.12626e6 −0.320877 −0.160439 0.987046i \(-0.551291\pi\)
−0.160439 + 0.987046i \(0.551291\pi\)
\(762\) 1.18657e7 0.740298
\(763\) 0 0
\(764\) −7.55066e6 −0.468006
\(765\) −150482. −0.00929675
\(766\) 2.60985e6 0.160711
\(767\) 524246. 0.0321771
\(768\) −1.03570e6 −0.0633622
\(769\) −1.63432e6 −0.0996602 −0.0498301 0.998758i \(-0.515868\pi\)
−0.0498301 + 0.998758i \(0.515868\pi\)
\(770\) 0 0
\(771\) −1.19984e7 −0.726921
\(772\) 1.10137e7 0.665103
\(773\) 4.28257e6 0.257784 0.128892 0.991659i \(-0.458858\pi\)
0.128892 + 0.991659i \(0.458858\pi\)
\(774\) −145872. −0.00875227
\(775\) −2.44493e7 −1.46222
\(776\) −7.39510e6 −0.440849
\(777\) 0 0
\(778\) 317012. 0.0187770
\(779\) 3.24079e7 1.91341
\(780\) −1.09822e6 −0.0646325
\(781\) 1.95770e7 1.14847
\(782\) 1.57834e7 0.922962
\(783\) −462019. −0.0269312
\(784\) 0 0
\(785\) −2.50510e6 −0.145095
\(786\) −9.76102e6 −0.563559
\(787\) 7.82963e6 0.450614 0.225307 0.974288i \(-0.427662\pi\)
0.225307 + 0.974288i \(0.427662\pi\)
\(788\) 4.99064e6 0.286313
\(789\) 1.69484e7 0.969250
\(790\) −250304. −0.0142692
\(791\) 0 0
\(792\) 270413. 0.0153184
\(793\) 433229. 0.0244644
\(794\) 1.60354e7 0.902670
\(795\) −6.20844e6 −0.348389
\(796\) 4.59539e6 0.257063
\(797\) 3.68238e6 0.205344 0.102672 0.994715i \(-0.467261\pi\)
0.102672 + 0.994715i \(0.467261\pi\)
\(798\) 0 0
\(799\) 1.99050e6 0.110305
\(800\) 2.74842e6 0.151830
\(801\) −668607. −0.0368205
\(802\) −2.69767e6 −0.148099
\(803\) −4.47529e6 −0.244925
\(804\) −1.48226e7 −0.808695
\(805\) 0 0
\(806\) −7.53595e6 −0.408602
\(807\) −2.79108e7 −1.50865
\(808\) 700894. 0.0377680
\(809\) 2.08181e7 1.11833 0.559165 0.829056i \(-0.311122\pi\)
0.559165 + 0.829056i \(0.311122\pi\)
\(810\) 5.09409e6 0.272806
\(811\) −3.03542e7 −1.62057 −0.810283 0.586039i \(-0.800687\pi\)
−0.810283 + 0.586039i \(0.800687\pi\)
\(812\) 0 0
\(813\) −3.24243e7 −1.72046
\(814\) −1.50929e7 −0.798383
\(815\) 994821. 0.0524627
\(816\) 4.29436e6 0.225774
\(817\) 1.01772e7 0.533426
\(818\) −1.14165e7 −0.596555
\(819\) 0 0
\(820\) 5.77982e6 0.300179
\(821\) 2.74387e7 1.42071 0.710355 0.703843i \(-0.248534\pi\)
0.710355 + 0.703843i \(0.248534\pi\)
\(822\) 6.90536e6 0.356457
\(823\) 1.59126e7 0.818919 0.409459 0.912328i \(-0.365717\pi\)
0.409459 + 0.912328i \(0.365717\pi\)
\(824\) −8.81436e6 −0.452244
\(825\) −2.65474e7 −1.35796
\(826\) 0 0
\(827\) 1.40824e7 0.716001 0.358001 0.933721i \(-0.383459\pi\)
0.358001 + 0.933721i \(0.383459\pi\)
\(828\) 401528. 0.0203536
\(829\) −2.18883e7 −1.10618 −0.553089 0.833122i \(-0.686551\pi\)
−0.553089 + 0.833122i \(0.686551\pi\)
\(830\) 3.86019e6 0.194497
\(831\) −1.37598e7 −0.691211
\(832\) 847139. 0.0424274
\(833\) 0 0
\(834\) 1.29396e7 0.644179
\(835\) 4.86505e6 0.241475
\(836\) −1.88661e7 −0.933613
\(837\) 3.40100e7 1.67801
\(838\) −1.86621e7 −0.918017
\(839\) 1.98669e7 0.974372 0.487186 0.873298i \(-0.338023\pi\)
0.487186 + 0.873298i \(0.338023\pi\)
\(840\) 0 0
\(841\) −2.04958e7 −0.999253
\(842\) 1.49327e7 0.725868
\(843\) −3.72034e7 −1.80308
\(844\) −7.36790e6 −0.356031
\(845\) −6.89888e6 −0.332381
\(846\) 50638.1 0.00243249
\(847\) 0 0
\(848\) 4.78905e6 0.228697
\(849\) −3.46152e7 −1.64815
\(850\) −1.13959e7 −0.541004
\(851\) −2.24110e7 −1.06081
\(852\) 7.90922e6 0.373280
\(853\) −8.75258e6 −0.411873 −0.205937 0.978565i \(-0.566024\pi\)
−0.205937 + 0.978565i \(0.566024\pi\)
\(854\) 0 0
\(855\) 267089. 0.0124951
\(856\) −4.83667e6 −0.225612
\(857\) 1.95477e6 0.0909166 0.0454583 0.998966i \(-0.485525\pi\)
0.0454583 + 0.998966i \(0.485525\pi\)
\(858\) −8.18267e6 −0.379469
\(859\) −4.98450e6 −0.230483 −0.115241 0.993338i \(-0.536764\pi\)
−0.115241 + 0.993338i \(0.536764\pi\)
\(860\) 1.81506e6 0.0836847
\(861\) 0 0
\(862\) −3.85868e6 −0.176877
\(863\) −1.69931e7 −0.776685 −0.388343 0.921515i \(-0.626952\pi\)
−0.388343 + 0.921515i \(0.626952\pi\)
\(864\) −3.82317e6 −0.174237
\(865\) −2.82112e6 −0.128198
\(866\) −2.47238e7 −1.12027
\(867\) 4.63285e6 0.209315
\(868\) 0 0
\(869\) −1.86498e6 −0.0837772
\(870\) −164274. −0.00735818
\(871\) 1.21240e7 0.541503
\(872\) −2.84968e6 −0.126913
\(873\) 780054. 0.0346409
\(874\) −2.80138e7 −1.24049
\(875\) 0 0
\(876\) −1.80804e6 −0.0796064
\(877\) 1.81959e7 0.798869 0.399434 0.916762i \(-0.369207\pi\)
0.399434 + 0.916762i \(0.369207\pi\)
\(878\) −860539. −0.0376733
\(879\) −1.27645e7 −0.557226
\(880\) −3.36470e6 −0.146467
\(881\) −1.77637e7 −0.771068 −0.385534 0.922694i \(-0.625983\pi\)
−0.385534 + 0.922694i \(0.625983\pi\)
\(882\) 0 0
\(883\) 1.71479e6 0.0740131 0.0370065 0.999315i \(-0.488218\pi\)
0.0370065 + 0.999315i \(0.488218\pi\)
\(884\) −3.51253e6 −0.151178
\(885\) −841226. −0.0361039
\(886\) 2.87947e7 1.23233
\(887\) 2.42436e7 1.03464 0.517318 0.855793i \(-0.326930\pi\)
0.517318 + 0.855793i \(0.326930\pi\)
\(888\) −6.09760e6 −0.259494
\(889\) 0 0
\(890\) 8.31936e6 0.352058
\(891\) 3.79554e7 1.60169
\(892\) 1.91641e7 0.806449
\(893\) −3.53292e6 −0.148253
\(894\) −2.56843e7 −1.07479
\(895\) 978272. 0.0408227
\(896\) 0 0
\(897\) −1.21502e7 −0.504200
\(898\) −1.56861e7 −0.649120
\(899\) −1.12725e6 −0.0465179
\(900\) −289910. −0.0119304
\(901\) −1.98570e7 −0.814897
\(902\) 4.30647e7 1.76240
\(903\) 0 0
\(904\) −5.78921e6 −0.235613
\(905\) −1.74134e7 −0.706745
\(906\) −2.63500e7 −1.06650
\(907\) −1.90432e7 −0.768639 −0.384319 0.923200i \(-0.625564\pi\)
−0.384319 + 0.923200i \(0.625564\pi\)
\(908\) −1.43130e7 −0.576123
\(909\) −73932.0 −0.00296772
\(910\) 0 0
\(911\) −3.18731e7 −1.27242 −0.636208 0.771518i \(-0.719498\pi\)
−0.636208 + 0.771518i \(0.719498\pi\)
\(912\) −7.62201e6 −0.303447
\(913\) 2.87618e7 1.14193
\(914\) −5.28671e6 −0.209325
\(915\) −695178. −0.0274500
\(916\) 4.14810e6 0.163347
\(917\) 0 0
\(918\) 1.58522e7 0.620843
\(919\) −2.94858e7 −1.15166 −0.575830 0.817569i \(-0.695321\pi\)
−0.575830 + 0.817569i \(0.695321\pi\)
\(920\) −4.99614e6 −0.194610
\(921\) 3.34270e6 0.129852
\(922\) −301836. −0.0116935
\(923\) −6.46927e6 −0.249949
\(924\) 0 0
\(925\) 1.61811e7 0.621804
\(926\) 1.31503e7 0.503974
\(927\) 929761. 0.0355363
\(928\) 126717. 0.00483021
\(929\) 9.73871e6 0.370222 0.185111 0.982718i \(-0.440736\pi\)
0.185111 + 0.982718i \(0.440736\pi\)
\(930\) 1.20925e7 0.458468
\(931\) 0 0
\(932\) 3.38104e6 0.127500
\(933\) −4.61003e6 −0.173380
\(934\) −2.57353e6 −0.0965299
\(935\) 1.39512e7 0.521893
\(936\) −89358.4 −0.00333385
\(937\) −2.66734e7 −0.992498 −0.496249 0.868180i \(-0.665290\pi\)
−0.496249 + 0.868180i \(0.665290\pi\)
\(938\) 0 0
\(939\) −3.15434e7 −1.16747
\(940\) −630081. −0.0232582
\(941\) −3.22865e6 −0.118863 −0.0594315 0.998232i \(-0.518929\pi\)
−0.0594315 + 0.998232i \(0.518929\pi\)
\(942\) −7.54084e6 −0.276880
\(943\) 6.39456e7 2.34170
\(944\) 648903. 0.0237001
\(945\) 0 0
\(946\) 1.35238e7 0.491328
\(947\) −4.59244e6 −0.166406 −0.0832029 0.996533i \(-0.526515\pi\)
−0.0832029 + 0.996533i \(0.526515\pi\)
\(948\) −753463. −0.0272296
\(949\) 1.47887e6 0.0533045
\(950\) 2.02264e7 0.727126
\(951\) 4.44011e7 1.59200
\(952\) 0 0
\(953\) 2.97125e7 1.05976 0.529880 0.848073i \(-0.322237\pi\)
0.529880 + 0.848073i \(0.322237\pi\)
\(954\) −505161. −0.0179705
\(955\) −9.91025e6 −0.351622
\(956\) 7408.29 0.000262164 0
\(957\) −1.22399e6 −0.0432012
\(958\) −2.97059e7 −1.04575
\(959\) 0 0
\(960\) −1.35935e6 −0.0476052
\(961\) 5.43495e7 1.89840
\(962\) 4.98747e6 0.173757
\(963\) 510184. 0.0177281
\(964\) −4.58232e6 −0.158815
\(965\) 1.44554e7 0.499704
\(966\) 0 0
\(967\) 7.64435e6 0.262890 0.131445 0.991323i \(-0.458038\pi\)
0.131445 + 0.991323i \(0.458038\pi\)
\(968\) −1.47627e7 −0.506380
\(969\) 3.16034e7 1.08125
\(970\) −9.70607e6 −0.331218
\(971\) 4.99621e7 1.70056 0.850281 0.526329i \(-0.176432\pi\)
0.850281 + 0.526329i \(0.176432\pi\)
\(972\) 818079. 0.0277734
\(973\) 0 0
\(974\) 1.66834e7 0.563491
\(975\) 8.77265e6 0.295542
\(976\) 536245. 0.0180193
\(977\) 4.05394e7 1.35876 0.679378 0.733789i \(-0.262250\pi\)
0.679378 + 0.733789i \(0.262250\pi\)
\(978\) 2.99460e6 0.100113
\(979\) 6.19865e7 2.06700
\(980\) 0 0
\(981\) 300592. 0.00997251
\(982\) 1.49470e7 0.494623
\(983\) 4.13056e7 1.36341 0.681703 0.731629i \(-0.261239\pi\)
0.681703 + 0.731629i \(0.261239\pi\)
\(984\) 1.73984e7 0.572824
\(985\) 6.55021e6 0.215112
\(986\) −525413. −0.0172111
\(987\) 0 0
\(988\) 6.23434e6 0.203188
\(989\) 2.00811e7 0.652826
\(990\) 354917. 0.0115090
\(991\) −1.84084e7 −0.595431 −0.297715 0.954655i \(-0.596225\pi\)
−0.297715 + 0.954655i \(0.596225\pi\)
\(992\) −9.32789e6 −0.300957
\(993\) −2.18167e7 −0.702126
\(994\) 0 0
\(995\) 6.03144e6 0.193136
\(996\) 1.16199e7 0.371154
\(997\) 3.39708e7 1.08235 0.541175 0.840910i \(-0.317980\pi\)
0.541175 + 0.840910i \(0.317980\pi\)
\(998\) −3.48345e7 −1.10709
\(999\) −2.25086e7 −0.713568
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.6.a.f.1.1 2
3.2 odd 2 882.6.a.bl.1.2 2
4.3 odd 2 784.6.a.r.1.2 2
7.2 even 3 98.6.c.f.67.2 4
7.3 odd 6 14.6.c.b.9.1 4
7.4 even 3 98.6.c.f.79.2 4
7.5 odd 6 14.6.c.b.11.1 yes 4
7.6 odd 2 98.6.a.c.1.2 2
21.5 even 6 126.6.g.e.109.2 4
21.17 even 6 126.6.g.e.37.2 4
21.20 even 2 882.6.a.bt.1.2 2
28.3 even 6 112.6.i.b.65.2 4
28.19 even 6 112.6.i.b.81.2 4
28.27 even 2 784.6.a.bc.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.b.9.1 4 7.3 odd 6
14.6.c.b.11.1 yes 4 7.5 odd 6
98.6.a.c.1.2 2 7.6 odd 2
98.6.a.f.1.1 2 1.1 even 1 trivial
98.6.c.f.67.2 4 7.2 even 3
98.6.c.f.79.2 4 7.4 even 3
112.6.i.b.65.2 4 28.3 even 6
112.6.i.b.81.2 4 28.19 even 6
126.6.g.e.37.2 4 21.17 even 6
126.6.g.e.109.2 4 21.5 even 6
784.6.a.r.1.2 2 4.3 odd 2
784.6.a.bc.1.1 2 28.27 even 2
882.6.a.bl.1.2 2 3.2 odd 2
882.6.a.bt.1.2 2 21.20 even 2